Dirichlet and Neumann Boundary Value Problems for the Polyharmonic Equation in the Unit Ball
Abstract
:1. Introduction
2. Auxiliary Statements
3. Inverting the Main Relation
4. Dirichlet Boundary Value Problem
5. Neumann Boundary Value Problem
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Begehr, H. Biharmonic Green functions. Matematiche 2006, 61, 395–405. [Google Scholar]
- Karachik, V.V.; Turmetov, B.K. On Green’s function of the Robin problem for the Poisson equation. Adv. Pure Appl. Math. 2019, 10, 203–214. [Google Scholar] [CrossRef]
- Karachik, V. Green’s function of Dirichlet problem for biharmonic equation in the ball. Complex Var. Elliptic Equ. 2019, 64, 1500–1521. [Google Scholar] [CrossRef]
- Karachik, V.V. The Green Function of the Dirichlet Problem for the Triharmonic Equation in the Ball. Math. Notes 2020, 107, 105–120. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, L. Biharmonic Green function and biharmonic Neumann function in a sector. Complex Var. Elliptic Equ. 2013, 58, 7–22. [Google Scholar] [CrossRef]
- Wang, Y. Tri-harmonic boundary-value problems in a sector. Complex Var. Elliptic Equ. 2014, 59, 732–749. [Google Scholar] [CrossRef]
- Constantin, E.; Pavel, N.H. Green function of the Laplacian for the Neumann problem in ℝn+. Lib. Math. 2010, 30, 57–69. [Google Scholar]
- Begehr, H.; Vaitekhovich, T. Modified harmonic Robin function. Complex Var. Elliptic Equ. 2013, 58, 483–496. [Google Scholar] [CrossRef]
- Gazzola, F.; Grunau, H.C.; Sweers, G. Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains; Springer: Berlin, Germany, 1991. [Google Scholar]
- Boggio, T. Sulle funzioni di Green dórdine m. Rend. Circ. Mat. Palermo 1905, 20, 97–135. [Google Scholar] [CrossRef] [Green Version]
- Begerh, H.; Vu, T.N.H.; Zhang, Z.-X. Polyharmonic Dirichlet Problems. Proc. Steklov Inst. Math. 2006, 255, 13–34. [Google Scholar]
- Kal’menov, T.S.; Suragan, D. On a new method for constructing the Green function of the Dirichlet problem for the polyharmonic equation. Differ. Equ. 2012, 48, 441–445. [Google Scholar] [CrossRef]
- Karachik, V.V. Construction of polynomial solutions to the Dirichlet problem for the polyharmonic equation in a ball. Comput. Math. Math. Phys. 2014, 54, 1122–1143. [Google Scholar] [CrossRef]
- Karachik, V.V. Generalized Third Boundary Value Problem for the Biharmonic Equation. Differ. Equ. 2017, 53, 756–765. [Google Scholar] [CrossRef]
- Karachik, V.V. A Neumann-type problem for the biharmonic equation. Sib. Adv. Math. 2017, 27, 103–118. [Google Scholar] [CrossRef]
- Karachik, V.V. Riquier-Neumann Problem for the Polyharmonic Equation in a Ball. Differ. Equ. 2018, 54, 648–657. [Google Scholar] [CrossRef]
- Koshanov, B.D.; Soldatov, A.P. Boundary value problem with normal derivatives for a high-order elliptic equation on the plane. Differ. Equ. 2016, 52, 1594–1609. [Google Scholar] [CrossRef]
- Begehr, H.; Burgumbayeva, S.; Shupeyeva, B. Green and Neumann Functions for a Plane Degenerate Circular Domain. Trends Math. 2019, 141–149. [Google Scholar] [CrossRef]
- Begehr, H.; Burgumbayeva, S.; Shupeyeva, B. Remark on Robin problem for Poisson equation. Complex Var. Elliptic Equ. 2017, 62, 1589–1599. [Google Scholar] [CrossRef]
- Akel, M.; Begehr, H. Neumann function for a hyperbolic strip and a class of related plane domains. Math. Nachrichten 2017, 290, 490–506. [Google Scholar] [CrossRef]
- Lin, H. Harmonic Green and Neumann functions for domains bounded by two intersecting circular arcs. Complex Var. Elliptic Equ. 2020. [Google Scholar] [CrossRef]
- Begehr, H.; Burgumbayeva, S.; Dauletkulova, A.; Lin, H. Harmonic Green functions for the Almaty apple. Complex Var. Elliptic Equ. 2020, 65, 1814–1825. [Google Scholar] [CrossRef]
- Dong, H.; Li, H. Optimal Estimates for the Conductivity Problem by Green’s Function Method. Arch. Ration. Mech. Anal. 2019, 231, 1427–1453. [Google Scholar] [CrossRef] [Green Version]
- Grebenkov, D.S.; Traytak, S.D. Semi-analytical computation of Laplacian Green functions in three-dimensional domains with disconnected spherical boundaries. J. Comput. Phys. 2019, 379, 91–117. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-W.; Hwu, C. Green’s functions for unsymmetric composite laminates with inclusions. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20190437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dokkum, J.S.; Nicola, L. Green’s function molecular dynamics including viscoelasticity. Model. Simul. Mater. Sci. Eng. 2019, 27, 075006. [Google Scholar] [CrossRef]
- Karachik, V.V. Green’s Functions of the Navier and Riquier–Neumann Problems for the Biharmonic Equation in the Ball. Differ. Equ. 2021, 57, 654–668. [Google Scholar] [CrossRef]
- Karachik, V.V. Presentation of solution of the dirichlet problem for bigharmonic equation in the unit ball through the Green function. Chelyabinsk Phys. Math. J. 2020, 5, 391–399. [Google Scholar]
- Koshlyakov, N.S.; Gliner, E.B.; Smirnov, M.M. Differential Equations of Mathematical Physics; North-Holland: Amsterdam, The Netherlands, 1964. [Google Scholar]
- Karachik, V.V.; Antropova, N.A. On the solution of the inhomogeneous polyharmonic equation and the inhomogeneous Helmholtz equation. Differ. Equ. 2010, 46, 387–399. [Google Scholar] [CrossRef]
- Bateman, H. Higher Transcendental Functions; Bateman Manuscript Project; Erdelyi, A., Ed.; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Karachik, V.V. On the mean value property for polyharmonic functions in the ball. Sib. Adv. Math. 2014, 24, 169–182. [Google Scholar] [CrossRef]
- Karachik, V.V. On the Arithmetic Triangle Arising from the Solvability Conditions for the Neumann Problem. Math. Notes 2014, 96, 217–227. [Google Scholar] [CrossRef]
- Almansi, E. Sull’ integrazione dell’ equazione differenziale Δnu=0. Ann. Mat. Pura Appl. 1899, 11, 5–19. [Google Scholar]
- Karachik, V.V. On an expansion of Almansi type. Math. Notes 2008, 83, 335–344. [Google Scholar] [CrossRef]
- Alimov, S.A. On a problem with an oblique derivative. Differ. Equ. 1981, 17, 1738–1751. [Google Scholar]
- Sobolev, S.L. Cubature Formulas and Modern Analysis: An Introduction; Nauka: Moscow, Russia, 1974; Reprint in Gordon and Breach: Montreux, Switzerland, 1992. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karachik, V. Dirichlet and Neumann Boundary Value Problems for the Polyharmonic Equation in the Unit Ball. Mathematics 2021, 9, 1907. https://doi.org/10.3390/math9161907
Karachik V. Dirichlet and Neumann Boundary Value Problems for the Polyharmonic Equation in the Unit Ball. Mathematics. 2021; 9(16):1907. https://doi.org/10.3390/math9161907
Chicago/Turabian StyleKarachik, Valery. 2021. "Dirichlet and Neumann Boundary Value Problems for the Polyharmonic Equation in the Unit Ball" Mathematics 9, no. 16: 1907. https://doi.org/10.3390/math9161907
APA StyleKarachik, V. (2021). Dirichlet and Neumann Boundary Value Problems for the Polyharmonic Equation in the Unit Ball. Mathematics, 9(16), 1907. https://doi.org/10.3390/math9161907