On the Complexity of Finding the Maximum Entropy Compatible Quantum State
Abstract
:1. Introduction
2. Background and Problem Statement
 Input: A family of circuits$\mathcal{Q}\left(\mathcal{C}\right)$that construct the family of marginal density operators$\mathcal{C}$.
 Accept: if$\mathcal{C}$is admissible.
 Reject: if$\mathcal{C}$is not admissible.
 Input: A family of circuits $\mathcal{Q}\left(\mathcal{C}\right)$ promised to construct an admissible $\mathcal{C}$, and a real value k.
 Accept: if there exists a $\rho \in Comp\left(\mathcal{C}\right)$ such that $S\left(\rho \right)\ge k$
 Reject: otherwise.
3. Hardness of Comparing Entropy of a Compatible Chain
 Input: Two quantum circuits ${Q}_{0}$ and ${Q}_{1}$ that generate tripartite density operators ${\rho}_{0}$ and ${\rho}_{1}$, respectively, over the same Hilbert space of the form ${\mathcal{H}}_{A}\otimes {\mathcal{H}}_{B}\otimes {\mathcal{H}}_{C}$, promised that:
 ▸
 ${\mathrm{Tr}}_{A}\left({\rho}_{0}\right)={\mathrm{Tr}}_{A}\left({\rho}_{1}\right)$;
 ▸
 ${\mathrm{Tr}}_{C}\left({\rho}_{0}\right)={\mathrm{Tr}}_{C}\left({\rho}_{1}\right)$;
 ▸
 $S\left({\rho}_{0}\right)S\left({\rho}_{1}\right)\ge 1/2$;
then,  Accept: if $S\left({\rho}_{0}\right)S\left({\rho}_{1}\right)\ge 1/2$;
 Reject: if $S\left({\rho}_{1}\right)S\left({\rho}_{0}\right)\ge 1/2$.
 Input: Two quantum circuits ${Q}_{0}$ and ${Q}_{1}$, acting on m qubits, that prepare the states ${\rho}_{0}$ or ${\rho}_{1}$ promised that
 ▸
 either $\left\right{\rho}_{0}{\rho}_{1}{\left\right}_{tr}\ge \beta $;
 ▸
 or $\left\right{\rho}_{0}{\rho}_{1}{\left\right}_{tr}\le \alpha $;
then,  Accept:$\left\right{\rho}_{0}{\rho}_{1}{\left\right}_{tr}\ge \beta $,
 Reject:$\left\right{\rho}_{0}{\rho}_{1}{\left\right}_{tr}\le \alpha $.
 ${\rho}^{\prime}={\xi}_{0}^{A}\otimes {\zeta}^{AC}\otimes {\xi}_{0}^{C}\otimes 0\rangle {\langle 0}_{B}$;
 ${\rho}^{\u2033}={\xi}_{1}^{AC}\otimes {\xi}_{1}^{CA}\otimes 0\rangle {\langle 0}_{B}$.
4. Quantum Markov Chains and Trees
 it admits a QMT in the compatibility space iff every sub3chain is compatible with a QMC—Theorem 3;
 the QMT coincides with the density operator that maximizes the von Neumann entropy, constrained by the provided set of twobody marginals—Corollary 1;
 defining a proper order in the graph—constructive ordering—we can construct the unique compatible QMT directly from the marginals. The Lagrange multipliers in the optimization problem are then obtained through Theorem 2.
4.1. Background on Quantum Markov Chains
 1.
 ${\rho}_{ABC}$ is a QMC over the chain $ABC$.
 2.
 ${I}_{\rho}(A:CB)=0$, where ${I}_{\rho}(A:CB):=S\left({\rho}_{AB}\right)+S\left({\rho}_{BC}\right)S\left({\rho}_{B}\right)S\left({\rho}_{ABC}\right)$.
 3.
 ${\mathcal{P}}_{B\to BC}\left(X\right):={\rho}_{BC}^{\frac{1}{2}}(\left({\rho}_{B}^{\frac{1}{2}}X{\rho}_{B}^{\frac{1}{2}}\right)\otimes {id}_{C}){\rho}_{BC}^{\frac{1}{2}},\phantom{\rule{4.pt}{0ex}}\mathit{is}\phantom{\rule{4.pt}{0ex}}a\phantom{\rule{4.pt}{0ex}}\mathit{CPTP}\phantom{\rule{4.pt}{0ex}}\mathit{map}\phantom{\rule{4.pt}{0ex}}\mathit{for}\phantom{\rule{4.pt}{0ex}}\mathit{any}\phantom{\rule{4.pt}{0ex}}X\in \mathcal{B}\left({\mathcal{H}}_{B}\right)$ and preserves the partial trace ${\rho}_{AB}$.
 4.
 $log{\rho}_{ABC}(log{\rho}_{AB})\otimes {id}_{C}={id}_{A}\otimes (log{\rho}_{BC}){id}_{A}\otimes (log{\rho}_{B})\otimes {id}_{C}$.
4.2. Definition of Quantum Markov Trees
4.3. QMT as MaxEntropy Density Operator
 (i)
 $log\rho ={\sum}_{\mathcal{C}}log{\rho}_{{X}_{i}{X}_{j}}{\sum}_{i=1}^{n}(deg\left({X}_{i}\right)1)log{\rho}_{{X}_{i}}$;
 (ii)
 we have$$\forall k=2,\dots ,n:\phantom{\rule{1.em}{0ex}}{\rho}_{k}={Tr}_{\overline{{V}_{k}}}\left[\rho \right]\phantom{\rule{4pt}{0ex}}\mathrm{is\; s.t.}\phantom{\rule{4pt}{0ex}}{I}_{{\rho}_{k}}\left({X}_{k}:\overline{{Y}_{k}}{Y}_{k}\right)=0$$for some constructive ordering ${X}_{1}<\cdots <{X}_{n}$.
 $log{\rho}_{j}={\sum}_{{\mathcal{C}}_{j}}log{\rho}_{{X}_{i}{X}_{t}}{\sum}_{i=1}^{j}({\mathrm{deg}}_{{\mathcal{G}}_{j}}\left({X}_{i}\right)1)log{\rho}_{{X}_{i}}$;
 ${I}_{{\rho}_{j}}\left({X}_{j}:\overline{{Y}_{j}}{Y}_{j}\right)=0$.
 $log{\rho}_{k+1}={\sum}_{{\mathcal{C}}_{k+1}}log{\rho}_{{X}_{i}{X}_{t}}{\sum}_{i=1}^{k+1}({\mathrm{deg}}_{{\mathcal{G}}_{k}}\left({X}_{i}\right)1)log{\rho}_{{X}_{i}}$ and,
 ${I}_{{\rho}_{k+1}}\left({X}_{k+1}:\overline{{Y}_{k+1}}{Y}_{k+1}\right)=0$.
4.4. Compatibility with a QMT
4.5. QMT and the MECM Problem
 1.
 ${\mathcal{G}}_{C}$ is a spanning tree
 2.
 ${\rho}_{ijk}$ is a QMC constructed in polynomialtime (with respect with the number of nodes n) where ${\rho}_{i,j},{\rho}_{j,k}\in \mathcal{C}$ and $i<j<k$ for some given constructive order of ${\mathcal{G}}_{C}$.
4.6. QMT and Chow–Liu Algorithm
Algorithm 1 Chow–Liu Algorithm 

5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MDPI  Multidisciplinary Digital Publishing Institute 
DOAJ  Directory of open access journals 
TLA  Three letter acronym 
LD  linear dichroism 
QSZK  Quantum Statistical Zero Knowledge 
CPTP  Completely Positive Trace Preserving 
QMA  Quantum Merlin Arthur 
QCMP  Quantum Compatible Marginal Problem 
MECMP  Maximum Entropy Compatible Marginal Problem 
BQP  BoundedError Quantum Polynomial Time 
(3c)QED  (3chain) Quantum Entropy Difference 
QSD  Quantum Statistical Difference 
QMC  Quantum Markov Chain 
QMT  Quantum Markov Tree 
Appendix A. Lemmas for Theorem 1
Appendix B. Proof of the Central Lemma 1
 (i)
 ${\varphi}^{\u2020}\left(\varphi {\left({\rho}_{2}\right)}^{it}\varphi {\left({\rho}_{1}\right)}^{it}\right)={\rho}_{2}^{it}{\rho}_{1}^{it}$$t\in \mathbb{R}$;
 (ii)
 ${\varphi}^{\u2020}\left(log\varphi \left({\rho}_{1}\right)log\varphi \left({\rho}_{2}\right)\right)=log{\rho}_{1}log{\rho}_{2}$;
 (3 ⇒ 1) This implication comes for free from the definition of QMC. Moreover, the map ${\mathcal{P}}_{B\to BC}\left(\xb7\right)$ is clearly CPTP. The complete positivity indeed comes for free from the Hermitianicity of ${\rho}_{B}\otimes {\mathrm{id}}_{C}/{d}_{C}$ and ${\rho}_{BC}$, then of their squareroots.
 (1 ⇒ 3) Equation (A8) for t = 0 gives exactly the Petz map in (3), so the implication comes as corollary of Theorem A3.
 (1 ⇔ 2) This follows from the statement of Theorem A3.
 (2 ⇔ 4) It comes as corollary of Theorem A2, using the settings in Corollary A1.
Appendix C. Lemmas for Theorem 2 and 3
 (a)
 If the associate graph${\mathcal{G}}_{\mathcal{C}}$is a chain ABCD (i.e.,$\mathcal{C}=\{{\rho}_{AB},{\rho}_{BC},{\rho}_{CD}\}$) then
 (b)
 If the associate graph${\mathcal{G}}_{\mathcal{C}}$is a star centered in B (i.e.,$\mathcal{C}=\{{\rho}_{AB},{\rho}_{BC},{\rho}_{BD}\}$)
 (i)
 $\exists \phantom{\rule{0.166667em}{0ex}}{\tilde{\rho}}_{CBD}\in Comp({\rho}_{BC},{\rho}_{BD})$, ${\tilde{\rho}}_{BCD}\in \mathcal{B}\left({\mathcal{H}}_{BCD}\right)$ s.t. ${I}_{\rho}\left(C:DB\right)=0$ and
 (ii)
 $\exists \phantom{\rule{0.166667em}{0ex}}{\tilde{\rho}}_{ABD}\in Comp({\rho}_{AB},{\rho}_{BD})$, ${\tilde{\rho}}_{ABD}\in \mathcal{B}\left({\mathcal{H}}_{ABD}\right)$ s.t. ${I}_{\rho}\left(A:DB\right)=0$.
Appendix D. Number of 3Chains
References
 D’Ariano, M.; G Paris, M.G.; Sacchi, M.F. Quantum tomography. Adv. Imaging Electron. Phys. 2003, 128, 206–309. [Google Scholar]
 Huber, F.M.; Gühne, O. Characterizing ground and thermal states of fewbody Hamiltonians. Phys. Rev. Lett. 2016, 117, 010403. [Google Scholar] [CrossRef] [PubMed]
 Cotler, J.; Wilczek, F. Quantum overlapping tomography. Phys. Rev. Lett. 2020, 124, 100401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
 Bairey, E.; Arad, I.; Lindner, N.H. Learning a local Hamiltonian from local measurements. Phys. Rev. Lett. 2019, 122, 020504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Bairey, E.; Guo, C.; Poletti, D.; Lindner, N.H.; Arad, I. Learning the dynamics of open quantum systems from their steady states. New J. Phys. 2020, 22, 032001. [Google Scholar] [CrossRef]
 Wiebe, N.; Granade, C.; Ferrie, C.; Cory, D.G. Hamiltonian Learning and Certification Using Quantum Resources. Phys. Rev. Lett. 2014, 112, 190501. [Google Scholar] [CrossRef] [Green Version]
 Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195. [Google Scholar] [CrossRef]
 Anshu, A.; Arunachalam, S.; Kuwahara, T.; Soleimanifar, M. Sampleefficient learning of quantum manybody systems. arXiv 2020, arXiv:2004.07266. [Google Scholar]
 Cao, N.; Xie, J.; Zhang, A.; Hou, S.Y.; Zhang, L.; Zeng, B. Supervised learning for quantum maximum entropy estimation. arXiv 2020, arXiv:2005.01540. [Google Scholar]
 Klyachko, A.A. Quantum marginal problem and Nrepresentability. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2006; Volume 36, p. 72. [Google Scholar]
 Liu, Y.K. Consistency of local density matrices is QMAcomplete. In Approximation, Randomization, and Combinatorial Optimization Algorithms and Techniques; Springer: Berlin/Heidelberg, Germany, 2006; pp. 438–449. [Google Scholar]
 Higuchi, A.; Sudbery, A.; Szulc, J. Onequbit reduced states of a pure manyqubit state: Polygon inequalities. Phys. Rev. Lett. 2003, 90, 107902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Bravyi, S. Requirements for Compatibility between Local and Multipartite Quantum States. Quantum Inf. Comput. 2004, 4, 12–26. [Google Scholar]
 Huber, F.M. Quantum States and Their Marginals: From Multipartite Entanglement to Quantum ErrorCorrecting Codes. Ph.D. Thesis, University of Siegen (DE), Siegen, Germany, 2018. [Google Scholar]
 Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
 Dagum, P.; Luby, M. Approximating probabilistic inference in Bayesian belief networks is NPhard. Artif. Intell. 1993, 60, 141–153. [Google Scholar] [CrossRef] [Green Version]
 Valiant, L.G. The complexity of computing the permanent. Theor. Comput. Sci. 1979, 8, 189–201. [Google Scholar] [CrossRef] [Green Version]
 Chow, C.K.; Liu, C.N. Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory 1968, 14, 462–467. [Google Scholar] [CrossRef] [Green Version]
 Leifer, M.S.; Spekkens, R.W. Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 2013, 88, 052130. [Google Scholar] [CrossRef] [Green Version]
 Fitzsimons, J.F.; Jones, J.A.; Vedral, V. Quantum correlations which imply causation. Sci. Rep. 2015, 5, 18281. [Google Scholar] [CrossRef] [Green Version]
 Horsman, D.; Heunen, C.; Pusey, M.F.; Barrett, J.; Spekkens, R.W. Can a quantum state over time resemble a quantum state at a single time? Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170395. [Google Scholar] [CrossRef]
 Watrous, J. Quantum computational complexity. arXiv 2008, arXiv:0804.3401. [Google Scholar]
 Bernstein, E.; Vazirani, U. Quantum complexity theory. Siam J. Comput. 1997, 26, 1411–1473. [Google Scholar] [CrossRef]
 Watrous, J. Limits on the power of quantum statistical zeroknowledge. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, BC, Canada, 16–19 November 2002; IEEE: New York, NY, USA, 2002; pp. 459–468. [Google Scholar]
 Arora, S.; Barak, B. Computational Complexity: A Modern Approach; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
 BenAroya, A.; Schwartz, O.; TaShma, A. Quantum Expanders: Motivation and Construction. Theory Comput. 2020, 6, 47–79. [Google Scholar] [CrossRef]
 Fawzi, O.; Renner, R. Quantum conditional mutual information and approximate Markov chains. Commun. Math. Phys. 2015, 340, 575–611. [Google Scholar] [CrossRef] [Green Version]
 Giorgio, S.D.; Mateus, P.; Mera, B. Recoverability from direct quantum correlations. J. Phys. A Math. Theor. 2020, 53, 185301. [Google Scholar] [CrossRef] [Green Version]
 Wang, Y.J. Compatibility among Marginal Densities. Biometrika 2004, 91, 234–239. [Google Scholar] [CrossRef]
 De Loera, J.; Onn, S. The Complexity of ThreeWay Statistical Tables. Siam J. Comput. 2004, 33, 819–836. [Google Scholar] [CrossRef] [Green Version]
 Fritz, T.; Chaves, R. Entropic Inequalities and Marginal Problems. IEEE Trans. Inf. Theory 2013, 59, 803–817. [Google Scholar] [CrossRef] [Green Version]
 Watrous, J. Succinct quantum proofs for properties of finite groups. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, CA, USA, 12–14 November 2000; IEEE: New York, NY, USA, 2000; pp. 537–546. [Google Scholar]
 Aaronson, S. Quantum computing, postselection, and probabilistic polynomialtime. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 3473–3482. [Google Scholar] [CrossRef] [Green Version]
 Sutter, D. Approximate Quantum Markov Chains. In Approximate Quantum Markov Chains; Springer International Publishing: Cham, Switzerland, 2018; pp. 75–100. [Google Scholar]
 Sutter, D.; Fawzi, O.; Renner, R. Universal recovery map for approximate Markov chains. Proc. R. Soc. A 2016, 472, 20150623. [Google Scholar] [CrossRef]
 Choi, M.D. Completely positive linear maps on complex matrices. Linear Algebra Appl. 1975, 10, 285–290. [Google Scholar] [CrossRef] [Green Version]
 Nielsen, M.A.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
 Aharonov, D.; Kitaev, A.; Nisan, N. Quantum circuits with mixed states. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, Berkeley, CA, USA, 28–30 May 1998; pp. 20–30. [Google Scholar]
 Löwner, K. Über monotone matrixfunktionen. Math. Z. 1934, 38, 177–216. [Google Scholar] [CrossRef]
 Bengtsson, I.; Życzkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
 Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
 Cayley, A. A theorem on trees. Quart. J. Math. 1889, 23, 376–378. [Google Scholar]
 Ambainis, A.; Nayak, A.; TaShma, A.; Vazirani, U. Dense quantum coding and quantum finite automata. J. Assoc. Comput. Mach. (JACM) 2002, 49, 496–511. [Google Scholar] [CrossRef]
 Umegaki, H. Conditional expectation in an operator algebra, IV (entropy and information). In Kodai Mathematical Seminar Reports; Department of Mathematics, Tokyo Institute of Technology: Tokyo, Japan, 1962; Volume 14, pp. 59–85. [Google Scholar]
 Uhlmann, A. Relative entropy and the WignerYanaseDysonLieb concavity in an interpolation theory. Commun. Math. Phys. 1977, 54, 21–32. [Google Scholar] [CrossRef]
 Petz, D. Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 2003, 15, 79–91. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Giorgio, S.; Mateus, P. On the Complexity of Finding the Maximum Entropy Compatible Quantum State. Mathematics 2021, 9, 193. https://doi.org/10.3390/math9020193
Di Giorgio S, Mateus P. On the Complexity of Finding the Maximum Entropy Compatible Quantum State. Mathematics. 2021; 9(2):193. https://doi.org/10.3390/math9020193
Chicago/Turabian StyleDi Giorgio, Serena, and Paulo Mateus. 2021. "On the Complexity of Finding the Maximum Entropy Compatible Quantum State" Mathematics 9, no. 2: 193. https://doi.org/10.3390/math9020193