A Revisited Conceptual Change in Mathematical-Physics Education from a Neurodidactic Approach: A Pendulum Inquiry
Abstract
:1. Introduction
1.1. Neurodidactics: A Neuroscientific and Psychological Approach to Science Education
1.2. Conceptual Change in Science Education: A Revisited Approach from a Neurodidactic Viewpoint
1.3. The Physical Pendulum: A Case of Study to Test the Neurodidactic Proposal
2. Materials and Methods
2.1. Hypothesis
2.2. Objectives
2.3. Participants
2.4. Instrument: Validation and Reliability
2.5. Statistic Design
2.6. Procedure
3. Results
3.1. Individual Results for Each Item of the Questionnaire
3.2. Overall Neurodidactic Proposal Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Pro Bueno, A.; Nortes Martínez-Artero, R.M. Qué pensaban los estudiantes de la diplomatura de maestro de educación primaria sobre las clases de ciencias de sus prácticas de enseñanza? Enseñ. Ciencias Rev. Investig. Exp. Didácticas 2016, 34, 7. (In Spanish) [Google Scholar] [CrossRef] [Green Version]
- Bhaskara Reddy, M.V.; Panacharoensawad, B. Students Problem-Solving Difficulties and Implications in Physics: An Empirical Study on Influencing Factors. J. Educ. Pract. 2017, 8, 59–62. [Google Scholar]
- Fernandez Gutiérrez, M.J.; Sánchez Lasheras, F.; Trevejo Alonso, J.A. An Intervention Based on Identifying Topics That Students Have Difficulties with. Mathematics 2020, 8, 2220. [Google Scholar] [CrossRef]
- Hake, R.R. Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. Am. J. Phys. 1998, 66, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Sahin, M. Effects of Problem-Based Learning on University Students’ Epistemological Beliefs About Physics and Physics Learning and Conceptual Understanding of Newtonian Mechanics. J. Sci. Educ. Technol. 2010, 19, 266–275. [Google Scholar] [CrossRef]
- Bigozzi, L.; Tarchi, C.; Fiorentini, C.; Falsini, P.; Stefanelli, F. The Influence of Teaching Approach on Students’ Conceptual Learning in Physics. Front. Psychol. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Morales, D.A.; Martín-Páez, T.; Valdivia-Rodríguez, V.; Ruiz-Delgado, Á.; Williams-Pinto, L.; Vílchez-González, J.M.; Perales-Palacios, F.J. Inquiry-based science education. A systematic review of Spanish production. Rev. Educ. 2018, 2018. [Google Scholar] [CrossRef]
- Mosquera Bargiela, I.; Puig, B.; Blanco Anaya, P. Las prácticas científicas en infantil. Una aproximación al análisis del currículum y planes de formación del profesorado de Galicia. Enseñ. Ciencias Rev. Investig. Exp. Didácticas 2018, 36, 7–23. (In Spanish) [Google Scholar] [CrossRef] [Green Version]
- van Uum, M.S.J.; Verhoeff, R.P.; Peeters, M. Inquiry-based science education: Towards a pedagogical framework for primary school teachers. Int. J. Sci. Educ. 2016, 38, 450–469. [Google Scholar] [CrossRef]
- Martínez-Chico, M.; Liso, M.R.J.; Lucio-Villegas, R.L.G. Efecto de un programa formativo para enseñar ciencias por indagación basada en modelos, en las concepciones didácticas de los futuros maestros. Rev. Eureka 2015, 12, 149–166. (In Spanish) [Google Scholar] [CrossRef]
- Schwarz, C.V.; Reiser, B.J.; Davis, E.A.; Kenyon, L.; Achér, A.; Fortus, D.; Shwartz, Y.; Hug, B.; Krajcik, J. Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. J. Res. Sci. Teach. 2009, 46, 632–654. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Chico, M.; López-Gay, R.; Jiménez Liso, M.R. ¿Es posible diseñar un programa formativo para enseñar ciencias por indagación basada en modelos en la formación inicial de maestros? Fundamentos, exigencias y aplicación. Didáctica Cienc. Exp. Soc. 2014, 153–173. (In Spanish) [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Liso, M.R.; González-Herrera, M.; Banos-González, I. Socio-Ecological Controversies in the News as Trigger of a Model-Based Inquiry Instructional Sequence about the Effect of Global Warming on the Great Barrier Reef. Sustainability 2020, 12, 4676. [Google Scholar] [CrossRef]
- Oliva, J.M. Distintas acepciones para la idea de modelización en la enseñanza de las ciencias. Enseñ. Ciencias 2019, 37, 5–24. (In Spanish) [Google Scholar] [CrossRef] [Green Version]
- Devonshire, I.M.; Dommett, E.J. Neuroscience: Viable Applications in Education? Neuroscientist 2010, 16, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Oliver, M. Towards an understanding of neuroscience for science educators. Stud. Sci. Educ. 2011, 47, 211–235. [Google Scholar] [CrossRef]
- Al-Balushi, K.A.; Al-Balushi, S.M. Effectiveness of Brain-Based Learning for Grade Eight Students’ Direct and Postponed Retention in Science. Int. J. Instr. 2018, 11, 525–538. [Google Scholar] [CrossRef]
- Redish, E.F. Oersted Lecture 2013: How should we think about how our students think? Am. J. Phys. 2014, 82, 537–551. [Google Scholar] [CrossRef] [Green Version]
- Nizama, M.; Rodríguez, Y. Niveles de conocimiento sobre neurociencia y su aplicación en los procesos educativos. Crescendo. Inst. 2015, 6, 104–113. (In Spanish) [Google Scholar] [CrossRef]
- Gardner, H. Quandaries for neuroeducators. Mind Brain Educ. 2008, 2, 165–169. [Google Scholar] [CrossRef]
- Saleh, S. The effectiveness of Brain-Based Teaching Approach in dealing with the problems of students’ conceptual understanding and learning motivation towards physics. Asia Pac. J. Educ. Educ. 2011, 26, 91–106. [Google Scholar] [CrossRef]
- Goswami, U. Neuroscience and education: From research to practice? Nat. Rev. Neurosci. 2006, 7, 406–413. [Google Scholar] [CrossRef]
- Saleh, S.; Subramaniam, L. Effects of Brain-Based Teaching Method on Physics achievement among ordinary school students. Kasetsart J. Soc. Sci. 2018, 4–8. [Google Scholar] [CrossRef]
- Staus, N.L.; Falk, J.H. The Role of Emotion in Informal Science Learning: Testing an Exploratory Model. Mind Brain Educ. 2017, 11, 45–53. [Google Scholar] [CrossRef]
- Portellano Pérez, J.A. Neuroeducación y Funciones Ejecutivas, 2nd ed.; Ciencias de la Educación Preescolar y Especial (CEPE): Madrid, Spain, 2018; (In Spanish). ISBN 978-84-1694-175-9. [Google Scholar]
- Knox, R. Mind, Brain, and Education: A Transdisciplinary Field. Mind Brain Educ. 2016, 10, 4–9. [Google Scholar] [CrossRef]
- Dündar, S.; Gündüz, N. Misconceptions Regarding the Brain: The Neuromyths of Preservice Teachers. Mind Brain Educ. 2016, 10, 212–232. [Google Scholar] [CrossRef]
- Schwartz, M. Mind, Brain, and Education: A decade of evolution. Mind Brain Educ. 2015, 9, 64–71. [Google Scholar] [CrossRef]
- Tokuhama-Espinosa, T. Mind, Brain, and Education Science: A Comprehensive Guide to the New Brain-Based Teaching; W. W. Norton & Company: New York, NJ, USA, 2011; ISBN 9780393706819. [Google Scholar]
- Marina, J.A. El diálogo entre Neurociencia y Educación. Particip. Educ. 2012, 1, 6–12. [Google Scholar]
- Schwartz, M.S.; Paré-Blagoev, E.J. Research in Mind, Brain, and Education; Routledge, Taylor and Francis: New York, NY, USA, 2018; ISBN 978-1-138-94671-2. [Google Scholar]
- Yun, E. Review of trends in physics education research using topic modeling. J. Balt. Sci. Educ. 2020, 19, 388–400. [Google Scholar] [CrossRef]
- Chai, C.S.; Rahmawati, Y.; Jong, M.S.-Y. Indonesian Science, Mathematics, and Engineering Preservice Teachers’ Experiences in STEM-TPACK Design-Based Learning. Sustainability 2020, 12, 9050. [Google Scholar] [CrossRef]
- Taslidere, E.; Eryilmaz, A. The Relative Effectiveness of Integrated Reading Study Strategy and Conceptual Physics Approach. Res. Sci. Educ. 2012, 42, 181–199. [Google Scholar] [CrossRef]
- Yin, Y.; Tomita, M.K.; Shavelson, R.J. Using Formal Embedded Formative Assessments Aligned with a Short-Term Learning Progression to Promote Conceptual Change and Achievement in Science. Int. J. Sci. Educ. 2014, 36, 531–552. [Google Scholar] [CrossRef]
- Mason, L.; Zaccoletti, S. Inhibition and Conceptual Learning in Science: A Review of Studies. Educ. Psychol. Rev. 2020, 1–32. [Google Scholar] [CrossRef]
- Foisy, L.M.; Potvin, P.; Riopel, M.; Masson, S. Is inhibition involved in overcoming a common physics misconception in mechanics? Trends Neurosci. Educ. 2015, 4, 26–36. [Google Scholar] [CrossRef]
- Masson, S.; Potvin, P.; Riopel, M.; Foisy, L.M. Differences in Brain Activation Between Novices and Experts in Science During a Task Involving a Common Misconception in Electricity. Mind Brain Educ. 2014, 8, 44–55. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, L.; Leng, Y.; Pang, R.; Wang, X. Event-Related Potential Evidence for Persistence of an Intuitive Misconception About Electricity. Mind Brain Educ. 2019, 13, 80–91. [Google Scholar] [CrossRef]
- Chen, C.; Sonnert, G.; Sadler, P.M.; Sasselov, D.; Fredericks, C. The impact of student misconceptions on student persistence in a MOOC. J. Res. Sci. Teach. 2020, 57, 879–910. [Google Scholar] [CrossRef] [Green Version]
- Cragg, L.; Gilmore, C. Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends Neurosci. Educ. 2014, 3, 63–68. [Google Scholar] [CrossRef]
- Giofrè, D.; Donolato, E.; Mammarella, I.C. The differential role of verbal and visuospatial working memory in mathematics and reading. Trends Neurosci. Educ. 2018, 12, 1–6. [Google Scholar] [CrossRef]
- Solaz-Portolés, J.J.; Sanjosé-López, V. Working memory in science problem solving: A review of research. Rev. Mex. Psicol. 2009, 26, 79–90. [Google Scholar]
- Rhodes, S.M.; Booth, J.N.; Palmer, L.E.; Blythe, R.A.; Delibegovic, M.; Wheate, N.J. Executive functions predict conceptual learning of science. Br. J. Dev. Psychol. 2016, 34, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, S.M.; Booth, J.N.; Campbell, L.E.; Blythe, R.A.; Wheate, N.J.; Delibegovic, M. Evidence for a Role of Executive Functions in Learning Biology. Infant Child Dev. 2014, 23, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Sattizahn, J.R.; Lyons, D.J.; Kontra, C.; Fischer, S.M.; Beilock, S.L. In Physics Education, Perception Matters. Mind Brain Educ. 2015, 9, 164–169. [Google Scholar] [CrossRef]
- Vaughn, A.R.; Brown, R.D.; Johnson, M.L. Understanding Conceptual Change and Science Learning through Educational Neuroscience. Mind Brain Educ. 2020, 14, 82–93. [Google Scholar] [CrossRef]
- Nadelson, L.S.; Heddy, B.C.; Jones, S.; Taasoobshirazi, G.; Johnson, M. Conceptual Change in Science Teaching and Learning: Introducing the Dynamic Model of Conceptual Change. Int. J. Educ. Psychol. 2018, 7, 151. [Google Scholar] [CrossRef]
- Matthews, M.R.; Gauld, C.F.; Stinner, A. The Pendulum. Scientific, Historical, Philosophical and Educational Perspectives; Springer: Dordrecht, The Netherlands, 2005; ISBN 9781402035258. [Google Scholar]
- Bond, T.G. Piaget and the Pendulum. Sci. Educ. 2004, 13, 389–399. [Google Scholar] [CrossRef]
- Inhelder, B.; Piaget, J. The Growth of Logical Thinking; Basic Books: New York, NJ, USA, 1958; ISBN 978-0415864442. [Google Scholar]
- Dandare, K. A study of conceptions of preservice physics teachers in relation to the simple pendulum. Phys. Educ. 2018, 53, 1–8. [Google Scholar] [CrossRef]
- Trujillo, L.A.G.; Díaz, M.H.R.; Castillo, M.R. Misconceptions of Mexican Teachers in The Solution of Simple Pendulum. Eur. J Phys. Educ. 2013, 4, 17–27. [Google Scholar] [CrossRef]
- Koliopoulos, D.; Dossis, S.; Stamoulis, E. The Use of History of Science Texts in Teaching Science: Two Cases of an Innovative, Constructivist Approach. Sci. Educ. Rev. 2007, 6, 44–56. [Google Scholar]
- Matthews, M.R. Time for Science Education; Springer: New York, NJ, USA, 2000; ISBN 978-0-306-45880-4. [Google Scholar]
- Marinca, V.; Herisanu, N. Optimal Auxiliary Functions Method for a Pendulum Wrapping on Two Cylinders. Mathematics 2020, 8, 1364. [Google Scholar] [CrossRef]
- Hochberg, K.; Kuhn, J.; Müller, A. Using Smartphones as Experimental Tools—Effects on Interest, Curiosity, and Learning in Physics Education. J. Sci. Educ. Technol. 2018, 27, 385–403. [Google Scholar] [CrossRef]
- Martínez Pérez, J.E. Obtención del valor de la aceleración de la gravedad en el laboratorio de física. Experiencia comparativa del sensor de un teléfono celular inteligente y el péndulo simple. Rev. Eureka Sobre Enseñ. Divulg. Las Cienc. 2017, 12, 341–346. (In Spanish) [Google Scholar] [CrossRef]
- Figueiras, E.; Olivieri, D.N.; Paredes, A.; Michinel, H. QMwebJS—An Open Source Software Tool to Visualize and Share Time-Evolving Three-Dimensional Wavefunctions. Mathematics 2020, 8, 430. [Google Scholar] [CrossRef] [Green Version]
- Lazonder, A.W.; Ehrenhard, S. Relative effectiveness of physical and virtual manipulatives for conceptual change in science: How falling objects fall. J. Comput. Assist. Learn. 2014, 30, 110–120. [Google Scholar] [CrossRef]
- Blake, C.; Scanlon, E. Reconsidering simulations in science education at a distance: Features of effective use. J. Comput. Assist. Learn. 2007, 23, 491–502. [Google Scholar] [CrossRef]
- Cohen, L.; Manion, L.; Morrison, K. Research Methods in Education, 8th ed.; Routledge, Taylor and Francis: Abingdon, UK, 2017; ISBN 978-1138209886. [Google Scholar]
- Hoyle, R.; Duvall, J. Determining the Number of Factors in Exploratory and Confirmatory Factor Analysis. In The SAGE Handbook of Quantitative Methodology for the Social Sciences; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2004; pp. 302–317. ISBN 9781119188230. [Google Scholar]
- Moafian, F.; Ostovar, S.; Griffiths, M.D.; Hashemi, M. The construct validity and reliability of the ‘characteristics of successful efl teachers questionnaire (Coseflt-q)’ revisited. Porta Ling. 2019, 2019, 53–73. [Google Scholar]
- Cobos Alvarado, F.; Peñaherrera León, M.; Ortiz Colon, A.M. Validation of a questionnaire on research-based learning with engineering students. J. Technol. Sci. Educ. 2016, 6, 219. [Google Scholar] [CrossRef] [Green Version]
- Mcmillan, J.H.; Schumacher, S. Research in Education: Evidence-Based Inquiry, 7th ed.; Pearson Education: New York, NJ, USA, 2012; ISBN 9780137152407. [Google Scholar]
- Taber, K.S. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Beswick, K.; Muir, T.; Callingham, R. Investigative Approaches to Teaching Mathematics and «Getting through the Curriculum»: The Example of Pendulums. Aust. Math. Teach. 2014, 70, 25–33. [Google Scholar]
- Barrouillet, P. Theories of cognitive development: From Piaget to today. Dev. Rev. 2015, 38, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sudibyo, E.; Jatmiko, B.; Widodo, W. The Effectiveness of CBL Model to Improve Analytical Thinking Skills the Students of Sport Science. Int. Educ. Stud. 2016, 9, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Hake, R.R. Relationship of individual student normalized learning gains in mechanics with gender, high-school physics, and pretest scores on Mathematics and Spatial Visualization. Phys. Educ. Res. Conf. 2002, 8, 1–14. [Google Scholar]
- Brezavšček, A.; Jerebic, J.; Rus, G.; Žnidaršič, A. Factors Influencing Mathematics Achievement of University Students of Social Sciences. Mathematics 2020, 8, 2134. [Google Scholar] [CrossRef]
- del Cerro Velázquez, F.; Morales Méndez, G. Application in Augmented Reality for Learning Mathematical Functions: A Study for the Development of Spatial Intelligence in Secondary Education Students. Mathematics 2021, 9, 369. [Google Scholar] [CrossRef]
- Thomas, C.L.; Kirby, L.A.J. Situational interest helps correct misconceptions: An investigation of conceptual change in university students. Instr. Sci. 2020, 48, 223–241. [Google Scholar] [CrossRef]
- Schwartz, M.S.; Hinesley, V.; Chang, Z.; Dubinsky, J.M. Neuroscience knowledge enriches pedagogical choices. Teach. Teach. Educ. 2019, 83, 87–98. [Google Scholar] [CrossRef]
- Bueno, D. Neurociencia para Educadores, 4th ed.; Ediciones Octaedro: Barcelona, Spain, 2018; (In Spanish). ISBN 978-84-9921-991-2. [Google Scholar]
- Brewe, E.; Bartley, J.E.; Riedel, M.C.; Sawtelle, V.; Salo, T.; Boeving, E.R.; Bravo, E.I.; Odean, R.; Nazareth, A.; Bottenhorn, K.L.; et al. Toward a Neurobiological Basis for Understanding Learning in University Modeling Instruction Physics Courses. Front. ICT 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Nouri, A. The basic principles of research in neuroeducation studies. Int. J. Cogn. Res. Sci. Eng. Educ. 2016, 4, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Cascarosa, E.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C. Model-based teaching of physics in higher education: A review of educational strategies and cognitive improvements. J. Appl. Res. High. Educ. 2020, 13, 33–47. [Google Scholar] [CrossRef]
Items | Questions | Responses |
---|---|---|
1 | What makes a pendulum swing? |
|
2 | Is the use of mathematics essential to understand scientific phenomena? |
|
3 | In your experience, when should scientific concepts be explained? |
|
4 | What variables affect the movement of a pendulum? Mark your choices with a cross. |
|
5 | When you change the angle of oscillation, you observe that: |
|
6 | A female NASA astronaut, at a certain moment, takes out the pendant that her boyfriend gave her to remember him by. What will happen to the pendant when she drops it? |
|
7 | How many of these aspects do you think are present in learning physics? |
|
Factor 1 | Factor 2 | Factor 3 | |
---|---|---|---|
% Variance | 28.1 | 13.4 | 8.9 |
% Accumulated | 28.1 | 41.5 | 50.4 |
Kaiser–Guttman criteria (eigenvalues > 1) | 2.79 | 1.13 | 1.03 |
Items | Factor 1 Neurodidactics of Science | Factor 2 Cognitive Psychology | Factor 3 Neuroeducation | Cronbach’s Alpha If the Item is Removed |
---|---|---|---|---|
1 | 0.142 | 0.72 | ||
2 | 0.391 | 0.71 | ||
3 | 0.597 | 0.69 | ||
4 | 0.828 | 0.55 | ||
5 | 0.728 | 0.64 | ||
6 | 0.644 | 0.74 | ||
7 | 0.845 | 0.55 | ||
Total Cronbach’s alpha | 0.71 |
Item | Experimental Group Inferential Results | ||
---|---|---|---|
p-Value 1/Cramer’s V | Observations | ||
1 | 4.0 | 0.262/0.13 | No change: gravity moves the pendulum on Earth. |
2 | 1.454 | 0.228/0.05 | No change: science needs mathematics. |
3 | 6.68·1012 | Whole item: 0.591/0.24 Answers (c) and (d) <0.001 | Moderate change to formal operations: abstract thought is needed to understand physical phenomena. |
4 | 90.295 | <0.001/0.51 | Significant change in pendulum variables: experimentation inquiry is needed to discover the laws of nature. |
5 | 3.09·1014 | <0.001/0.59 | Substantial change in reasoning (conceptualization). Modeling is needed. Algebraic component does not help conceptual thinking. |
6 | 6.76·1022 | <0.001/0.60 | Significant change due to the use of several resources (videos and simulations) and motivation, increasing conceptual thinking in physics. |
7 | 79.072 | <0.001/0.31 | Moderate increase in transdisciplinarity. |
Item | Control Group Results | ||||
Pre-Test | Post-Test | <g> | Gain | ||
1 | 5.68 | 8.65 | 0.69 | High | |
2 | 4.32 | 4.32 | 0.00 | Low | |
3 | 7.06 | 7.03 | −0.01 | Low | |
4 | 7.03 | 9.73 | 0.91 | High | |
5 | 2.57 | 8.38 | 0.78 | High | |
6 | 3.38 | 5.27 | 0.29 | Medium | |
7 | 5.69 | 5.66 | −0.01 | Low | |
Total | 5.1 ± 1.7 | 7.0 ± 2.0 | 0.39 | Medium | |
Item | Experimental Group Results | ||||
Pre-test | Post-test | <g> | Gain | ||
1 | 6.39 | 7.32 | 0.26 | Low | |
2 | 9.18 | 9.69 | 0.62 | Medium | |
3 | 7.53 | 8.89 | 0.55 | Medium | |
4 | 6.19 | 9.38 | 0.84 | High | |
5 | 5.46 | 5.36 | -0.02 | Low | |
6 | 5.98 | 7.73 | 0.44 | Medium | |
7 | 4.69 | 7.26 | 0.42 | Medium | |
Total | 6.5±1.5 | 7.9±1.5 | 0.48 | Medium | |
Lineal Regression in the Experimental Group | |||||
Coefficients | Estimate | Std. Error | t value | p-value | |
Intercept | 4.1922 | 0.894 | 4.688 | 0.018 | |
Pre-test | 0.5901 | 0.129 | 4.568 | 0.019 | |
Residual standard error | 0.437 | ||||
Adjusted R-squared | 0.8324 | ||||
F-statistic | 20.87 | 0.020 |
Items Correlations 1 | Categories (p-Values) 1 (the Control Group) | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 (Social Sciences) | 7 (STEM) | |
1 | 1.0/0.0 | 0.65 | 0.21 | 0.57 | 0.00 | 0.13 | 0.53 | 0.69 |
2 | −0.05 | 1.0/0.0 | 0.66 | 0.21 | 0.08 | 0.18 | 0.28 | 0.38 |
3 | 0.15 | 0.05 | 1.0/0.0 | 0.93 | 0.65 | 0.13 | 0.43 | 0.95 |
4 | −0.07 | 0.15 | −0.01 | 1.0/0.0 | 0.53 | 0.18 | 0.38 | 0.00 |
5 | 0.47 | −0.21 | 0.05 | −0.07 | 1.0/0.0 | 0.84 | 0.33 | 0.66 |
6 | 0.18 | −0.16 | 0.18 | −0.16 | 0.02 | 1.0/0.0 | 0.64 | 0.34 |
7 Social Sciences | 0.07 | −0.13 | −0.09 | 0.10 | 0.11 | 0.06 | 1.0/0.0 | 0.53 |
7 STEM | −0.05 | 0.10 | −0.01 | 0.70 | -0.05 | −0.11 | 0.07 | 1.0/0.0 |
Items Correlations 1 | Categories (p-Values) 1 (the Experimental Group) | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 (Social Sciences) | 7 (STEM) | |
1 | 1.0/0.0 | 0.00 | 0.23 | 0.13 | 0.63 | 0.96 | 0.73 | 0.22 |
2 | 0.30 | 1.0/0.0 | 0.02 | 0.66 | 0.10 | 0.00 | 0.04 | 0.72 |
3 | 0.12 | 0.24 | 1.0/0.0 | 0.14 | 0.53 | 0.65 | 0.42 | 0.55 |
4 | −0.16 | −0.05 | 0.15 | 1.0/0.0 | 0.86 | 0.72 | 0.74 | 0.00 |
5 | −0.05 | −0.17 | 0.06 | 0.02 | 1.0/0.0 | 0.29 | 0.00 | 0.06 |
6 | 0.01 | 0.33 | 0.05 | −0.04 | −0.11 | 1.0/0.0 | 0.03 | 0.27 |
7 Social Sciences | 0.03 | 0.20 | −0.08 | 0.03 | −0.81 | 0.22 | 1.0/0.0 | 0.02 |
7 STEM | −0.13 | −0.04 | −0.06 | 0.59 | −0.19 | −0.11 | 0.24 | 1.0/0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballesta-Claver, J.; Ayllón Blanco, M.F.; Gómez Pérez, I.A. A Revisited Conceptual Change in Mathematical-Physics Education from a Neurodidactic Approach: A Pendulum Inquiry. Mathematics 2021, 9, 1755. https://doi.org/10.3390/math9151755
Ballesta-Claver J, Ayllón Blanco MF, Gómez Pérez IA. A Revisited Conceptual Change in Mathematical-Physics Education from a Neurodidactic Approach: A Pendulum Inquiry. Mathematics. 2021; 9(15):1755. https://doi.org/10.3390/math9151755
Chicago/Turabian StyleBallesta-Claver, Julio, María Fernanda Ayllón Blanco, and Isabel Angustias Gómez Pérez. 2021. "A Revisited Conceptual Change in Mathematical-Physics Education from a Neurodidactic Approach: A Pendulum Inquiry" Mathematics 9, no. 15: 1755. https://doi.org/10.3390/math9151755
APA StyleBallesta-Claver, J., Ayllón Blanco, M. F., & Gómez Pérez, I. A. (2021). A Revisited Conceptual Change in Mathematical-Physics Education from a Neurodidactic Approach: A Pendulum Inquiry. Mathematics, 9(15), 1755. https://doi.org/10.3390/math9151755