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Abstract: It is well known that Stochastic equations had many useful applications in describing
numerous events and problems of real world, and the nonlocal integral condition is important in
physics, finance and engineering. Here we are concerned with two problems of a coupled system
of random and stochastic nonlinear differential equations with two coupled systems of nonlinear
nonlocal random and stochastic integral conditions. The existence of solutions will be studied. The
sufficient condition for the uniqueness of the solution will be given. The continuous dependence of
the unique solution on the nonlocal conditions will be proved.
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1. Introduction

Let (Ω,z, P) be a fixed probability space, where Ω is a sample space, z is a σ-algebra
and P is a probability measure.

The aim of this article is to extend the results of A.M.A. El-Sayed [1,2] on the stochastic
fractional calculus operators defined on C([0, T], L2(Ω)) and the solution of stochastic
differential equations subject to nonlocal integral conditions which have been considered
in [3,4].

Moreover, we motivate the coupled system of integral equations in reflexive Banach
space by A.M.A. El-Sayed and H.H.G.Hashem [5] to the coupled systems with random
memory on the space of all second order stochastic process.

The continuous dependence of a unique solution has been studied on the random
initial data and the random function which ensures the stability of the solution.

Nonlocal problem of differential equation have been studied by many authors (see for
example [6–8]).

Let Z(t; ω) = Z(t), t ∈ [0, T], ω ∈ Ω be a second order stochastic process, i.e.,
E(Z2(t)) < ∞, t ∈ [0, T].

Let C = C([0, T], L2(Ω)) be the space of all second order stochastic processes which
is mean square (m.s) continuous on [0, T]. The norm of Z ∈ C([0, T], L2(Ω)) is given by

‖Z‖C = sup
t∈[0,T]

‖Z(t)‖2, ‖Z(t) ‖2 =
√

E(Z2(t)).

Let T ≥ 1. In this paper we study the existence of solutions (x, y) ∈ C([0, T], L2(Ω))
of the problem of the coupled system of random and stochastic differential equations
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dx(t)
dt

= f1(t, y(φ1(t))), t ∈ (0, T], (1)

dy(t) = f2(t, x(φ2(t)))dW(t), t ∈ (0, T] (2)

subject to each one of the two nonlinear nonlocal stochastic integral conditions

x(0) +
∫ τ

0
h1(s, y(s))dW(s) = x0, y(0) +

∫ η

0
h2(s, x(s))ds = y0 (3)

and
x(0) +

∫ τ

0
h1(s, x(s))dW(s) = x0, y(0) +

∫ η

0
h2(s, y(s))ds = y0 (4)

where x0 and y0 are two second order random variables.
Let X = C([0, T], L2(Ω)) × C([0, T], L2(Ω)) be the class of all ordered pairs

(x, y), x, y ∈ C with the norm

‖(x, y)‖X = max{ ‖x‖C, ‖y‖C} = max{ sup
t∈[0,T]

‖x(t)‖2, sup
t∈[0,T]

‖y(t)‖2}. (5)

Let φi : [0, T]→ [0, T] be continuous functions such that φi(t) ≤ t and consider the
following assumptions

Assumption 1. fi : [0, T]× L2(Ω) → L2(Ω), i = 1, 2 are measurable in t ∈ [0, T] for all
x ∈ L2(Ω) and continuous in x ∈ L2(Ω) for all t ∈ [0, T]. There exist two bounded measurable
functions mi : [0, T]→ R and two positive constants bi such that

‖ fi(t, x)‖2 ≤ |mi(t)|+ bi‖x(t)‖2, i = 1, 2. (6)

Assumption 2. hi : [0, T]× L2(Ω) → L2(Ω), i = 1, 2 are measurable in t ∈ [0, T] for all
x ∈ L2(Ω) and continuous in x ∈ L2(Ω) for all t ∈ [0, T]. There exist two bounded measurable
functions ki : [0, T]→ R and two positive constants ci such that

‖hi(t, x)‖2 ≤ |ki(t)|+ ci‖x(t)‖2, i = 1, 2. (7)

Assumption 3. M = max{supt∈[0,T] |m1(t)|, supt∈[0,T] |m2(t)|}, b = max{b1, b2}.

Assumption 4. K = max{supt∈[0,T] |k1(t)|, supt∈[0,T] |k2(t)|}, c = max{c1, c2}.

Assumption 5. (b + c)T < 1.

Now, integrating the two random and stochastic differential Equations (1) and (2)
(see [1,2,9–14]) and using the nonlocal conditions (3) and (4) the following Lemma can
be proven.

Lemma 1. The integral representations of the solutions of the nonlocal problems (1) and (2) with
conditions (3) and (1) and (2) with conditions (4) are given by

x(t) = x0 −
∫ τ

0
h1(s, y(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds, (8)

y(t) = y0 −
∫ η

0
h2(s, x(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s). (9)

and

x(t) = x0 −
∫ τ

0
h1(s, x(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds, (10)

y(t) = y0 −
∫ η

0
h2(s, y(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s). (11)
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respectively.

2. Solutions of the Problem (1)–(3)

Define the mapping (F(x, y))(t) = (F1y, F2x)(t), t ∈ [0, T] where (F1y)(t), (F2x)(t)
are given by the following stochastic integral equations

(F1y)(t) = x0 −
∫ τ

0
h1(s, y(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds, (12)

(F2x)(t) = y0 −
∫ η

0
h2(s, x(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s). (13)

Consider the set Q such that

Q = {x, y ∈ C([0, T], L2(Ω)), (x, y) ∈ X : ||(x, y)||X = max{||x(t)||2, ||y(t)||2} ≤ r.}

Now, we have the following two lemmas

Lemma 2. F : Q→ Q.

Proof. Let y ∈ Q, ‖y(t)‖2 ≤ r1, then

‖(F1y)(t)‖2 ≤ ‖x0‖2 + ‖
∫ τ

0
h1(s, y(s))dW(s)‖2 + ‖

∫ t

0
f1(s, y(φ1(s)))ds‖2

≤ ‖x0‖2 +

√∫ τ

0
‖h1(s, y(s))‖2

2ds +
∫ t

0
‖ f1(s, y(φ1(s)))‖2ds

≤ ‖x0‖2 +

√∫ τ

0
(|k1(s)|+ c1‖y(s)‖2)2ds +

∫ t

0
(|m1(S)|+ b1‖y(s)‖2)ds

≤ ‖x0‖2 + (K + cr1)
√

T + (M + br1)T < ‖x0‖2 + (K + cr1)T + (M + br1)T = r1

where

r1 =
‖x0‖2 + KT + MT

1− (b + c)T
> 0.

Let x ∈ Q, ‖x(t)‖2 ≤ r2, then

‖(F2x)(t)‖2 ≤ ‖y0‖2 + ‖
∫ η

0
h2(s, x(s))ds‖2 + ‖

∫ t

0
f2(s, x(φ2(s)))dW(s)‖2

≤ ‖y0‖2 +
∫ η

0
‖h2(s, x(s))‖2ds +

√∫ t

0
‖ f2(s, x(φ2(s)))‖2

2ds

≤ ‖y0‖2 +
∫ η

0
(|k2(s)|+ c2‖x(s)‖2)ds +

√∫ t

0
(|m2(t)|+ b2‖x‖2)2ds

≤ ‖y0‖2 + (K + cr2)T + (M + br2)T < ‖y0‖2 + (K + cr2)T + (M + br2)T = r2

where

r2 =
‖y0‖2 + KT + MT

1− (b + c)T
> 0.

Let r = max{r1, r2}, (x, y) ∈ Q, then

‖F(x, y)‖X = ‖(F1y, F2x)‖X

= max{‖(F1y)‖C, ‖(F2x)‖C} < r.

This proves that F : Q→ Q and the class of functions {F(x, y)} is uniformly bounded
on Q.
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Lemma 3. The class of functions {F(x, y)} is equicontinuous on Q.

Proof. Let x, y ∈ Q, t1, t2 ∈ [0, T] such that |t2 − t1| < δ, then

‖(F1y)(t2)− (F1y)(t1)‖2 = ‖
∫ t2

0
f1(s, y(φ1(s)))ds−

∫ t1

0
f1(s, y(φ1(s)))ds‖2

≤
∫ t2

t1

‖ f1(s, y(φ1(s)))‖2

≤ (M + b‖y‖C)(t2 − t1) (14)

This proves the equicontinuity of the class {F1y} and

‖(F2x)(t2)− (F2x)(t1)‖2 = ‖
∫ t2

0
f2(s, x(φ2(s)))dW(s)−

∫ t1

0
f2(s, x(φ2(s)))dW(s)‖2

≤

√∫ t2

t1

‖ f2(s, x(φ2(s)))‖2
2ds

≤ (M + b‖x‖C)
√
(t2 − t1). (15)

This proves the equicontinuity of the class {F1x}.
Now

(F(x, y))(t2)− F(x, y))(t1)) = ((F1y)(t2), (F2x)(t2))− ((F1y)(t1), (F2x)(t1))

= ((F1y)(t2)− (F1y)(t1)), ((F2x)(t2)− (F2x)(t1))),

then from (14) and (15), we can deduce the equicontinuity of the class {F(x, y)} on Q.

2.1. Existence Theorem

Now, we have the following existence theorem

Theorem 1. Let the Assumptions 1–5 be satisfied, then there exists at least one solution (x, y) ∈ X
of the problem (1)–(3).

Proof. Firstly, from the results of Lemmas 2 and 3 and Arzela–Ascoli Theorem [9] we
deduce that the closure of FQ is a compact subset.

Let (xn, yn) ∈ Q be such that

L.i.mn→∞(xn, yn) = (x, y) w.p.1.

where L.i.m denotes the limit in the mean square sense of the continuous second order
process ([1,2,9]).

Now,

L.i.mn→∞F(xn, yn) = (L.i.mn→∞F1yn, L.i.mn→∞F2xn)

= (L.i.mn→∞{x0 −
∫ τ

0
h1(s, yn(s))dW(s) +

∫ t

0
f1(s, yn(φ1(s)))ds},

L.i.mn→∞{y0 −
∫ η

0
h2(s, xn(s))ds +

∫ t

0
f2(s, xn(φ2(s)))dW(s)})

= (x0 −
∫ τ

0
h1(s, L.i.mn→∞yn(s))dW(s) +

∫ t

0
f1(s, L.i.mn→∞yn(φ1(s)))ds,

y0 −
∫ η

0
h2(s, L.i.mn→∞xn(s))ds +

∫ t

0
f2(s, L.i.mn→∞xn(φ2(s)))dW(s))
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= (x0 −
∫ τ

0
h1(s, y(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds,

y0 −
∫ η

0
h2(s, x(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s))

= (F1y, F2x) = F(x, y).

Applying stochastic Lebesgue dominated convergence Theorem the operator F : Q→
Q is continuous.

Finally, applying Schauder Fixed Point Theorem [9], we can deduce that there exists
at least one solution (x, y) ∈ Q of the problem (1)–(3) such that x, y ∈ C([0, T], L2(Ω)).

2.2. Uniqueness Theorem

Replace the assumptions (A1) and (A2) by (A∗1) and (A∗2), respectively, such that
(A∗1) The functions fi : [0, T]× L2(Ω)→ L2(Ω), i = 1, 2 are measurable in t ∈ [0, T] for
all x ∈ L2(Ω) and satisfy the Lipschitz condition with respect to the second argument

‖ fi(t, u)− fi(t, v)‖2 ≤ b‖u− v‖2.

(A∗2) The functions hi : [0, T]× L2(Ω)→ L2(Ω), i = 1, 2 are measurable in t ∈ [0, T] for
all x ∈ L2(Ω) and satisfy the Lipschitz condition with respect to the second argument

‖hi(t, u)− hi(t, v)‖2 ≤ c‖u− v‖2.

Remark 1. Let the assumptions (A∗1) and (A∗2) be satisfied, then we can obtain

‖ fi(t, u)‖2 − ‖ fi(t, 0)‖2 ≤ ‖ fi(t, u)− fi(t, 0)‖2 ≤ b‖u‖2,

‖ fi(t, u)‖2 ≤ ‖ fi(t, 0)‖2 + b‖u‖2 ≤ M + b‖u‖2

and
‖hi(t, u)‖2 ≤ ‖hi(t, 0)‖2 + c‖u‖2 ≤ K + c‖u‖2.

Theorem 2. Let the assumptions (A∗1)− (A∗2) and (A3)− (A5) be satisfied, then the solution
of problem (1)–(3) is unique.

Proof. Let (x1, y1) and (x2, y2) be two solutions of the problem (1)–(3), then

(xi(t), yi(t)) = (x0 −
∫ τ

0
h1(s, y(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds,

y0 −
∫ η

0
h2(s, x(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s)), i = 1, 2 (16)

where

‖x1(t)− x2(t)‖2 ≤ ‖
∫ τ

0
[h1(s, y2(s))− h1(s, y1(s))]dW(s)‖2 + ‖

∫ t

0
( f1(s, y1)− f1(s, y2))ds‖2

≤
√∫ τ

0
c2‖y2 − y1‖2

Cds + Tb‖y1 − y2‖C ≤ T
√

c‖y1 − y2‖C + Tb‖y1 − y2‖C

≤ T(b + c)‖y1 − y2‖C,

≤ T(b + c)max{‖x1 − x2‖C, ‖y1 − y2‖C}
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and

‖y1(t)− y2(t)‖2 ≤
∫ η

0
‖h2(s, x2(s))− h2(s, x1(s))‖2ds +

√∫ t

0
b2‖x1(s))− x2(s)))‖2

2ds

≤
√

Tb‖x1 − x2‖C + cT‖x2 − x1‖C

≤ T(b + c)‖x1 − x2‖C,

≤ T(b + c)max{‖x1 − x2‖C, ‖y1 − y2‖C}.

Hence,

‖(x1, y1)− (x2, y2)‖X = ‖(x1 − x2), (y1, y2)‖X

= max{‖(x1 − x2)‖C, ‖(y1, y2)‖C}
≤ T(b + c)max{‖x1 − x2‖C, ‖y2 − y1‖C}
≤ T(b + c)‖(x1, y1)− (x2, y2)‖X .

This implies that

(1− T(b + c))‖(x1, y1)− (x2, y2)‖X ≤ 0

and
‖(x1, y1)− (x2, y2)‖X = 0,

then (x1, y1) = (x2, y2) and the solution of the problem (1)–(3) is unique.

2.3. Continuous Dependence

Theorem 3. Let the assumptions of Theorem 2 be satisfied. Then the solution (16) of the problem (1)–(3)
depends continuously on the two random data (x0, y0).

Proof. Let (x̂, ŷ) be the solution of the coupled system

x̂(t) = x̂0 −
∫ τ

0
h1(s, ŷ(s))dW(s) +

∫ t

0
f1(s, ŷ(φ1(s)))ds

ŷ(t) = ŷ0 −
∫ η

0
h2(s, x̂(s))ds +

∫ t

0
f2(s, x̂(φ2(s)))dW(s),

such that ‖(x0, y0)− (x̂0, ŷ0)‖X < δ1, then

‖x− x̂‖C ≤ ‖x0 − x̂0‖C + T(b + c)‖y− ŷ‖C

≤ δ1 + T(b + c)‖y− ŷ‖C

≤ δ1 + T(b + c)max{‖x− x̂‖C, ‖y− ŷ‖C}
‖y− ŷ‖C ≤ ‖y0 − ŷ0‖C + T(b + c)‖x− x̂‖C,

≤ δ1 + T(b + c)‖x− x̂‖C

≤ δ1 + T(b + c)max{‖x− x̂‖C, ‖y− ŷ‖C}.

Then

‖(x, y)− (x̂, ŷ)‖X = ‖(x− x̂, y− ŷ)‖X

= max{‖x− x̂‖C, ‖y− ŷ‖C}
≤ δ1 + T(b + c)max{‖x− x̂‖C, ‖y− ŷ‖C}
≤ δ1 + T(b + c)‖(x, y)− (x̂, ŷ)‖X .
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This implies that

‖(x, y)− (x̂, ŷ)‖X ≤
δ1

1− T(b + c)
= ε

which completes the proof.

Theorem 4. The solution (16) of the problem (1)–(3) depends continuously on the two random
functions h1 and h2.

Proof. Let (x̂, ŷ) be the solutions of the coupled system

x̂(t) = x0 −
∫ τ

0
h∗1(s, ŷ(s))dW(s) +

∫ t

0
f1(s, ŷ(φ1(s)))ds,

ŷ(t) = y0 −
∫ η

0
h∗2(s, x̂(s))ds +

∫ t

0
f2(s, x̂(φ2(s)))dW(s)

such that ‖h∗i (s, .)− h(s, .)‖2 ≤ δ2, i = 1, 2, then

‖x(t)− x̂(t)‖2 = ‖
∫ τ

0
[h∗1(s, ŷ(s))− h1(s, y(s))]dW(s) +

∫ t

0
[ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))]ds‖2

≤
√∫ τ

0
‖h∗1(s, ŷ(s))− h1(s, y(s))‖2

2ds +
∫ t

0
‖ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤
√∫ τ

0
[‖h∗1(s, ŷ(s))− h∗1(s, y(s))‖2 + ‖h∗1(s, y(s))− h1(s, y(s))‖2]2ds

+
∫ t

0
‖ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤
√∫ τ

0
(c‖y(s)− ŷ(s)‖2 + δ2)2ds +

∫ t

0
b‖y(s)− ŷ(s)‖2ds

≤ (c
√

T + bT)‖y− ŷ‖C + δ2
√

T

≤ T(b + c)max{‖x− x̂‖C, ‖y− ŷ‖C}+ δ2T

Similarly we can obtain

‖y(t)− ŷ(t)‖2 = ‖
∫ η

0
[h∗2(s, x̂(s))− h2(s, x(s))]ds +

∫ t

0
[ f2(s, x(φ2(s)))− f2(s, x̂(φ2(s)))]dW(s)‖2

≤ (cT + b
√

T)‖x− x̂‖C + δ2T

≤ T(b + c)‖x− x̂‖C + δ2T

≤ T(b + c)max{‖x− x̂‖C, ‖y− ŷ‖C}+ δ2T

≤ T(b + c)max{‖x− x̂‖C, ‖y− ŷ‖C}+ δ2T.

Now

‖(x, y)− (x̂, ŷ)‖X = max{‖x− x̂‖C, ‖y− ŷ‖C

≤ T(b + c)max{(‖x− x̂‖C, ‖y− ŷ‖C}+ δ2T

≤ T(c + b)‖(x, y)− (x̂, ŷ)‖X + δ2T.

This implies that

‖(x, y)− (x̂, ŷ)‖X ≤
δ2T

1− T(b + c)
= ε

which completes the proof.
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3. Solutions of the Problem (1), (2) and (4)

Define the mapping L(x, y) = (L1x, L2y) where L1x, L2y are given by the following
stochastic integral equations

L1x(t) = x0 −
∫ τ

0
h1(s, x(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds, (17)

L2y(t) = y0 −
∫ η

0
h2(s, y(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s). (18)

Lemma 4. L : Q→ Q.

Proof. Let x, y ∈ Q, , then we obtain

‖L1x(t)‖2 ≤ ‖x0‖2 + ‖
∫ τ

0
h1(s, x(s))dW(s)‖2 + ‖

∫ t

0
f1(s, y(φ1(s)))ds‖2

≤ ‖x0‖2 +

√∫ τ

0
‖h1(s, x(s))‖2

2ds +
∫ t

0
‖ f1(s, y(φ1(s)))‖2ds

≤ ‖x0‖2 +

√∫ τ

0
(|k1(s)|+ c1‖x(s)‖2)2

∫ t

0
(|m1(s)|+ b1‖y(s)‖2)ds

≤ ‖x0‖2 + K
√

T + MT + c
√

T‖x‖C + bT‖y‖C)

≤ ‖x0‖2 + ‖y0‖2 + (K + M)T + 2rT(b + c)

and

‖L2y(t)‖2 ≤ ‖y0‖2 + ‖
∫ η

0
h2(s, y(s))ds‖2‖

∫ t

0
f2(s, x(φ2(s)))dW(s)‖2

≤ ‖y0‖2 =
∫ η

0
‖h2(s, y(s))‖2ds +

√∫ t

0
‖ f2(s, x(φ2(s)))‖2

2ds

≤ ‖y0‖2 +
∫ η

0
(|k2(s)|+ c2‖y(s)‖2)ds +

√∫ t

0
(|m2(t)|+ b2‖x‖2)2ds

≤ ‖y0‖2 + KT + M
√

T + cT‖y‖C + b
√

T‖x‖C

≤ ‖y0‖2 + (K + M)T + T(b + c)‖y‖C + T(b + c)‖x‖C

≤ ‖x0‖2 + ‖y0‖2 + (K + M)T + 2rT(b + c).

This implies that

‖L(x, y)‖X = ‖(L1x, L2y)‖X

= max{‖L1x(t)‖C, ‖L2y(t)‖C}
≤ ‖x0‖2 + ‖y0‖2 + (K + M)T + 2rT(b + c) = r

where

r =
‖x0‖2 + ‖y0‖2 + (K + M)T

1− T(b + c)
,

then the class {L(x, y)} is uniformly bounded and L(x, y) : Q→ Q.

Lemma 5. The class of function {L(x, y)(t)} , t ∈ [0, T] is equicontinuous.
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Proof. Let x, y ∈ Q, t1, t2 ∈ [0, T] such that |t2 − t1| < δ, then

‖L1x(t2)− L1y(t1)‖2 = ‖
∫ t2

0
f1(s, y(φ1(s)))ds−

∫ t1

0
f1(s, y(φ1(s)))ds‖2

≤
∫ t2

t1

‖ f1(s, y(φ1(s)))‖2ds

≤ (M + b‖y‖C)(t2 − t1) (19)

and

‖L2x(t2)− L2x(t1)‖2 = ‖
∫ t2

0
f2(s, x(φ2(s)))dW(s)−

∫ t1

0
f2(s, x(φ2(s)))dW(s)‖2

≤

√∫ t2

t1

‖ f2(s, x(φ2(s)))‖2
2ds

≤ (M + b‖x‖C)
√
(t2 − t1). (20)

However,

L(x(t2), y(t2))− L(x(t1), y(t1)) = (L1x(t2), L2y(t2))− (L1x(t1), L2y(t1))

= ((L1x(t2)− L1x(t1)), (L2y(t2)− L2y(t1))),

then from (19) and (20), we deduce the equicontinuity of the class {L(x, y)(t)} on Q.

3.1. Existence Theorem

Now, we have the following existence theorem

Theorem 5. Let the Assumptions (A1)–(A5) be satisfied, then there exists at least one solution
(x, y) ∈ X of the problem (1), (2) and (4).

Proof. Let {(xn, yn)} ∈ Q be such that

(xn, yn)→ (x, y) w.p.1.

Using Lemmas 1–3, then applying stochastic Lebesgue dominated convergence Theo-
rem [9], we can obtain

L.i.mn→∞L(xn, yn) = (L.i.mn→∞L1xn, L.i.mn→∞L2yn)

= (L.i.mn→∞{x0 −
∫ τ

0
h1(s, xn(s))dW(s) +

∫ t

0
f1(s, yn(φ1(s)))ds},

L.i.mn→∞{y0 −
∫ η

0
h2(s, yn(s))ds +

∫ t

0
f2(s, xn(φ2(s)))dW(s)})

= (x0 −
∫ τ

0
h1(s, L.i.mn→∞xn(s))dW(s) +

∫ t

0
f1(s, L.i.mn→∞yn(φ1(s)))ds,

y0 −
∫ η

0
h2(s, L.i.mn→∞yn(s))ds +

∫ t

0
f2(s, L.i.mn→∞xn(φ2(s)))dW(s))

= (x0 −
∫ τ

0
h1(s, x(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds,

y0 −
∫ η

0
h2(s, y(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s))

= (L1x, L2y) = L(x, y).

This proves that the operator L : Q→ Q is continuous.
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Then by the Arzela–Ascoli Theorem [9], the closure of LQ is a compact subset of
X, then applying Schauder Fixed Point Theorem [9], there exists at least one solution
(x, y) ∈ X of the problem (1), (2) and (4) such that x, y ∈ C([0, T], L2(Ω)).

3.2. Uniqueness Theorem

Theorem 6. Let the assumptions (A∗1)–(A∗2) and (A3)–(A5) be satisfied then the solution of
problem (1), (2) and (4) is unique.

Proof. Let (x1, y1) and (x2, y2) be two solutions of the problem (1), (2) and (4) on the form

(x(t), y(t)) = (x0 −
∫ τ

0
h1(s, x(s))dW(s) +

∫ t

0
f1(s, y(φ1(s)))ds,

y0 −
∫ η

0
h2(s, y(s))ds +

∫ t

0
f2(s, x(φ2(s)))dW(s)), (21)

then we can obtain

‖x1(t)− x2(t)‖2 ≤ c
√

T‖x1 − x2‖C + bT‖y1 − y2‖C < cT‖x1 − x2‖C + bT‖y1 − y2‖C

≤ (b + c)T‖x1 − x2‖C + (b + c)T‖y1 − y2‖C

≤ (b + c)T max{‖x1 − x2‖C, ‖y1 − y2‖C}. (22)

Similarly, we can obtain

‖y1(t)− y2(t)‖2 ≤ (b + c)T max{‖x1 − x2‖C, ‖y1 − y2‖C}. (23)

Hence from (22) and (23)

‖(x1, y1)− (x2, y2)‖X = ‖(x1 − x2), (y1 − y2)‖X

≤ max{‖x1 − x2‖C, ‖y1 − y2‖C}
≤ (b + c)T max{‖x1 − x2‖C, ‖y1 − y2‖C}.

This implies that

(1− (b + c)T)‖(x1, y1)− (x2, y2)‖X ≤ 0.

Then
‖(x1, y1)− (x2, y2)‖X = 0

and (x1, y1) = (x2, y2) which proves that the solution of the problem (1), (2) and (4) is
unique.

3.3. Continuous Dependence

Theorem 7. The solution (16) of the problem (1)–(2) and (4) depends continuously on the two
random data (x0, y0).

Proof. Let (x̂, ŷ) be the solution of the coupled system

x̂(t) = x̂0 −
∫ τ

0
h1(s, x̂(s))dW(s) +

∫ t

0
f1(s, ŷ(φ1(s)))ds

ŷ(t) = ŷ0 −
∫ η

0
h2(s, ŷ(s))ds +

∫ t

0
f2(s, x̂(φ2(s)))dW(s),
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such that ‖(x0, y0)− (x̂0, ŷ0)‖X < δ3. Then we have

x(t)− x̂(t) = x0 − x̂0 −
∫ τ

0
[h1(s, x̂(s))− h1(s, x(s))]dW(s)

+
∫ t

0
[ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))]ds

and

‖x(t)− x̂(t)‖2 ≤ ‖x0 − x̂0‖C + c
√

T‖x− x̂‖C + bT‖y− ŷ‖C

≤ ‖x0 − x̂0‖C + cT‖x− x̂‖C + bT‖y− ŷ‖C

≤ ‖x0 − x̂0‖2 + cTmax{‖x− x̂‖C, ‖y− ŷ‖C}+ bTmax{‖x− x̂‖C, ‖y− ŷ‖C}
≤ max{‖x0 − x̂0‖2, ‖y0 − ŷ0‖2}+ (b + c)Tmax{‖x− x̂‖C, ‖y− ŷ‖C}.

By the same way we can obtain

‖y(t)− ŷ(t)‖2 ≤ max{‖x0 − x̂0‖2, ‖y0 − ŷ0‖2}+ (b + c)Tmax{‖x− x̂‖C, ‖y− ŷ‖C}

and

‖(x, y)− (x̂, ŷ)‖X = max{‖(x− x̂‖C, ‖(y− ŷ‖C}
≤ max{‖x0 − x̂0‖2, ‖y0 − ŷ0‖2}+ (b + c)Tmax{‖x− x̂‖C, ‖y− ŷ‖C}
≤ δ3 + (b + c)Tmax{‖x− x̂‖C, ‖y− ŷ‖C}

which gives our result

‖(x, y)− (x̂, ŷ)‖X ≤
δ3

1− T(b + c)
= ε

and completes the proof.

Theorem 8. The solution (16) of the problem (1), (2) and (4) depends continuously on the two
random functions h1 and h2.

Proof. Let (x̂, ŷ) be the solutions of the coupled system of stochastic integral Equations (1), (2)
and (4) such that

x̂(t) = x0 −
∫ τ

0
h∗1(s, x̂(s))dW(s) +

∫ t

0
f1(s, ŷ(φ1(s)))ds

ŷ(t) = y0 −
∫ η

0
h∗2(s, ŷ(s))ds +

∫ t

0
f2(s, x̂(φ2(s)))dW(s).

Let ‖h∗i (t, u(t))− h(t, u(t))‖2 ≤ δ4, i = 1, 2 then

‖x(t)− x̂(t)‖2 = ‖
∫ τ

0
[h∗1(s, x̂(s))− h1(s, x(s))]dW(s) +

∫ t

0
[ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))]ds‖2

≤
√∫ τ

0
‖h∗1(s, x̂(s))− h1(s, x(s))‖2

2ds +
∫ t

0
‖ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤
√∫ τ

0
[‖h∗1(s, x̂(s))− h∗1(s, x(s))‖2 + ‖h∗1(s, x(s))− h1(s, x(s))‖2]2ds

+
∫ t

0
‖ f1(s, y(φ1(s)))− f1(s, ŷ(φ1(s)))‖2ds

≤
√∫ τ

0
(c‖x(s)− x̂(s)‖2 + δ4)2ds +

∫ t

0
b‖y(s)− ŷ(s)‖2ds
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≤ c
√

T‖x− x̂‖C + bT‖y− ŷ‖C + δ4
√

T)

≤ cT‖x− x̂‖C + bT‖y− ŷ‖C + δ4T.

≤ cT max{‖x− x̂‖C, ‖y− ŷ‖C}+ bT max{‖x− x̂‖C, ‖y− ŷ‖C}+ δ4T

≤ (b + c)T max{‖x− x̂‖C, ‖y− ŷ‖C}+ δ4T.

Similarly we can obtain

‖y− ŷ‖C ≤ (b + c)T max{‖x− x̂‖C, ‖y− ŷ‖C}+ δ4T

and

‖(x, y)− (x̂, ŷ)‖X = max{‖x− x̂‖C, ‖y− ŷ‖C} ≤ (b+ c)T max{‖x− x̂‖C, ‖y− ŷ‖C}+ δ4T.

This implies that

‖(x, y)− (x̂, ŷ)‖X ≤
δ4T

1− T(b + c)
= ε

which completes the proof.

Example 1. Consider the coupled system

dx
dt

(t) =
a(t) + y(t)

5(1 + ‖y(t)‖2)
, t ∈ (0, 1]

dy(t) =
tx(t)

2(1 + ‖x‖2)
dW(t), t ∈ (0, 1] (24)

subject to

x0 =
∫ τ

0

e−sy(s)
120 + s2 dW(s), y0 =

∫ η

0

x(s)√
s + 36

ds (25)

where

‖ f1(t, y(t))‖2 ≤
1
5
[|a(t)|+ ‖y(t)‖2], ‖ f2(t, x(t))‖2 ≤

1
2‖x(t)‖2

and

‖h1(t, y(t)‖2 ≤
‖y(t)‖2

120
, ‖h2(t, x(t)‖2 ≤

‖x(t)‖2

6
.

Easily, the coupled system (24) with nonlocal integral conditions (25) satisfies all the Assump-
tions 1–5 of Theorem 1. with b = 1

2 , c = 1
6 , then there exists at least one solution of the system

(24) on [0, 1].

4. Conclusions

Here, we proved the existence of solutions of a coupled system of random and
stochastic nonlinear differential equations with coupled nonlocal random and stochastic
nonlinear integral conditions. The sufficient conditions for the uniqueness of the solution
have been given. The continuous dependence of the unique solution has been studied.
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