Fuzzy Stability Results of Generalized Quartic Functional Equations
Abstract
:1. Introduction
- (F1)
- for ;
- (F2)
- for all ;
- (F3)
- if ;
- (F4)
- ;
- (F5)
- is a non-decreasing function of and ;
- (F6)
- for , is continuous on .
- (i)
- the sequence converges to a fixed point of Γ;
- (ii)
- b is the unique fixed point of Γ in the set ;
- (iii)
2. General Solution
3. Results: Direct Technique
4. Results: Fixed Point Technique
- (i)
- and
- (ii)
- is the unique fixed point of in the set ;
- (iii)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katsaras, A.K. Fuzzy topological vector spaces II. Fuzzy Sets Syst. 1984, 12, 143–154. [Google Scholar] [CrossRef]
- Felbin, C. Finite dimensional fuzzy normed linear spaces. Fuzzy Sets Syst. 1992, 48, 239–248. [Google Scholar] [CrossRef]
- Kim, S.O.; Rassias, J.M. Stability of the Apollonius type additive functional equation in modular spaces and fuzzy Banach spaces. Mathematics 2019, 7, 1125. [Google Scholar] [CrossRef] [Green Version]
- Phung, N.N.; Ta, B.Q.; Vu, H. Ulam-Hyers stability and Ulam-Hyers-Rassias stability for fuzzy integrodifferential equation. Complexity 2019, 2019, 8275979. [Google Scholar] [CrossRef]
- Shen, Y. Hyers-Ulam-Rassias stability of first order linear partial fuzzy differential equations under generalized differentiability. Adv. Differ. Equ. 2015, 2015, 351. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z. Stability of a more general cubic functional equation in Felbin’s type fuzzy normed linear spaces. J. Intell. Fuzzy Syst. 2020, 38, 4733–4742. [Google Scholar] [CrossRef]
- Yang, X.; Shen, G.; Liu, G.; Chang, L. The Hyers-Ulam-Rassias stability of the quartic functional equation in fuzzy β-normed spaces. J. Inequal. Appl. 2015, 2015, 342. [Google Scholar] [CrossRef] [Green Version]
- Ulam, S.M. A Collection of the Mathematical Problems; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Bînzar, T.; Pater, F.; Nădăban, S. On fuzzy normed algebras. J. Nonlinear Sci. Appl. 2016, 9, 5488–5496. [Google Scholar] [CrossRef] [Green Version]
- Brillouët-Bellout, N.; Brzdȩk, J.; Ciepliński, K. On some recent developments in Ulam’s type stability. Abstr. Appl. Anal. 2012, 2012, 716936. [Google Scholar] [CrossRef]
- Brzdȩk, J.; Fechner, W.; Moslehian, M.S.; Sikorska, J. Recent developments of the conditional stability of the homomorphism equation. Banach J. Math. Anal. 2015, 3, 278–327. [Google Scholar] [CrossRef]
- El-Fassi, I.Z. Generalized hyerstability of a Drygas functional equation on a restricted domain using Brzdȩk’s fixed point theorem. J. Fixed Point Theory Appl. 2017, 19, 2529–2540. [Google Scholar] [CrossRef]
- Lee, Y. On the Hyers-Ulam-Rassias stability of a general quintic functional equation and a general sextic functional equation. Mathematics 2019, 7, 510. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Rassias, J.M.; Bodaghi, A.; Kim, S.O. Approximate homomorphisms from ternary semigroups to modular spaces. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2019, 113, 2175–2188. [Google Scholar] [CrossRef]
- Tamilvanan, K.; Lee, J.R.; Park, C. Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Math. 2020, 5, 5593–6005. [Google Scholar] [CrossRef]
- Wang, C.; Xu, T. Hyers-Ulam-Rassias stability of a mixed type cubic-quartic functional equation in 2-Banach spaces. Acta Math. Sci. Series A 2020, 40, 352–368. [Google Scholar]
- Lee, S.H.; Im, S.M.; Hwang, I.S. Quartic functional equations. J. Math. Anal. Appl. 2005, 307, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Gordji, M.E.; Khodaei, H.; Khodabakhsh, R. General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A 2010, 72, 69–84. [Google Scholar]
- Ravi, K.; Vijaya, R.B.; Veena, R. Generalized Hyers-Ulam stability of a new generalized mixed type cubic-quartic functional equation. Int. Math. Forum 2014, 9, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-S.; Chung, S.-Y. Stability of quartic functional equation in the space of generalized functions. Adv. Differ. Equ. 2009, 2009, 838347. [Google Scholar] [CrossRef] [Green Version]
- Bag, T.; Samanta, S.K. Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 2003, 11, 687–705. [Google Scholar]
- Mirmostafaee, A.K.; Mirzavaziri, M.; Moslehian, M.S. Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst. 2008, 159, 730–738. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K.; Moslehian, M.S. Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst. 2008, 159, 720–729. [Google Scholar] [CrossRef]
- Diaz, J.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Miheţ, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 2008, 343, 567–572. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.O.; Tamilvanan, K. Fuzzy Stability Results of Generalized Quartic Functional Equations. Mathematics 2021, 9, 120. https://doi.org/10.3390/math9020120
Kim SO, Tamilvanan K. Fuzzy Stability Results of Generalized Quartic Functional Equations. Mathematics. 2021; 9(2):120. https://doi.org/10.3390/math9020120
Chicago/Turabian StyleKim, Sang Og, and Kandhasamy Tamilvanan. 2021. "Fuzzy Stability Results of Generalized Quartic Functional Equations" Mathematics 9, no. 2: 120. https://doi.org/10.3390/math9020120
APA StyleKim, S. O., & Tamilvanan, K. (2021). Fuzzy Stability Results of Generalized Quartic Functional Equations. Mathematics, 9(2), 120. https://doi.org/10.3390/math9020120