Stability of the Fréchet Equation in Quasi-Banach Spaces
Abstract
:1. Introduction
- 1.
- if and only if .
- 2.
- .
- 3.
- .
- 1.
- d is called a b-metric on X and is called a b-metric space.
- 2.
- The sequence is convergent to x in if .
- 3.
- The sequence is called a Cauchy sequence if .
- 4.
- The space is said to be complete if each Cauchy sequence is convergent.
- 1.
- if and only if .
- 2.
- .
- 3.
- .
2. Hyperstability of (2) on a Restricted Domain
- 1.
- X is a nonempty set, is a quasi-Banach space, and is a given function.
- 2.
- There exist and such that for every ,
- 3.
- There exist and such that for all ,
- 4.
- For every and ,
- 1.
- For every , the limitexists and the function so defined is a fixed point of J satisfying
- 2.
- For every , if
3. Stability of (2) on Abelian Groups
4. Nonstability of the Fréchet Equation
5. Conclusions
Funding
Conflicts of Interest
References
- Ulam, S.M. Problems of Modern Mathematics; Sciences Editions; John Wiley & Sons Inc.: New York, NY, USA, 1964. [Google Scholar]
- Hyers, D.H. On the stability of linear functional equations. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzdȩk, J.; Popa, D.; Raşa, I.; Xu, B. Ulam Stability of Operators; Academic Press: London, UK, 2018. [Google Scholar]
- Czerwik, S. Functional Equations and Inequalities in Several Variables; World Scientific: River Edge, NY, USA, 2002. [Google Scholar]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Basel, Germany, 1998. [Google Scholar]
- Jung, S.M. Hyers–Ulam-Rassis Stability of Functional Equations in Mathematical Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Rassias, T.M.; Brzdȩk, J. (Eds.) Functional Equations in Mathematical Analysis; Springer: New York, NY, USA, 2012. [Google Scholar]
- Aoki, T. On the stability of the linear transformation mappings in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Lee, Y.-H. On the stability of the monomial functional equation. Bull. Korean Math. Soc. 2008, 45, 397–403. [Google Scholar] [CrossRef]
- Brzdȩk, J. Hyperstability of the Cauchy equation on restricted domains. Acta Math. Hungar. 2013, 141, 58–67. [Google Scholar] [CrossRef]
- Fréchet, M. Sur la définition axiomatique d’une classe d’espaces vectoriels distanciés applicables vectorielle-ment sur l’espace de Hilbert. Ann. Math. Second Ser. 1935, 36, 705–718. [Google Scholar] [CrossRef]
- Kannappan, P.L. Quadratic functional equation and inner product spaces. Results Math. 1995, 27, 368–372. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Brzdȩk, J.; Piszczek, M.; Sikorska, J. Hyperstability of the Fréchet equation and a characterization of inner product spaces. J. Funct. Spaces Appl. 2013, 2013. [Google Scholar] [CrossRef]
- Brzdȩk, J.; Leśniak, Z.; Malejki, R. On the generalized Fréchet functional equation with constant coefficients and its stability. Aequat. Math. 2018, 92, 355–373. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.-S.; Kim, H.-M. Hyers–Ulam-Rassias stability of a quadratic functional equation. Kyungpook Math. J. 2002, 42, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Fechner, W. On the Hyers–Ulam stability of functional equations connected with additive and quadratic mappings. J. Math. Anal. Appl. 2006, 322, 774–786. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.M. On the Hyers–Ulam stability of the functional equations that have the quadratic property. J. Math. Anal. Appl. 1998, 222, 126–137. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.-H. On the stability of the quadratic mapping in normed spaces. Int. J. Math. Math. Sci. 2001, 25, 217–229. [Google Scholar] [CrossRef]
- Malejki, R. Stability of a generalization of the Fréchet functional equation. Ann. Univ. Paedagog. Crac. Stud. Math. 2015, 14, 69–79. [Google Scholar] [CrossRef]
- Sikorska, J. On a direct method for proving the Hyers–Ulam stability of functional equations. J. Math. Anal. Appl. 2010, 372, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Brzdȩk, J.; Chudziak, J.; Páles, Z. A fixed point approach to stability of functional equations. Nonlinear Anal. 2011, 174, 6728–6732. [Google Scholar] [CrossRef]
- Dung, N.V.; Hang, V.T.L. The generalized hyperstability of general linear equations in quasi-Banach spaces. J. Math. Anal. Appl. 2018, 462, 131–147. [Google Scholar] [CrossRef]
- Cǎdariu, L.; Gǎvruta, L.; Gǎvruta, P. Fixed points and generalized Hyers–Ulam stability. Abst. Appl. Anal. 2012, 2012, 712743. [Google Scholar] [CrossRef] [Green Version]
- Ciepliński, K. Applications of fixed point theorems to the Hyers–Ulam stability of functional equations-a survey. Ann. Funct. Anal. 2012, 3, 151–164. [Google Scholar] [CrossRef]
- Gordji, M.E.; Khodaei, H. Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces. Nonlinear Anal. 2009, 71, 5629–5643. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.S.; Balaji, S. Hyers–Ulam stability of linear operators in Frechet spaces. Appl. Math. Inf. Sci. 2012, 6, 525–528. [Google Scholar]
- Moraldlou, F.; Vaezi, H.; Eskandani, G.Z. Hyers–Ulam-Rassias stability of a quadratic and additive functional equation in quasi-Banach spaces. Mediterr. J. Math. 2009, 6, 233–248. [Google Scholar] [CrossRef]
- Najati, A.; Eskandani, G.Z. Stability of a mixed additive and cubic functional equation in quasi-Banach spaces. J. Math. Anal. Appl. 2008, 342, 1318–1331. [Google Scholar] [CrossRef] [Green Version]
- Najati, A.; Moghimi, M.B. Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces. J. Math. Anal. Appl. 2008, 337, 399–415. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.Z.; Rassias, J.M.; Xu, W.X. Generalized Hyers–Ulam stability of a general mixed additive-cubic functional equation in quasi-Banach spaces. Acta Math. Sin. 2012, 28, 529–560. [Google Scholar] [CrossRef]
- Rolewicz, S. Metric Linear Spaces; PWN-Polish Scientific Publishers: Warsaw, Poland; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Piszczek, M.; Szczawaińska, J. Hyperstability of the Drygas functional equation. J. Funct. Space Appl. 2013, 2013, 912718. [Google Scholar] [CrossRef] [Green Version]
- Piszczek, M.; Szczawaińska, J. Stability of Drygas functional equation on restricted domain. Results Math. 2014, 68, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Czerwik, S. On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hambg. 1992, 62, 59–64. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.O. Stability of the Fréchet Equation in Quasi-Banach Spaces. Mathematics 2020, 8, 490. https://doi.org/10.3390/math8040490
Kim SO. Stability of the Fréchet Equation in Quasi-Banach Spaces. Mathematics. 2020; 8(4):490. https://doi.org/10.3390/math8040490
Chicago/Turabian StyleKim, Sang Og. 2020. "Stability of the Fréchet Equation in Quasi-Banach Spaces" Mathematics 8, no. 4: 490. https://doi.org/10.3390/math8040490
APA StyleKim, S. O. (2020). Stability of the Fréchet Equation in Quasi-Banach Spaces. Mathematics, 8(4), 490. https://doi.org/10.3390/math8040490