Next Article in Journal
Using Wolfram Alpha with Elementary Teacher Candidates: From More Than One Correct Answer to More Than One Correct Solution
Next Article in Special Issue
Ulam Stability of n-th Order Delay Integro-Differential Equations
Previous Article in Journal
Outer Synchronization of Complex-Variable Networks with Complex Coupling via Impulsive Pinning Control
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On a Coupled System of Random and Stochastic Nonlinear Differential Equations with Coupled Nonlocal Random and Stochastic Nonlinear Integral Conditions

by
Ahmed M. A. El-Sayed
* and
Hoda A. Fouad
*
Faculty of Science, Alexandria University, Alexandria 21568, Egypt
*
Authors to whom correspondence should be addressed.
Mathematics 2021, 9(17), 2111; https://doi.org/10.3390/math9172111
Submission received: 3 July 2021 / Revised: 25 August 2021 / Accepted: 27 August 2021 / Published: 1 September 2021
(This article belongs to the Special Issue Advances in Delay Differential Equations)

Abstract

:
It is well known that Stochastic equations had many useful applications in describing numerous events and problems of real world, and the nonlocal integral condition is important in physics, finance and engineering. Here we are concerned with two problems of a coupled system of random and stochastic nonlinear differential equations with two coupled systems of nonlinear nonlocal random and stochastic integral conditions. The existence of solutions will be studied. The sufficient condition for the uniqueness of the solution will be given. The continuous dependence of the unique solution on the nonlocal conditions will be proved.

1. Introduction

Let ( Ω , ϝ , P ) be a fixed probability space, where Ω is a sample space, ϝ is a σ -algebra and P is a probability measure.
The aim of this article is to extend the results of A.M.A. El-Sayed [1,2] on the stochastic fractional calculus operators defined on C ( [ 0 , T ] , L 2 ( Ω ) ) and the solution of stochastic differential equations subject to nonlocal integral conditions which have been considered in [3,4].
Moreover, we motivate the coupled system of integral equations in reflexive Banach space by A.M.A. El-Sayed and H.H.G.Hashem [5] to the coupled systems with random memory on the space of all second order stochastic process.
The continuous dependence of a unique solution has been studied on the random initial data and the random function which ensures the stability of the solution.
Nonlocal problem of differential equation have been studied by many authors (see for example [6,7,8]).
Let Z ( t ; ω ) = Z ( t ) , t [ 0 , T ] , ω Ω be a second order stochastic process, i.e., E ( Z 2 ( t ) ) < , t [ 0 , T ] .
Let C = C ( [ 0 , T ] , L 2 ( Ω ) ) be the space of all second order stochastic processes which is mean square (m.s) continuous on [ 0 , T ] . The norm of Z C ( [ 0 , T ] , L 2 ( Ω ) ) is given by
Z C = sup t [ 0 , T ] Z ( t ) 2 , Z ( t ) 2 = E ( Z 2 ( t ) ) .
Let T 1 . In this paper we study the existence of solutions ( x , y ) C ( [ 0 , T ] , L 2 ( Ω ) ) of the problem of the coupled system of random and stochastic differential equations
d x ( t ) d t = f 1 ( t , y ( ϕ 1 ( t ) ) ) , t ( 0 , T ] ,
d y ( t ) = f 2 ( t , x ( ϕ 2 ( t ) ) ) d W ( t ) , t ( 0 , T ]
subject to each one of the two nonlinear nonlocal stochastic integral conditions
x ( 0 ) + 0 τ h 1 ( s , y ( s ) ) d W ( s ) = x 0 , y ( 0 ) + 0 η h 2 ( s , x ( s ) ) d s = y 0
and
x ( 0 ) + 0 τ h 1 ( s , x ( s ) ) d W ( s ) = x 0 , y ( 0 ) + 0 η h 2 ( s , y ( s ) ) d s = y 0
where x 0 and y 0 are two second order random variables.
Let X = C ( [ 0 , T ] , L 2 ( Ω ) ) × C ( [ 0 , T ] , L 2 ( Ω ) ) be the class of all ordered pairs ( x , y ) , x , y C with the norm
( x , y ) X = max { x C , y C } = max { sup t [ 0 , T ] x ( t ) 2 , sup t [ 0 , T ] y ( t ) 2 } .
Let ϕ i : [ 0 , T ] [ 0 , T ] be continuous functions such that ϕ i ( t ) t and consider the following assumptions
Assumption 1.
f i : [ 0 , T ] × L 2 ( Ω ) L 2 ( Ω ) , i = 1 , 2 are measurable in t [ 0 , T ] for all x L 2 ( Ω ) and continuous in x L 2 ( Ω ) for all t [ 0 , T ] . There exist two bounded measurable functions m i : [ 0 , T ] R and two positive constants b i such that
f i ( t , x ) 2 | m i ( t ) | + b i x ( t ) 2 , i = 1 , 2 .
Assumption 2.
h i : [ 0 , T ] × L 2 ( Ω ) L 2 ( Ω ) , i = 1 , 2 are measurable in t [ 0 , T ] for all x L 2 ( Ω ) and continuous in x L 2 ( Ω ) for all t [ 0 , T ] . There exist two bounded measurable functions k i : [ 0 , T ] R and two positive constants c i such that
h i ( t , x ) 2 | k i ( t ) | + c i x ( t ) 2 , i = 1 , 2 .
Assumption 3.
M = max { sup t [ 0 , T ] | m 1 ( t ) | , sup t [ 0 , T ] | m 2 ( t ) | } , b = max { b 1 , b 2 } .
Assumption 4.
K = max { sup t [ 0 , T ] | k 1 ( t ) | , sup t [ 0 , T ] | k 2 ( t ) | } , c = max { c 1 , c 2 } .
Assumption 5. ( b + c ) T < 1 .
Now, integrating the two random and stochastic differential Equations (1) and (2) (see [1,2,9,10,11,12,13,14]) and using the nonlocal conditions (3) and (4) the following Lemma can be proven.
Lemma 1.
The integral representations of the solutions of the nonlocal problems (1) and (2) with conditions (3) and (1) and (2) with conditions (4) are given by
x ( t ) = x 0 0 τ h 1 ( s , y ( s ) ) d W ( s ) + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) d s ,
y ( t ) = y 0 0 η h 2 ( s , x ( s ) ) d s + 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) .
and
x ( t ) = x 0 0 τ h 1 ( s , x ( s ) ) d W ( s ) + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) d s ,
y ( t ) = y 0 0 η h 2 ( s , y ( s ) ) d s + 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) .
respectively.

2. Solutions of the Problem (1)–(3)

Define the mapping ( F ( x , y ) ) ( t ) = ( F 1 y , F 2 x ) ( t ) , t [ 0 , T ] where ( F 1 y ) ( t ) , ( F 2 x ) ( t ) are given by the following stochastic integral equations
( F 1 y ) ( t ) = x 0 0 τ h 1 ( s , y ( s ) ) d W ( s ) + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) d s ,
( F 2 x ) ( t ) = y 0 0 η h 2 ( s , x ( s ) ) d s + 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) .
Consider the set Q such that
Q = { x , y C ( [ 0 , T ] , L 2 ( Ω ) ) , ( x , y ) X : | | ( x , y ) | | X = max { | | x ( t ) | | 2 , | | y ( t ) | | 2 } r . }
Now, we have the following two lemmas
Lemma 2.
F : Q Q .
Proof. 
Let y Q , y ( t ) 2 r 1 , then
( F 1 y ) ( t ) 2 x 0 2 + 0 τ h 1 ( s , y ( s ) ) d W ( s ) 2 + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) d s 2 x 0 2 + 0 τ h 1 ( s , y ( s ) ) 2 2 d s + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) 2 d s x 0 2 + 0 τ ( | k 1 ( s ) | + c 1 y ( s ) 2 ) 2 d s + 0 t ( | m 1 ( S ) | + b 1 y ( s ) 2 ) d s x 0 2 + ( K + c r 1 ) T + ( M + b r 1 ) T < x 0 2 + ( K + c r 1 ) T + ( M + b r 1 ) T = r 1
where
r 1 = x 0 2 + K T + M T 1 ( b + c ) T > 0 .
Let x Q , x ( t ) 2 r 2 , then
( F 2 x ) ( t ) 2 y 0 2 + 0 η h 2 ( s , x ( s ) ) d s 2 + 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) 2 y 0 2 + 0 η h 2 ( s , x ( s ) ) 2 d s + 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) 2 2 d s y 0 2 + 0 η ( | k 2 ( s ) | + c 2 x ( s ) 2 ) d s + 0 t ( | m 2 ( t ) | + b 2 x 2 ) 2 d s y 0 2 + ( K + c r 2 ) T + ( M + b r 2 ) T < y 0 2 + ( K + c r 2 ) T + ( M + b r 2 ) T = r 2
where
r 2 = y 0 2 + K T + M T 1 ( b + c ) T > 0 .
Let r = max { r 1 , r 2 } , ( x , y ) Q , then
F ( x , y ) X = ( F 1 y , F 2 x ) X = max { ( F 1 y ) C , ( F 2 x ) C } < r .
This proves that F : Q Q and the class of functions { F ( x , y ) } is uniformly bounded on Q .
Lemma 3.
The class of functions { F ( x , y ) } is equicontinuous on Q.
Proof. 
Let x , y Q , t 1 , t 2 [ 0 , T ] such that | t 2 t 1 | < δ , then
( F 1 y ) ( t 2 ) ( F 1 y ) ( t 1 ) 2 = 0 t 2 f 1 ( s , y ( ϕ 1 ( s ) ) ) d s 0 t 1 f 1 ( s , y ( ϕ 1 ( s ) ) ) d s 2 t 1 t 2 f 1 ( s , y ( ϕ 1 ( s ) ) ) 2 ( M + b y C ) ( t 2 t 1 )
This proves the equicontinuity of the class { F 1 y } and
( F 2 x ) ( t 2 ) ( F 2 x ) ( t 1 ) 2 = 0 t 2 f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) 0 t 1 f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) 2 t 1 t 2 f 2 ( s , x ( ϕ 2 ( s ) ) ) 2 2 d s ( M + b x C ) ( t 2 t 1 ) .
This proves the equicontinuity of the class { F 1 x } .
Now
( F ( x , y ) ) ( t 2 ) F ( x , y ) ) ( t 1 ) ) = ( ( F 1 y ) ( t 2 ) , ( F 2 x ) ( t 2 ) ) ( ( F 1 y ) ( t 1 ) , ( F 2 x ) ( t 1 ) ) = ( ( F 1 y ) ( t 2 ) ( F 1 y ) ( t 1 ) ) , ( ( F 2 x ) ( t 2 ) ( F 2 x ) ( t 1 ) ) ) ,
then from (14) and (15), we can deduce the equicontinuity of the class { F ( x , y ) } on Q.

2.1. Existence Theorem

Now, we have the following existence theorem
Theorem 1.
Let the Assumptions 1–5 be satisfied, then there exists at least one solution ( x , y ) X of the problem (1)–(3).
Proof. 
Firstly, from the results of Lemmas 2 and 3 and Arzela–Ascoli Theorem [9] we deduce that the closure of F Q is a compact subset.
Let ( x n , y n ) Q be such that
L . i . m n ( x n , y n ) = ( x , y ) w . p . 1 .
where L . i . m denotes the limit in the mean square sense of the continuous second order process ([1,2,9]).
Now,
L . i . m n F ( x n , y n ) = ( L . i . m n F 1 y n , L . i . m n F 2 x n ) = ( L . i . m n { x 0 0 τ h 1 ( s , y n ( s ) ) d W ( s ) + 0 t f 1 ( s , y n ( ϕ 1 ( s ) ) ) d s } , L . i . m n { y 0 0 η h 2 ( s , x n ( s ) ) d s + 0 t f 2 ( s , x n ( ϕ 2 ( s ) ) ) d W ( s ) } ) = ( x 0 0 τ h 1 ( s , L . i . m n y n ( s ) ) d W ( s ) + 0 t f 1 ( s , L . i . m n y n ( ϕ 1 ( s ) ) ) d s , y 0 0 η h 2 ( s , L . i . m n x n ( s ) ) d s + 0 t f 2 ( s , L . i . m n x n ( ϕ 2 ( s ) ) ) d W ( s ) ) = ( x 0 0 τ h 1 ( s , y ( s ) ) d W ( s ) + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) d s , y 0 0 η h 2 ( s , x ( s ) ) d s + 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) ) = ( F 1 y , F 2 x ) = F ( x , y ) .
Applying stochastic Lebesgue dominated convergence Theorem the operator F : Q Q is continuous.
Finally, applying Schauder Fixed Point Theorem [9], we can deduce that there exists at least one solution ( x , y ) Q of the problem (1)–(3) such that x , y C ( [ 0 , T ] , L 2 ( Ω ) ) .

2.2. Uniqueness Theorem

Replace the assumptions ( A 1 ) and ( A 2 ) by ( A * 1 ) and ( A * 2 ) , respectively, such that ( A * 1 ) The functions f i : [ 0 , T ] × L 2 ( Ω ) L 2 ( Ω ) , i = 1 , 2 are measurable in t [ 0 , T ] for all x L 2 ( Ω ) and satisfy the Lipschitz condition with respect to the second argument
f i ( t , u ) f i ( t , v ) 2 b u v 2 .
( A * 2 ) The functions h i : [ 0 , T ] × L 2 ( Ω ) L 2 ( Ω ) , i = 1 , 2 are measurable in t [ 0 , T ] for all x L 2 ( Ω ) and satisfy the Lipschitz condition with respect to the second argument
h i ( t , u ) h i ( t , v ) 2 c u v 2 .
Remark 1.
Let the assumptions ( A * 1 ) and ( A * 2 ) be satisfied, then we can obtain
f i ( t , u ) 2 f i ( t , 0 ) 2 f i ( t , u ) f i ( t , 0 ) 2 b u 2 ,
f i ( t , u ) 2 f i ( t , 0 ) 2 + b u 2 M + b u 2
and
h i ( t , u ) 2 h i ( t , 0 ) 2 + c u 2 K + c u 2 .
Theorem 2.
Let the assumptions ( A * 1 ) ( A * 2 ) and ( A 3 ) ( A 5 ) be satisfied, then the solution of problem (1)–(3) is unique.
Proof. 
Let ( x 1 , y 1 ) and ( x 2 , y 2 ) be two solutions of the problem (1)–(3), then
( x i ( t ) , y i ( t ) ) = ( x 0 0 τ h 1 ( s , y ( s ) ) d W ( s ) + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) d s , y 0 0 η h 2 ( s , x ( s ) ) d s + 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) ) , i = 1 , 2
where
x 1 ( t ) x 2 ( t ) 2 0 τ [ h 1 ( s , y 2 ( s ) ) h 1 ( s , y 1 ( s ) ) ] d W ( s ) 2 + 0 t ( f 1 ( s , y 1 ) f 1 ( s , y 2 ) ) d s 2 0 τ c 2 y 2 y 1 C 2 d s + T b y 1 y 2 C T c y 1 y 2 C + T b y 1 y 2 C T ( b + c ) y 1 y 2 C , T ( b + c ) max { x 1 x 2 C , y 1 y 2 C }
and
y 1 ( t ) y 2 ( t ) 2 0 η h 2 ( s , x 2 ( s ) ) h 2 ( s , x 1 ( s ) ) 2 d s + 0 t b 2 x 1 ( s ) ) x 2 ( s ) ) ) 2 2 d s T b x 1 x 2 C + c T x 2 x 1 C T ( b + c ) x 1 x 2 C , T ( b + c ) max { x 1 x 2 C , y 1 y 2 C } .
Hence,
( x 1 , y 1 ) ( x 2 , y 2 ) X = ( x 1 x 2 ) , ( y 1 , y 2 ) X = max { ( x 1 x 2 ) C , ( y 1 , y 2 ) C } T ( b + c ) max { x 1 x 2 C , y 2 y 1 C } T ( b + c ) ( x 1 , y 1 ) ( x 2 , y 2 ) X .
This implies that
( 1 T ( b + c ) ) ( x 1 , y 1 ) ( x 2 , y 2 ) X 0
and
( x 1 , y 1 ) ( x 2 , y 2 ) X = 0 ,
then ( x 1 , y 1 ) = ( x 2 , y 2 ) and the solution of the problem (1)–(3) is unique. □

2.3. Continuous Dependence

Theorem 3.
Let the assumptions of Theorem 2 be satisfied. Then the solution (16) of the problem (1)–(3) depends continuously on the two random data ( x 0 , y 0 ) .
Proof. 
Let ( x ^ , y ^ ) be the solution of the coupled system
x ^ ( t ) = x ^ 0 0 τ h 1 ( s , y ^ ( s ) ) d W ( s ) + 0 t f 1 ( s , y ^ ( ϕ 1 ( s ) ) ) d s y ^ ( t ) = y ^ 0 0 η h 2 ( s , x ^ ( s ) ) d s + 0 t f 2 ( s , x ^ ( ϕ 2 ( s ) ) ) d W ( s ) ,
such that ( x 0 , y 0 ) ( x 0 ^ , y 0 ^ ) X < δ 1 , then
x x ^ C x 0 x 0 ^ C + T ( b + c ) y y ^ C δ 1 + T ( b + c ) y y ^ C δ 1 + T ( b + c ) max { x x ^ C , y y ^ C } y y ^ C y 0 y 0 ^ C + T ( b + c ) x x ^ C , δ 1 + T ( b + c ) x x ^ C δ 1 + T ( b + c ) max { x x ^ C , y y ^ C } .
Then
( x , y ) ( x ^ , y ^ ) X = ( x x ^ , y y ^ ) X = max { x x ^ C , y y ^ C } δ 1 + T ( b + c ) max { x x ^ C , y y ^ C } δ 1 + T ( b + c ) ( x , y ) ( x ^ , y ^ ) X .
This implies that
( x , y ) ( x ^ , y ^ ) X δ 1 1 T ( b + c ) = ϵ
which completes the proof. □
Theorem 4.
The solution (16) of the problem (1)–(3) depends continuously on the two random functions h 1 and h 2 .
Proof. 
Let ( x ^ , y ^ ) be the solutions of the coupled system
x ^ ( t ) = x 0 0 τ h 1 * ( s , y ^ ( s ) ) d W ( s ) + 0 t f 1 ( s , y ^ ( ϕ 1 ( s ) ) ) d s , y ^ ( t ) = y 0 0 η h 2 * ( s , x ^ ( s ) ) d s + 0 t f 2 ( s , x ^ ( ϕ 2 ( s ) ) ) d W ( s )
such that h i * ( s , . ) h ( s , . ) 2 δ 2 , i = 1 , 2 , then
x ( t ) x ^ ( t ) 2 = 0 τ [ h 1 * ( s , y ^ ( s ) ) h 1 ( s , y ( s ) ) ] d W ( s ) + 0 t [ f 1 ( s , y ( ϕ 1 ( s ) ) ) f 1 ( s , y ^ ( ϕ 1 ( s ) ) ) ] d s 2 0 τ h 1 * ( s , y ^ ( s ) ) h 1 ( s , y ( s ) ) 2 2 d s + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) f 1 ( s , y ^ ( ϕ 1 ( s ) ) ) 2 d s 0 τ [ h 1 * ( s , y ^ ( s ) ) h 1 * ( s , y ( s ) ) 2 + h 1 * ( s , y ( s ) ) h 1 ( s , y ( s ) ) 2 ] 2 d s + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) f 1 ( s , y ^ ( ϕ 1 ( s ) ) ) 2 d s 0 τ ( c y ( s ) y ^ ( s ) 2 + δ 2 ) 2 d s + 0 t b y ( s ) y ^ ( s ) 2 d s ( c T + b T ) y y ^ C + δ 2 T T ( b + c ) max { x x ^ C , y y ^ C } + δ 2 T
Similarly we can obtain
y ( t ) y ^ ( t ) 2 = 0 η [ h 2 * ( s , x ^ ( s ) ) h 2 ( s , x ( s ) ) ] d s + 0 t [ f 2 ( s , x ( ϕ 2 ( s ) ) ) f 2 ( s , x ^ ( ϕ 2 ( s ) ) ) ] d W ( s ) 2 ( c T + b T ) x x ^ C + δ 2 T T ( b + c ) x x ^ C + δ 2 T T ( b + c ) max { x x ^ C , y y ^ C } + δ 2 T T ( b + c ) max { x x ^ C , y y ^ C } + δ 2 T .
Now
( x , y ) ( x ^ , y ^ ) X = max { x x ^ C , y y ^ C T ( b + c ) max { ( x x ^ C , y y ^ C } + δ 2 T T ( c + b ) ( x , y ) ( x ^ , y ^ ) X + δ 2 T .
This implies that
( x , y ) ( x ^ , y ^ ) X δ 2 T 1 T ( b + c ) = ϵ
which completes the proof. □

3. Solutions of the Problem (1), (2) and (4)

Define the mapping L ( x , y ) = ( L 1 x , L 2 y ) where L 1 x , L 2 y are given by the following stochastic integral equations
L 1 x ( t ) = x 0 0 τ h 1 ( s , x ( s ) ) d W ( s ) + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) d s ,
L 2 y ( t ) = y 0 0 η h 2 ( s , y ( s ) ) d s + 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) .
Lemma 4.
L : Q Q .
Proof. 
Let x , y Q , , then we obtain
L 1 x ( t ) 2 x 0 2 + 0 τ h 1 ( s , x ( s ) ) d W ( s ) 2 + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) d s 2 x 0 2 + 0 τ h 1 ( s , x ( s ) ) 2 2 d s + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) 2 d s x 0 2 + 0 τ ( | k 1 ( s ) | + c 1 x ( s ) 2 ) 2 0 t ( | m 1 ( s ) | + b 1 y ( s ) 2 ) d s x 0 2 + K T + M T + c T x C + b T y C ) x 0 2 + y 0 2 + ( K + M ) T + 2 r T ( b + c )
and
L 2 y ( t ) 2 y 0 2 + 0 η h 2 ( s , y ( s ) ) d s 2 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) 2 y 0 2 = 0 η h 2 ( s , y ( s ) ) 2 d s + 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) 2 2 d s y 0 2 + 0 η ( | k 2 ( s ) | + c 2 y ( s ) 2 ) d s + 0 t ( | m 2 ( t ) | + b 2 x 2 ) 2 d s y 0 2 + K T + M T + c T y C + b T x C y 0 2 + ( K + M ) T + T ( b + c ) y C + T ( b + c ) x C x 0 2 + y 0 2 + ( K + M ) T + 2 r T ( b + c ) .
This implies that
L ( x , y ) X = ( L 1 x , L 2 y ) X = max { L 1 x ( t ) C , L 2 y ( t ) C } x 0 2 + y 0 2 + ( K + M ) T + 2 r T ( b + c ) = r
where
r = x 0 2 + y 0 2 + ( K + M ) T 1 T ( b + c ) ,
then the class { L ( x , y ) } is uniformly bounded and L ( x , y ) : Q Q .
Lemma 5.
The class of function { L ( x , y ) ( t ) } , t [ 0 , T ] is equicontinuous.
Proof. 
Let x , y Q , t 1 , t 2 [ 0 , T ] such that | t 2 t 1 | < δ , then
L 1 x ( t 2 ) L 1 y ( t 1 ) 2 = 0 t 2 f 1 ( s , y ( ϕ 1 ( s ) ) ) d s 0 t 1 f 1 ( s , y ( ϕ 1 ( s ) ) ) d s 2 t 1 t 2 f 1 ( s , y ( ϕ 1 ( s ) ) ) 2 d s ( M + b y C ) ( t 2 t 1 )
and
L 2 x ( t 2 ) L 2 x ( t 1 ) 2 = 0 t 2 f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) 0 t 1 f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) 2 t 1 t 2 f 2 ( s , x ( ϕ 2 ( s ) ) ) 2 2 d s ( M + b x C ) ( t 2 t 1 ) .
However,
L ( x ( t 2 ) , y ( t 2 ) ) L ( x ( t 1 ) , y ( t 1 ) ) = ( L 1 x ( t 2 ) , L 2 y ( t 2 ) ) ( L 1 x ( t 1 ) , L 2 y ( t 1 ) ) = ( ( L 1 x ( t 2 ) L 1 x ( t 1 ) ) , ( L 2 y ( t 2 ) L 2 y ( t 1 ) ) ) ,
then from (19) and (20), we deduce the equicontinuity of the class { L ( x , y ) ( t ) } on Q. □

3.1. Existence Theorem

Now, we have the following existence theorem
Theorem 5.
Let the Assumptions (A1)–(A5) be satisfied, then there exists at least one solution ( x , y ) X of the problem (1), (2) and (4).
Proof. 
Let { ( x n , y n ) } Q be such that
( x n , y n ) ( x , y ) w . p . 1 .
Using Lemmas 1–3, then applying stochastic Lebesgue dominated convergence Theorem [9], we can obtain
L . i . m n L ( x n , y n ) = ( L . i . m n L 1 x n , L . i . m n L 2 y n ) = ( L . i . m n { x 0 0 τ h 1 ( s , x n ( s ) ) d W ( s ) + 0 t f 1 ( s , y n ( ϕ 1 ( s ) ) ) d s } , L . i . m n { y 0 0 η h 2 ( s , y n ( s ) ) d s + 0 t f 2 ( s , x n ( ϕ 2 ( s ) ) ) d W ( s ) } ) = ( x 0 0 τ h 1 ( s , L . i . m n x n ( s ) ) d W ( s ) + 0 t f 1 ( s , L . i . m n y n ( ϕ 1 ( s ) ) ) d s , y 0 0 η h 2 ( s , L . i . m n y n ( s ) ) d s + 0 t f 2 ( s , L . i . m n x n ( ϕ 2 ( s ) ) ) d W ( s ) ) = ( x 0 0 τ h 1 ( s , x ( s ) ) d W ( s ) + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) d s , y 0 0 η h 2 ( s , y ( s ) ) d s + 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) ) = ( L 1 x , L 2 y ) = L ( x , y ) .
This proves that the operator L : Q Q is continuous. □
Then by the Arzela–Ascoli Theorem [9], the closure of L Q is a compact subset of X , then applying Schauder Fixed Point Theorem [9], there exists at least one solution ( x , y ) X of the problem (1), (2) and (4) such that x , y C ( [ 0 , T ] , L 2 ( Ω ) ) .

3.2. Uniqueness Theorem

Theorem 6.
Let the assumptions ( A * 1 ) ( A * 2 ) and ( A 3 ) ( A 5 ) be satisfied then the solution of problem (1), (2) and (4) is unique.
Proof. 
Let ( x 1 , y 1 ) and ( x 2 , y 2 ) be two solutions of the problem (1), (2) and (4) on the form
( x ( t ) , y ( t ) ) = ( x 0 0 τ h 1 ( s , x ( s ) ) d W ( s ) + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) d s , y 0 0 η h 2 ( s , y ( s ) ) d s + 0 t f 2 ( s , x ( ϕ 2 ( s ) ) ) d W ( s ) ) ,
then we can obtain
x 1 ( t ) x 2 ( t ) 2 c T x 1 x 2 C + b T y 1 y 2 C < c T x 1 x 2 C + b T y 1 y 2 C ( b + c ) T x 1 x 2 C + ( b + c ) T y 1 y 2 C ( b + c ) T m a x { x 1 x 2 C , y 1 y 2 C } .
Similarly, we can obtain
y 1 ( t ) y 2 ( t ) 2 ( b + c ) T m a x { x 1 x 2 C , y 1 y 2 C } .
Hence from (22) and (23)
( x 1 , y 1 ) ( x 2 , y 2 ) X = ( x 1 x 2 ) , ( y 1 y 2 ) X max { x 1 x 2 C , y 1 y 2 C } ( b + c ) T m a x { x 1 x 2 C , y 1 y 2 C } .
This implies that
( 1 ( b + c ) T ) ( x 1 , y 1 ) ( x 2 , y 2 ) X 0 .
Then
( x 1 , y 1 ) ( x 2 , y 2 ) X = 0
and ( x 1 , y 1 ) = ( x 2 , y 2 ) which proves that the solution of the problem (1), (2) and (4) is unique. □

3.3. Continuous Dependence

Theorem 7.
The solution (16) of the problem (1)–(2) and (4) depends continuously on the two random data ( x 0 , y 0 ) .
Proof. 
Let ( x ^ , y ^ ) be the solution of the coupled system
x ^ ( t ) = x ^ 0 0 τ h 1 ( s , x ^ ( s ) ) d W ( s ) + 0 t f 1 ( s , y ^ ( ϕ 1 ( s ) ) ) d s y ^ ( t ) = y ^ 0 0 η h 2 ( s , y ^ ( s ) ) d s + 0 t f 2 ( s , x ^ ( ϕ 2 ( s ) ) ) d W ( s ) ,
such that ( x 0 , y 0 ) ( x 0 ^ , y 0 ^ ) X < δ 3 . Then we have
x ( t ) x ^ ( t ) = x 0 x 0 ^ 0 τ [ h 1 ( s , x ^ ( s ) ) h 1 ( s , x ( s ) ) ] d W ( s ) + 0 t [ f 1 ( s , y ( ϕ 1 ( s ) ) ) f 1 ( s , y ^ ( ϕ 1 ( s ) ) ) ] d s
and
x ( t ) x ^ ( t ) 2 x 0 x 0 ^ C + c T x x ^ C + b T y y ^ C x 0 x 0 ^ C + c T x x ^ C + b T y y ^ C x 0 x 0 ^ 2 + c T m a x { x x ^ C , y y ^ C } + b T m a x { x x ^ C , y y ^ C } m a x { x 0 x 0 ^ 2 , y 0 y 0 ^ 2 } + ( b + c ) T m a x { x x ^ C , y y ^ C } .
By the same way we can obtain
y ( t ) y ^ ( t ) 2 m a x { x 0 x 0 ^ 2 , y 0 y 0 ^ 2 } + ( b + c ) T m a x { x x ^ C , y y ^ C }
and
( x , y ) ( x ^ , y ^ ) X = max { ( x x ^ C , ( y y ^ C } m a x { x 0 x 0 ^ 2 , y 0 y 0 ^ 2 } + ( b + c ) T m a x { x x ^ C , y y ^ C } δ 3 + ( b + c ) T m a x { x x ^ C , y y ^ C }
which gives our result
( x , y ) ( x ^ , y ^ ) X δ 3 1 T ( b + c ) = ϵ
and completes the proof. □
Theorem 8.
The solution (16) of the problem (1), (2) and (4) depends continuously on the two random functions h 1 and h 2 .
Proof. 
Let ( x ^ , y ^ ) be the solutions of the coupled system of stochastic integral Equations (1), (2) and (4) such that
x ^ ( t ) = x 0 0 τ h 1 * ( s , x ^ ( s ) ) d W ( s ) + 0 t f 1 ( s , y ^ ( ϕ 1 ( s ) ) ) d s y ^ ( t ) = y 0 0 η h 2 * ( s , y ^ ( s ) ) d s + 0 t f 2 ( s , x ^ ( ϕ 2 ( s ) ) ) d W ( s ) .
Let h i * ( t , u ( t ) ) h ( t , u ( t ) ) 2 δ 4 , i = 1 , 2 then
x ( t ) x ^ ( t ) 2 = 0 τ [ h 1 * ( s , x ^ ( s ) ) h 1 ( s , x ( s ) ) ] d W ( s ) + 0 t [ f 1 ( s , y ( ϕ 1 ( s ) ) ) f 1 ( s , y ^ ( ϕ 1 ( s ) ) ) ] d s 2 0 τ h 1 * ( s , x ^ ( s ) ) h 1 ( s , x ( s ) ) 2 2 d s + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) f 1 ( s , y ^ ( ϕ 1 ( s ) ) ) 2 d s 0 τ [ h 1 * ( s , x ^ ( s ) ) h 1 * ( s , x ( s ) ) 2 + h 1 * ( s , x ( s ) ) h 1 ( s , x ( s ) ) 2 ] 2 d s + 0 t f 1 ( s , y ( ϕ 1 ( s ) ) ) f 1 ( s , y ^ ( ϕ 1 ( s ) ) ) 2 d s 0 τ ( c x ( s ) x ^ ( s ) 2 + δ 4 ) 2 d s + 0 t b y ( s ) y ^ ( s ) 2 d s c T x x ^ C + b T y y ^ C + δ 4 T ) c T x x ^ C + b T y y ^ C + δ 4 T . c T m a x { x x ^ C , y y ^ C } + b T m a x { x x ^ C , y y ^ C } + δ 4 T ( b + c ) T m a x { x x ^ C , y y ^ C } + δ 4 T .
Similarly we can obtain
y y ^ C ( b + c ) T m a x { x x ^ C , y y ^ C } + δ 4 T
and
( x , y ) ( x ^ , y ^ ) X = max { x x ^ C , y y ^ C } ( b + c ) T m a x { x x ^ C , y y ^ C } + δ 4 T .
This implies that
( x , y ) ( x ^ , y ^ ) X δ 4 T 1 T ( b + c ) = ϵ
which completes the proof. □
Example 1.
Consider the coupled system
d x d t ( t ) = a ( t ) + y ( t ) 5 ( 1 + y ( t ) 2 ) , t ( 0 , 1 ] d y ( t ) = t x ( t ) 2 ( 1 + x 2 ) d W ( t ) , t ( 0 , 1 ]
subject to
x 0 = 0 τ e s y ( s ) 120 + s 2 d W ( s ) , y 0 = 0 η x ( s ) s + 36 d s
where
f 1 ( t , y ( t ) ) 2 1 5 [ | a ( t ) | + y ( t ) 2 ] , f 2 ( t , x ( t ) ) 2 1 2 x ( t ) 2
and
h 1 ( t , y ( t ) 2 y ( t ) 2 120 , h 2 ( t , x ( t ) 2 x ( t ) 2 6 .
Easily, the coupled system (24) with nonlocal integral conditions (25) satisfies all the Assumptions 1–5 of Theorem 1. with b = 1 2 , c = 1 6 , then there exists at least one solution of the system (24) on [ 0 , 1 ] .

4. Conclusions

Here, we proved the existence of solutions of a coupled system of random and stochastic nonlinear differential equations with coupled nonlocal random and stochastic nonlinear integral conditions. The sufficient conditions for the uniqueness of the solution have been given. The continuous dependence of the unique solution has been studied.

Author Contributions

Conceptualization, A.M.A.E.-S. and H.A.F. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the referee and the editor for their valuable comments which led to improvement of this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. El-Sayed, A.M.A. On the stochastic fractional calculus operators. J. Fract. Calc. Appl. 2015, 6, 101–109. [Google Scholar]
  2. El-Sayed, A.M.A.; El-Tawil, M.A.; Saif, M.S.M.; Hafez, F.M. The mean square Riemann-Liouville stochastic fractional derivative and stochastic fractional order differential equation. Math. Sci. Res. J. 2005, 9, 142–150. [Google Scholar]
  3. El-Sayed, A.M.A.; Gaafar, F.; El-Gendy, M. Continuous dependence of the solution of Ito stochastic differential equation with nonlocal conditions. Appl. Math. Sci. 2016, 10, 1971–1982. [Google Scholar] [CrossRef]
  4. El-Sayed, A.M.A.; Gaafar, F.; El-Gendy, M. Continuous dependence of the solution of random fractional-order differential equation with nonlocal condition. Fract. Differ. Calc. 2017, 7, 135–149. [Google Scholar] [CrossRef] [Green Version]
  5. El-Sayed, A.M.A.; Hashem, H.H.G. A coupled System of integral equations in reflexive Banach spaces. Acta Math. Sci. 2012, 32B, 2021–2028. [Google Scholar] [CrossRef]
  6. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals 2016, 83, 234–241. [Google Scholar] [CrossRef]
  7. Yin, W.; Cao, J. Nonlocal stochastic differential equations with time-varying delay driven by G-Brownian motion. Math. Meth. Appl. Sci. 2020, 43, 600–612. [Google Scholar] [CrossRef]
  8. Tsokos, C.P.; Padgett, W.J. Stochastic Integral Equations in Life Sciences and Engineering; International Statistical Institute: Voorburg, The Netherlands, 1973; Volume 41, pp. 15–38. [Google Scholar]
  9. Curtain, R.F.; Pritchard, A.J. Functional Analysis in Modern Applied Mathematics; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar]
  10. Hafez, F.M.; El-Sayed, A.M.A.; El-Tawil, M.A. On a stochastic fractional calculus. Fractional Calculus Appl. Anal. 2001, 4, 81–90. [Google Scholar]
  11. Hafez, F.M. The Fractional calculus for some stochastic processes. Stoch. Anal. Appl. 2004, 22, 507–523. [Google Scholar] [CrossRef]
  12. Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
  13. Wong, E. Stochastic Processes, Informations and Dynamical Systems; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
  14. Wong, E. Introduction to Random Processes; Springer: Berlin, Germany, 1980. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

El-Sayed, A.M.A.; Fouad, H.A. On a Coupled System of Random and Stochastic Nonlinear Differential Equations with Coupled Nonlocal Random and Stochastic Nonlinear Integral Conditions. Mathematics 2021, 9, 2111. https://doi.org/10.3390/math9172111

AMA Style

El-Sayed AMA, Fouad HA. On a Coupled System of Random and Stochastic Nonlinear Differential Equations with Coupled Nonlocal Random and Stochastic Nonlinear Integral Conditions. Mathematics. 2021; 9(17):2111. https://doi.org/10.3390/math9172111

Chicago/Turabian Style

El-Sayed, Ahmed M. A., and Hoda A. Fouad. 2021. "On a Coupled System of Random and Stochastic Nonlinear Differential Equations with Coupled Nonlocal Random and Stochastic Nonlinear Integral Conditions" Mathematics 9, no. 17: 2111. https://doi.org/10.3390/math9172111

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop