ICT Use and Successful Learning: The Role of the Stock of Human Capital
Abstract
:1. Introduction
1.1. ICT and Educational Outcomes
1.2. The Role of Human Capital
- The assimilation and effective use of technology. We consider the stock of human capital as a catalyst of new technologies: the process of adoption of new technologies is strongly influenced by the human capital stock, by reducing new technologies’ learning costs and accelerating their adoption [15,36,37,38].
- The attraction of better teachers. Highly educated areas experience faster population and employment growth as individuals flock to be near the highly educated [42]. Moreover, it is mostly educated individuals who are moving to high human capital areas, seeking a better quality of life [43,44]. These effects have specifically been found in the case of teachers: their well-being and productivity can increase by interacting with and learning from high-skilled teachers [45,46].
2. Materials and Methods
2.1. Data
2.2. Model
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González-Betancor, S.M.; López-Puig, A.J.; Cardenal, M.E. Digital inequality at home. The school as compensatory agent. Comput. Educ. 2021, 168. [Google Scholar] [CrossRef]
- Fernández-Gutiérrez, M.; Gimenez, G.; Calero, J. Is the use of ICT in education leading to higher student outcomes? Analysis from the Spanish Autonomous Communities. Comput. Educ. 2020, 157. [Google Scholar] [CrossRef]
- Comi, S.L.; Argentin, G.; Gui, M.; Origo, F.; Pagani, L. Is it the way they use it? Teachers, ICT and student achievement. Econ. Educ. Rev. 2017, 56, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Spiezia, V. Educational Achievements? Student-level Evidence from PISA. OECD J. Econ. Stud. 2010, 2010, 1–22. [Google Scholar] [CrossRef] [Green Version]
- White, M.A.; McCallum, F. Crisis or catalyst? Examining COVID-19’s implications for wellbeing and resilience education. In Wellbeing and Resilience Education; Routledge: Oxfordshire, UK, 2021; pp. 1–17. [Google Scholar]
- Turban, E.; McLean, E.; Wetherbe, J. Information Technology for Management: Transforming Organizations in the Digital Economy, 4th ed.; Turban, E., McLean, E., Wetherbe, J., Eds.; Wiley: Hoboken, NJ, USA, 2004; Volume 2, ISBN 9780471229674. [Google Scholar]
- Falck, O.; Mang, C.; Woessmann, L. Virtually no effect? Different uses of classroom computers and their effect on student achievement. Oxf. Bull. Econ. Stat. 2018, 80, 1–38. [Google Scholar] [CrossRef]
- Hu, X.; Gong, Y.; Lai, C.; Leung, F.K.S. The relationship between ICT and student literacy in mathematics, reading, and science across 44 countries: A multilevel analysis. Comput. Educ. 2018, 125, 1–13. [Google Scholar] [CrossRef]
- Bulman, G.; Fairlie, R.W. Technology and education: Computers, software, and the internet. In Handbook of the Economics of Education; Hanushek, E.A., Machin, S., Woessmann, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 5, pp. 239–280. ISBN 9781602442207. [Google Scholar]
- Giambona, F.; Porcu, M. Student background determinants of reading achievement in Italy. A quantile regression analysis. Int. J. Educ. Dev. 2015, 44, 95–107. [Google Scholar] [CrossRef]
- Benhabib, J.; Spiegel, M.M. Human capital and technology diffusion. In Handbook of Economic Growth; Elsevier: Amsterdam, The Netherlands, 2005; pp. 935–966. [Google Scholar]
- Vandenbussche, J.; Aghion, P.; Meghir, C. Growth, distance to frontier and composition of human capital. J. Econ. Growth 2006, 11, 97–127. [Google Scholar] [CrossRef]
- Lentini, V.; Gimenez, G. Depreciation of human capital: A sectoral analysis in OECD countries. Int. J. Manpow. 2019, 40, 1254–1272. [Google Scholar] [CrossRef] [Green Version]
- Giménez, G.; López-Pueyo, C.; Sanaú, J. Human capital measurement in OECD countries and its relation to GDP growth and innovation. Rev. Econ. Mund. 2015, 2015. [Google Scholar]
- Barcenilla, S.; Gimenez, G.; López-Pueyo, C. Differences in total factor productivity growth in the european union: The role of human capital by income level. Prague Econ. Pap. 2019, 28, 70–85. [Google Scholar] [CrossRef] [Green Version]
- López-Pueyo, C.; Barcenilla, S.; Giménez, G. The two faces of human capital and their effect on technological progress. Panoeconomicus 2018, 65, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Rubach, C.; Lazarides, R. Computers in human behavior addressing 21st-century digital skills in schools—Development and validation of an instrument to measure teachers ’ basic ICT competence beliefs. Comput. Human Behav. 2021, 118, 106636. [Google Scholar] [CrossRef]
- Sangrà, A.; González-Sanmamed, M. The role of information and communication technologies in improving teaching and learning processes in primary and secondary schools. Res. Learn. Technol. 2016, 18, 207–220. [Google Scholar] [CrossRef]
- Marco, J.; Winkler, R.; Matthias, S. Enhancing problem-solving skills with smart personal assistant technology. Comput. Educ. 2021, 165, 1–15. [Google Scholar] [CrossRef]
- Allegra, M.; Chifari, A.; Ottaviano, S. ICT to train students towards creative thinking. Educ. Technol. Soc. 2001, 4, 48–53. [Google Scholar]
- Shan Fu, J. ICT in Education: A critical literature review and its implications. Int. J. Educ. Dev. Using Inf. Commun. Technol. 2013, 9, 112–125. [Google Scholar]
- Wheeler, S.; Waite, S.J.; Bromfield, C. Promoting creative thinking through the use of ICT. J. Comput. Assist. Learn. 2002, 18, 367–378. [Google Scholar] [CrossRef]
- Gómez-Fernández, N.; Mediavilla, M. Exploring the relationship between information and communication technologies (ICT) and academic performance: A multilevel analysis for Spain. Socioecon. Plann. Sci. 2021. [Google Scholar] [CrossRef]
- Hanushek, E.A.; Woessmann, L. The economics of international differences in educational achievement. In Handbook of the Economics of Education; Hanushek, E.A., Machin, S., Woessmann, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 3, pp. 89–200. ISBN 9780444534293. [Google Scholar]
- Cabras, S.; Tena Horrillo, J.d.D. A Bayesian non-parametric modeling to estimate student response to ICT investment. J. Appl. Stat. 2016, 43, 2627–2642. [Google Scholar] [CrossRef]
- Alderete, M.V.; Di Meglio, G.; Formichella, M.M. Acceso a las TIC y rendimiento educativo: ¿una relación potenciada por su uso? Un análisis para España. Rev. Educ. 2017, 2017, 54–79. [Google Scholar] [CrossRef]
- Erdogdu, F.; Erdogdu, E. The impact of access to ICT, student background and school/home environment on academic success of students in Turkey: An international comparative analysis. Comput. Educ. 2015, 82, 26–49. [Google Scholar] [CrossRef]
- De Witte, K.; Rogge, N. Does ICT matter for effectiveness and efficiency in mathematics education? Comput. Educ. 2014, 75, 173–184. [Google Scholar] [CrossRef]
- Skryabin, M.; Zhang, J.; Liu, L.; Zhang, D. How the ICT development level and usage influence student achievement in reading, mathematics, and science. Comput. Educ. 2015, 85, 49–58. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, L. How does ICT use influence students’ achievements in math and science over time? Evidence from PISA 2000 to 2012. Eurasia J. Math. Sci. Technol. Educ. 2016, 12, 2431–2449. [Google Scholar] [CrossRef]
- Petko, D.; Cantieni, A.; Prasse, D. Perceived quality of educational technology matters: A Secondary analysis of students ICT use, ICT-related attitudes, and PISA 2012 test scores. J. Educ. Comput. Res. 2017, 54, 1070–1091. [Google Scholar] [CrossRef]
- Gimenez, G. The human capital endowment of Latin America and the Caribbean. CEPAL Rev. 2005, 2005, 97–116. [Google Scholar] [CrossRef]
- Gimenez, G.; Simón, B. Comparación entre indicadores de capital humano en un modelo de crecimiento económico. Ekon. Rev. vasca Econ. 2004, 57, 296–323. [Google Scholar]
- Winters, J.V. Human capital externalities and employment differences across metropolitan areas of the USA. J. Econ. Geogr. 2013, 13, 799–822. [Google Scholar] [CrossRef] [Green Version]
- Gimenez, G. Introducción al Crecimiento Económico y Desarrollo; Ediciones Pirámide: Madrid, Spain, 2017; ISBN 8436836766. [Google Scholar]
- Funke, M.; Strulik, H. On endogenous growth with physical capital, human capital and product variety. Eur. Econ. Rev. 2000, 44, 491–515. [Google Scholar] [CrossRef]
- Labordeta, J.F.R.; Giménez, G. The effect of human capital on innovation: An analysis from the quantitative and qualitative perspectives of education. Intang. Cap. 2012, 8, 425–446. [Google Scholar] [CrossRef] [Green Version]
- Gimenez, G. Investment in new technology: Modelling the decision process. Technovation 2006, 26, 345–350. [Google Scholar] [CrossRef]
- Lochner, L.; Moretti, E. The effect of education on crime: Evidence from prison inmates, arrests, and self-reports. Am. Econ. Rev. 2004, 94, 155–189. [Google Scholar] [CrossRef] [Green Version]
- Milligan, K.; Moretti, E.; Oreopoulos, P. Does education improve citizenship? Evidence from the United States and the United Kingdom. J. Public Econ. 2004, 88, 1667–1695. [Google Scholar] [CrossRef]
- Reiter, C.; Özdemir, C.; Yildiz, D.; Goujon, A.; Guimaraes, R.; Lutz, W. The Demography of Skills-Adjusted Human Capital; IIASA Working Papers: Laxenburg, Austria, 2020. [Google Scholar]
- Doms, M.; Lewis, E.; Robb, A. Local labor force education, new business characteristics, and firm performance. J. Urban Econ. 2010, 67, 61–77. [Google Scholar] [CrossRef]
- Winters, J.V. Human capital, higher education institutions, and quality of life. Reg. Sci. Urban Econ. 2011, 41, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, J.M. Smart cities: Quality of life, productivity, and the growth effects of human capital. Rev. Econ. Stat. 2006, 88, 324–335. [Google Scholar] [CrossRef]
- Berlinski, S.; Ramos, A. Does Rewarding Pedagogical Excellence Keep Teachers in the Classroom? Evidence from a Voluntary Award Program; Inter-American Development Bank (IDB): Washington, DC, USA, 2018. [Google Scholar]
- Correa, J.A.; Parro, F.; Reyes, L. Self-selection in the market of teachers. Appl. Econ. 2015, 47, 1331–1349. [Google Scholar] [CrossRef]
- PISA. Available online: https://www.oecd.org/pisa/ (accessed on 17 May 2021).
- Czernich, N.; Falck, O.; Kretschmer, T.; Woessmann, L. Broadband infrastructure and economic growth. Econ. J. 2011, 121, 505–532. [Google Scholar] [CrossRef]
- Barro, R.J.; Lee, J.W. A new data set of educational attainment in the world, 1950-2010. J. Dev. Econ. 2013, 104, 184–198. [Google Scholar] [CrossRef]
- PWT 10.0 | Penn World Table | Groningen Growth and Development Centre | University of Groningen. Available online: https://www.rug.nl/ggdc/productivity/pwt/ (accessed on 15 May 2021).
- Angrist, N.; Djankov, S.; Goldberg, P.K.; Patrinos, H.A. Measuring human capital using global learning data. Nature 2021, 592, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Psacharopoulos, G. Returns to investment in education: A global update. World Dev. 1994, 22, 1325–1343. [Google Scholar] [CrossRef] [Green Version]
- Gimenez, G.; Barrado, B. Exposure to crime and academic achievement: A case study for Costa Rica using PISA data. Stud. Educ. Eval. 2020, 65, 100867. [Google Scholar] [CrossRef]
- Castro Aristizabal, G.; Giménez, G.; Pérez Ximénez-De-Embún, D. Educational inequalities in latin america, PISA 2012: Causes of differences in school performance between public and private schools. Rev. Educ. 2017, 2017. [Google Scholar] [CrossRef]
- Castro Aristizabal, G.; Giménez, G.; Pérez Ximénez-de-Embún, D. Estimation of factors conditioning the acquisition of academic skills in Latin America in the presence of endogeneity. CEPAL Rev. 2018, 2018, 33–55. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, T.; Woessmann, L. What accounts for international differences in student performance? A re-examination using PISA data. Empir. Econ. 2007, 32, 433–464. [Google Scholar] [CrossRef] [Green Version]
- Ammermueller, A. PISA: What makes the difference? Explaining the gap in test scores between Finland and Germany. Empir. Econ. 2007, 33, 263–287. [Google Scholar] [CrossRef]
- Zhang, L.; Khan, G.; Tahirsylaj, A. Student performance, school differentiation, and world cultures: Evidence from PISA 2009. Int. J. Educ. Dev. 2015, 42, 43–53. [Google Scholar] [CrossRef]
- The Economics of Education; Bradley, S.; Green, C. (Eds.) Elsevier: New York, NY, USA, 2020; ISBN 9780128153918. [Google Scholar]
- Hanushek, E.A.; Welch, F. The Handbook of the Economics of Education, 1st ed.; Hanushek, E.A., Welch, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1. [Google Scholar]
- Hanushek, E.A.; Woessmann, L.; Machin, S. Handbook of the Economics of Education, 1st ed.; Hanushek, E.A., Woessmann, L., Machin, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 4, ISBN 9780444534446. [Google Scholar]
- Wooldridge, J.M. Introductory Econometrics, 4th ed.; South-Western CENGAGE Learning: Mason, OH, USA, 2009; ISBN 9783319659169. [Google Scholar]
- OECD. Aprovechar al Máximo la Tecnología para el Aprendizaje y la Formación en América Latina; OECD Publishing: Paris, France, 2020. [Google Scholar]
- La Rica, S.D.; Gortazar, L.; Lewandowski, P. Job Tasks and wages in developed countries: Evidence from PIAAC. Labour Econ. 2020, 65, 1–36. [Google Scholar] [CrossRef]
- Bechichi, N.; Jamet, S.; Kenedi, G.; Grundke, R.; Squicciarini, M. Occupational mobility, skills and training needs. OECD Policy Pap. 2019, 67. [Google Scholar] [CrossRef]
- OECD. Going digital integrated policy framework. OECD Digit. Econ. Pap. 2020, 292, 67. [Google Scholar]
Country Code | Country Name | ICTCLASS | BL | PWT |
---|---|---|---|---|
ALB | Albania | −0.23 | 9.85 | 2.95 |
AUS | Australia | 0.61 | 11.77 | 3.52 |
BEL | Belgium | −0.20 | 10.78 | 3.14 |
BRA | Brazil | −0.48 | 7.66 | 2.95 |
BRN | Brunei | −0.25 | 8.77 | 2.77 |
BGR | Bulgaria | −0.02 | 11.45 | 3.16 |
CHL | Chile | −0.09 | 9.71 | 3.11 |
CRI | Costa Rica | −0.28 | 7.84 | 2.66 |
HRV | Croatia | −0.31 | 11.42 | 3.52 |
CZE | Czech Republic | −0.28 | 13.16 | 3.67 |
DNK | Denmark | 1.35 | 11.53 | 3.56 |
DOM | Dominican Republic | −0.35 | 7.46 | 2.72 |
EST | Estonia | 0.00 | 12.48 | 3.62 |
FIN | Finland | 0.08 | 10.21 | 3.47 |
FRA | France | −0.18 | 10.64 | 3.19 |
GBR | Great Britain | −0.11 | 12.32 | 3.76 |
GRC | Greece | −0.39 | 10.26 | 3.09 |
HKG | Hong Kong | −0.37 | 11.02 | 3.24 |
HUN | Hungary | −0.30 | 12.14 | 3.38 |
ISL | Iceland | 0.41 | 10.59 | 3.23 |
IRL | Ireland | −0.36 | 12.20 | 3.15 |
ISR | Israel | −0.06 | 12.76 | 3.81 |
ITA | Italy | −0.06 | 9.54 | 3.12 |
JPN | Japan | −0.59 | 11.52 | 3.57 |
KAZ | Kazakhstan | 0.32 | 11.42 | 3.14 |
KOR | Korea | 0.07 | 11.89 | 3.69 |
LVA | Latvia | −0.12 | 10.48 | 3.13 |
LTU | Lithuania | 0.03 | 11.05 | 3.26 |
LUX | Luxemburg | −0.31 | 11.22 | 3.51 |
MAC | Macao | −0.05 | 8.09 | 2.86 |
MLT | Malta | −0.07 | 10.33 | 3.13 |
MEX | Mexico | −0.29 | 8.33 | 2.74 |
MAR | Morocco | −0.27 | 4.24 | 1.89 |
NLD | Netherlands | −0.05 | 11.60 | 3.37 |
PAN | Panama | −0.40 | 9.15 | 2.86 |
POL | Poland | −0.20 | 11.42 | 3.40 |
RUS | Russia | 0.06 | 11.73 | 3.40 |
SRB | Serbia | −0.22 | 10.97 | 3.39 |
SGP | Singapore | −0.33 | 10.63 | 3.97 |
SVK | Slovakia | 0.00 | 13.07 | 3.79 |
SVN | Slovenia | −0.34 | 12.13 | 3.53 |
ESP | Spain | −0.05 | 10.30 | 2.94 |
SWE | Sweden | 0.77 | 11.89 | 3.42 |
CHE | Switzerland | −0.24 | 13.42 | 3.69 |
THA | Thailand | 0.13 | 7.30 | 2.74 |
TUR | Turkey | 0.22 | 6.56 | 2.44 |
USA | United States | 0.38 | 13.42 | 3.74 |
URY | Uruguay | −0.11 | 8.11 | 2.73 |
Type of Variable | Variable | Mean | SD | Missing (%) |
---|---|---|---|---|
Dependent variables | Reading score | 465 | 104.0 | 9.9 |
Mathematics score | 472 | 95.1 | 0.0 | |
Science score | 470 | 95.5 | 0.0 | |
Student-level predictors | Subject-related ICT use during lessons (CI) | −0.05 | 1.0 | 15.9 |
Age | 15.8 | 0.3 | 0.0 | |
Economic, social, and cultural status (CI) | −0.2 | 1.1 | 2.4 | |
Gender | 0.0 | |||
Female | 49.9 | |||
Male | 50.1 | |||
Country of birth | 2.8 | |||
Country of the test | 93.3 | |||
Other country | 6.7 | |||
School-level predictors | Proportion of all teachers fully certified (CI) | 0.84 | 0.3 | 16.9 |
Teacher behavior hindering learning (CI) | 0.17 | 1.1 | 4.5 | |
Perceived teacher’s interest (CI) | 0.08 | 1.0 | 4.9 | |
Shortage of educational material (CI) | 0.06 | 1.1 | 4.8 | |
Shortage of educational staff (CI) | −0.02 | 1.0 | 4.9 | |
Adaptation of instruction (CI) | 0.02 | 1.0 | 5.6 | |
Disciplinary climate in test language lessons (CI) | 0.07 | 1.1 | 3.4 | |
Which of the following definitions best describes | 5.4 | |||
the community in which your school is located? | ||||
A large city (with over 1,000,000 people) | 14.3 | |||
A city (100,000 to about 1,000,000 people) | 27.0 | |||
A town (15,000 to about 100,000 people) | 30.3 | |||
A small town (3000 to about 15,000 people) | 19.4 | |||
A village, hamlet or rural area (fewer than 3000 people) | 9.0 | |||
Is your school a public or a private school? | 12.7 | |||
Private school | 20.6 | |||
Public school | 79.41 | |||
Country-level predictors | Years of schooling (BL) | 10.50 | 1.8 | 0.0 |
Years of schooling (PWT) | 3.21 | 0.4 | 0.0 | |
Gross domestic product per capita (GDP per capita) | 40,700 | 21,700 | 0.0 |
Reading | Mathematics | Science | |||||
---|---|---|---|---|---|---|---|
Type of Variable | Variable | Estimate | SE | Estimate | SE | Estimate | SE |
Fixed effects | Intercept | 303.10 *** | 11.48 | 271.80 *** | 11.05 | 298.20 *** | 10.95 |
Gender—Female (base) | |||||||
Male | −21.00 *** | 0.27 | 10.02 *** | 0.22 | 2.93 *** | 0.24 | |
Age | 9.58 *** | 0.46 | 10.46 *** | 0.38 | 9.14 *** | 0.40 | |
Country of birth—Country of the test (base) | |||||||
Other country | −13.55 *** | 0.56 | −10.19 *** | 0.45 | −12.21 *** | 0.48 | |
Economic, social, and cultural status | 13.75 *** | 0.15 | 14.85 *** | 0.13 | 14.60 *** | 0.13 | |
Proportion of all teachers fully certified | 2.58 ** | 1.19 | 0.93 | 1.01 | 1.75 * | 1.04 | |
Teacher behavior hindering learning | −0.11 | 0.34 | −0.23 | 0.29 | −0.17 | 0.30 | |
Perceived teacher’s interest | 2.73 *** | 0.15 | 1.81 *** | 0.13 | 2.27 *** | 0.13 | |
Shortage of educational material | −3.38 *** | 0.43 | −3.04 *** | 0.37 | −2.98 *** | 0.37 | |
Shortage of educational staff | −2.27 *** | 0.42 | −1.90 *** | 0.36 | −2.05 *** | 0.37 | |
Adaptation of instruction | 4.35 *** | 0.15 | 3.08 *** | 0.12 | 3.48 *** | 0.13 | |
Disciplinary climate in test language lessons | 6.43 *** | 0.14 | 5.85 *** | 0.11 | 5.77 *** | 0.12 | |
School location—A large city (with over 1,000,000 people) (base) | |||||||
A city (100,000 to about 1,000,000 people) | −3.38 *** | 1.24 | −2.57 ** | 1.07 | −2.58 ** | 1.10 | |
A town (15,000 to about 100,000 people) | −8.45 *** | 1.23 | −6.95 *** | 1.06 | −6.58 *** | 1.09 | |
A small town (3000 to about 15,000 people) | −13.46 *** | 1.35 | −10.02 *** | 1.16 | −9.97 *** | 1.20 | |
A village, hamlet or rural area (fewer than 3000 people) | −21.04 *** | 1.48 | −14.69 *** | 1.28 | −15.09 *** | 1.32 | |
Public or a private school?—Private school (base) | |||||||
Public school | −4.25 *** | 0.78 | −4.03 *** | 0.66 | −3.98 *** | 0.69 | |
Gross domestic product per capita (GDP per capita) | 0.75 *** | 0.18 | 0.92 *** | 0.19 | 0.80 *** | 0.18 | |
Subject-related ICT use during lessons (ICTCLASS) | −3.62 *** | 0.14 | −1.82 *** | 0.12 | −2.28 *** | 0.12 | |
Years of schooling (BL) | 8.87 *** | 2.29 | 9.53 *** | 2.40 | 7.62 *** | 2.31 | |
Interaction between ICTCLASS and years of schooling (BL) | 1.28 *** | 0.07 | 1.02 *** | 0.06 | 1.15 *** | 0.06 | |
Random effects | Level 2: Intercept | 2275.00 | 47.70 | 1903.90 | 43.63 | 1901.70 | 43.61 |
Level 3: Intercept | 848.20 | 29.12 | 943.50 | 30.72 | 870.40 | 29.50 | |
Level 1: Residual | 5204.60 | 72.14 | 3983.60 | 63.12 | 4430.30 | 66.56 | |
Sample size | Total sample (students) | 327,469 | 363,412 | 363,412 | |||
Level 2 groups (schools) | 12,126 | 13,215 | 13,215 | ||||
Level 3 groups (countries) | 47 | 48 | 48 |
Reading | Mathematics | Science | |||||
---|---|---|---|---|---|---|---|
Type of Variable | Variable | Estimate | SE | Estimate | SE | Estimate | SE |
Fixed effects | Intercept | 305.80 *** | 11.32 | 274.00 *** | 11.09 | 300.80 *** | 10.85 |
Gender—Female (base) | |||||||
Male | −21.00 *** | 0.27 | 10.00 *** | 0.22 | 2.92 *** | 0.24 | |
Age | 9.57 *** | 0.46 | 10.45 *** | 0.38 | 9.14 *** | 0.40 | |
Country of birth—Country of the test (base) | |||||||
Other country | −13.56 *** | 0.56 | −10.20 *** | 0.45 | −12.23 *** | 0.48 | |
Economic, social, and cultural status | 13.76 *** | 0.15 | 14.86 *** | 0.13 | 14.61 *** | 0.13 | |
Proportion of all teachers fully certified | 2.62 ** | 1.19 | 0.95 | 1.01 | 1.78 * | 1.04 | |
Teacher behavior hindering learning | −0.11 | 0.34 | −0.23 | 0.29 | −0.17 | 0.30 | |
Perceived teacher’s interest | 2.73 *** | 0.15 | 1.82 *** | 0.13 | 2.27 *** | 0.13 | |
Shortage of educational material | −3.39 *** | 0.43 | −3.04 *** | 0.37 | −2.98 *** | 0.37 | |
Shortage of educational staff | −2.26 *** | 0.42 | −1.90 *** | 0.36 | −2.04 *** | 0.37 | |
Adaptation of instruction | 4.34 *** | 0.15 | 3.08 *** | 0.12 | 3.48 *** | 0.13 | |
Disciplinary climate in test language lessons | 6.43 *** | 0.14 | 5.85 *** | 0.11 | 5.77 *** | 0.12 | |
School location—A large city (with over 1,000,000 people) (base) | |||||||
A city (100,000 to about 1,000,000 people) | −3.34 *** | 1.24 | −2.54 *** | 1.07 | −2.55 ** | 1.10 | |
A town (15,000 to about 100,000 people) | −8.40 *** | 1.23 | −6.92 *** | 1.06 | −6.54 *** | 1.09 | |
A small town (3000 to about 15,000 people) | −13.41 *** | 1.35 | −9.99 *** | 1.16 | −9.94 *** | 1.20 | |
A village, hamlet or rural area (fewer than 3000 people) | −20.98 *** | 1.48 | −14.65 *** | 1.28 | −15.05 *** | 1.32 | |
Public or a private school?—Private school (base) | |||||||
Public school | −4.28 *** | 0.77 | −4.05 *** | 0.66 | −4.01 *** | 0.69 | |
Gross domestic product per capita (GDP per capita) | 0.66 *** | 0.18 | 0.85 *** | 0.19 | 0.72 *** | 0.18 | |
Subject-related ICT use during lessons (ICTCLASS) | −3.77 *** | 0.14 | −1.82 *** | 0.12 | −2.27 *** | 0.12 | |
Years of schooling (PWT) | 48.40 *** | 10.88 | 47.72 *** | 11.70 | 41.73 *** | 11.02 | |
Interaction between ICTCLASS and years of schooling (PWT) | 6.94 *** | 0.34 | 4.44 *** | 0.29 | 5.54 *** | 0.31 | |
Random effects | Level 2: Intercept | 2271.40 | 47.66 | 1899.70 | 43.59 | 1902.80 | 43.62 |
Level 3: Intercept | 786.70 | 28.05 | 820.60 | 28.65 | 926.50 | 30.44 | |
Level 1: Residual | 5203.50 | 72.13 | 4430.30 | 66.56 | 3984.10 | 63.12 | |
Sample size | Total sample (students) | 327,469 | 363,412 | 363,412 | |||
Level 2 groups (schools) | 12,126 | 13,215 | 13,215 | ||||
Level 3 groups (countries) | 47 | 48 | 48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimenez, G.; Vargas-Montoya, L. ICT Use and Successful Learning: The Role of the Stock of Human Capital. Mathematics 2021, 9, 1648. https://doi.org/10.3390/math9141648
Gimenez G, Vargas-Montoya L. ICT Use and Successful Learning: The Role of the Stock of Human Capital. Mathematics. 2021; 9(14):1648. https://doi.org/10.3390/math9141648
Chicago/Turabian StyleGimenez, Gregorio, and Luis Vargas-Montoya. 2021. "ICT Use and Successful Learning: The Role of the Stock of Human Capital" Mathematics 9, no. 14: 1648. https://doi.org/10.3390/math9141648
APA StyleGimenez, G., & Vargas-Montoya, L. (2021). ICT Use and Successful Learning: The Role of the Stock of Human Capital. Mathematics, 9(14), 1648. https://doi.org/10.3390/math9141648