# On the Amplitude Amplification of Quantum States Corresponding to the Solutions of the Partition Problem

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction and Preliminaries

## 2. The Effect of Applying Hadamard-S-Hadamard Gates to ${|\mathbf{0}\rangle}^{{\otimes}^{\mathit{n}}}$

**Lemma**

**1.**

**Proof.**

**Lemma**

**2.**

**Proof.**

**Theorem**

**1.**

**Proof.**

**Theorem**

**2.**

**Proof.**

## 3. Doubling the Amplitudes of the Solution States of the PP

- $w(y)$ is even$$\begin{array}{cc}\hfill {i}^{w(y)}{(-1)}^{w(y)}& +{i}^{n-w(y)}={i}^{w(y)}{(-1)}^{w(y)}+{i}^{n+w(y)}=\hfill \\ \hfill \phantom{\rule{1.em}{0ex}}& ={i}^{w(y)}(1+{i}^{n})\hfill \end{array}$$
- $w(y)$ is odd$$\begin{array}{cc}\hfill {i}^{w(y)}{(-1)}^{w(y)}& +{i}^{n-w(y)}={i}^{w(y)}{(-1)}^{w(y)}-{i}^{n+w(y)}=\hfill \\ \hfill \phantom{\rule{1.em}{0ex}}& =-{i}^{w(y)}(1+{i}^{n})\hfill \end{array}$$

## 4. Conclusions and Future Work

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Shor, P. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar] [CrossRef]
- Deutsch, D.; Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. London Ser. Math. Phys. Sci.
**1992**, 439, 553–558. [Google Scholar] [CrossRef] - Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed.; Cambridge University Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Karp, R. Reducibility among combinatorial problems. In Complexity of Computer Computations; Miller, R., Thatcher, J., Eds.; Plenum Press: Berlin, Germany, 1972; pp. 85–103. [Google Scholar]
- Chang, W.L.; Ren, T.T.; Feng, M.; Lu, L.C.; Lin, K.W.; Guo, M. Quantum Algorithms of the Subset-Sum Problem on a Quantum Computer. In Proceedings of the 2009 WASE International Conference on Information Engineering, Taiyuan, China, 10–11 July 2009; Volume 2, pp. 54–57. [Google Scholar] [CrossRef]
- Bernstein, D.J.; Jeffery, S.; Lange, T.; Meurer, A. Quantum Algorithms for the Subset-Sum Problem. In Post-Quantum Cryptography; Gaborit, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 16–33. [Google Scholar]
- Howgrave-Graham, N.; Joux, A. New Generic Algorithms for Hard Knapsacks. Cryptology ePrint Archive, Report 2010/189. 2010. Available online: https://eprint.iacr.org/2010/189 (accessed on 27 July 2021).
- Helm, A.; May, A. Subset Sum Quantumly in 1.17
^{n}. In Proceedings of the 13th Conference on the Theory of Quantum Computation, Communication and Cryptography, Sydney, Australia, 16 July 2018; pp. 5:1–5:16. [Google Scholar] - Li, Y.; Li, H. Improved quantum algorithm for the random subset sum problem. arXiv
**2019**, arXiv:1912.09264. [Google Scholar] - Mezzini, M. Quirk’s Url of an Instance of the Partition Problem. 2021. Available online: https://tinyurl.com/kp38rajd (accessed on 27 July 2021).
- Beals, R.; Buhrman, H.; Cleve, R.; Mosca, M.; de Wolf, R. Quantum Lower Bounds by Polynomials. J. ACM
**2001**, 48, 778–797. [Google Scholar] [CrossRef] - Svocil, K. Quantum Queries Associated with Equi-partitioning of States and Multipartite Relational Encoding Across Space-Time. Adv. Unconv. Comput. Emerg. Complex. Comput.
**2017**, 22, 429–438. [Google Scholar] [CrossRef][Green Version]

**Figure 2.**(

**Left**) The amplitudes of ${a}_{z}$ for $n=3$. (

**Right**) The amplitudes of ${a}_{z}$ for $n=4$. In order to get the final amplitudes one should multiply them by a suitable normalization factor.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mezzini, M.; Paulet, J.J.; Cuartero, F.; Cruz, H.I.; Pelayo, F.L.
On the Amplitude Amplification of Quantum States Corresponding to the Solutions of the Partition Problem. *Mathematics* **2021**, *9*, 2027.
https://doi.org/10.3390/math9172027

**AMA Style**

Mezzini M, Paulet JJ, Cuartero F, Cruz HI, Pelayo FL.
On the Amplitude Amplification of Quantum States Corresponding to the Solutions of the Partition Problem. *Mathematics*. 2021; 9(17):2027.
https://doi.org/10.3390/math9172027

**Chicago/Turabian Style**

Mezzini, Mauro, Jose J. Paulet, Fernando Cuartero, Hernan I. Cruz, and Fernando L. Pelayo.
2021. "On the Amplitude Amplification of Quantum States Corresponding to the Solutions of the Partition Problem" *Mathematics* 9, no. 17: 2027.
https://doi.org/10.3390/math9172027