A Novel Multi-Criteria Group Decision-Making Approach Based on Bonferroni and Heronian Mean Operators under Hesitant 2-Tuple Linguistic Environment
Abstract
:1. Introduction
2. Preliminaries
- 1.
- Negation operator: , such that
- 2.
- Ordered set: . Therefore, the following operators exist:
- a
- Maximization operator: if
- b
- Minimization operator: if
- 1.
- iff
- 2.
- iff
3. Novel Operational Laws for H2TLSs
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
An Approach to MCGDM Using H2TLEs
- Step 1:
- Establish the H2TL decision matrices with the help of DMs ;
- Step 2:
- Use the novel operational laws to aggregate all the decision matrices provided by the DMs to get the aggregated matrix ;
- Step 3:
- Aggregate to obtain the collective comprehensive selection value for each alternative using H2TLWA, H2TLBM, H2TLGBM, H2TLHM and H2TLGHM operators;
- Step 4:
- Rank the comprehensive selection value corresponding to each alternative by computing the score values using Equation (1) and choose the best alternative , where
4. Numerical Example on an Investment Problem
Comparison Analysis
- Linguistic preference structure along with the symbolic translation are simultaneously utilized in the evaluation procedure of alternatives to make assessments under specific criteria. This can portray the fuzziness and uncertainty of DMs all the more appropriately;
- The proposed H2TLBM, H2TLHM, H2TLGBM and H2TLGHM operators for H2TLSs are exceptionally helpful and successful that can be utilized to aggregate the DMs preferences in MCGDM problems which can exhibit the predominance of the proposed approach.
- The proposed operators are suitable for a linguistic variable with the translational arguments and permits the DMs to have more options while choosing aggregation techniques utilizing H2TLSs.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Paradowski, B.; Więckowski, J.; Dobryakova, L. Why TOPSIS does not always give correct results? Procedia Comput. Sci. 2020, 176, 3591–3600. [Google Scholar] [CrossRef]
- Pei, Z.; Liu, J.; Hao, F.; Zhou, B. FLM-TOPSIS: The fuzzy linguistic multiset TOPSIS method and its application in linguistic decision making. Inf. Fusion 2019, 45, 266–281. [Google Scholar] [CrossRef]
- Liao, H.; Xu, Z.; Zeng, X.J. Hesitant fuzzy linguistic VIKOR method and its application in qualitative multiple criteria decision making. IEEE Trans. Fuzzy Syst. 2014, 23, 1343–1355. [Google Scholar] [CrossRef]
- Więckowski, J.; Sałabun, W. How the normalization of the decision matrix influences the results in the VIKOR method? Procedia Comput. Sci. 2020, 176, 2222–2231. [Google Scholar] [CrossRef]
- Shekhovtsov, A.; Sałabun, W. A comparative case study of the VIKOR and TOPSIS rankings similarity. Procedia Comput. Sci. 2020, 176, 3730–3740. [Google Scholar] [CrossRef]
- Zolfani, S.; Yazdani, M.; Pamucar, D.; Zarate, P. A VIKOR and TOPSIS focused reanalysis of the MADM methods based on logarithmic normalization. arXiv 2020, arXiv:2006.08150. [Google Scholar]
- Stojčić, M.; Zavadskas, E.K.; Pamučar, D.; Stević, Ž.; Mardani, A. Application of MCDM methods in sustainability engineering: A literature review 2008–2018. Symmetry 2019, 11, 350. [Google Scholar] [CrossRef] [Green Version]
- Palczewski, K.; Sałabun, W. Influence of various normalization methods in PROMETHEE II: An empirical study on the selection of the airport location. Procedia Comput. Sci. 2019, 159, 2051–2060. [Google Scholar] [CrossRef]
- Sałabun, W.; Wątróbski, J.; Shekhovtsov, A. Are MCDA Methods Benchmarkable? A Comparative Study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II Methods. Symmetry 2020, 12, 1549. [Google Scholar] [CrossRef]
- Shekhovtsov, A.; Rehman, N.; Faizi, S.; Sałabun, W. On the Analytic Hierarchy Process Structure in Group Decision-Making Using Incomplete Fuzzy Information with Applications. Symmetry 2021, 13, 609. [Google Scholar]
- Đalić, I.; Ateljević, J.; Stević, Ž.; Terzić, S. An integrated swot–fuzzy piprecia model for analysis of competitiveness in order to improve logistics performances. Facta Univ. Ser. Mech. Eng. 2020, 18, 439–451. [Google Scholar]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Becker, J.; Becker, A.; Sałabun, W. Construction and use of the ANP decision model taking into account the experts’ competence. Procedia Comput. Sci. 2017, 112, 2269–2279. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. The analytic network process. In Decision Making with the Analytic Network Process; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–40. [Google Scholar]
- Kheybari, S.; Rezaie, F.M.; Farazmand, H. Analytic network process: An overview of applications. Appl. Math. Comput. 2020, 367, 124780. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Więckowski, J.; Shekhovtsov, A.; Ziemba, E.; Wątróbski, J.; Sałabun, W. Input data preprocessing for the MCDM model: COPRAS method case study. In Proceedings of the 27th Americas Conference on Information Systems, AMCIS 2021, Association for Information Systems, Virtual Conference, 9–13 August 2021. [Google Scholar]
- Stefano, N.M.; Casarotto Filho, N.; Vergara, L.G.L.; da Rocha, R.U.G. COPRAS (Complex Proportional Assessment): State of the art research and its applications. IEEE Lat. Am. Trans. 2015, 13, 3899–3906. [Google Scholar] [CrossRef]
- Wan, S.P.; Xu, G.L.; Dong, J.Y. Supplier selection using ANP and ELECTRE II in interval 2-tuple linguistic environment. Inf. Sci. 2017, 385, 19–38. [Google Scholar] [CrossRef]
- Figueira, J.R.; Mousseau, V.; Roy, B. ELECTRE methods. In Multiple Criteria Decision Analysis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 155–185. [Google Scholar]
- Akram, M.; Garg, H.; Zahid, K. Extensions of ELECTRE-I and TOPSIS methods for group decision-making under complex Pythagorean fuzzy environment. Iran. J. Fuzzy Syst. 2020, 17, 147–164. [Google Scholar]
- Kizielewicz, B.; Wątróbski, J.; Sałabun, W. Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study. Energies 2020, 13, 6548. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Dobryakova, L. How to choose the optimal single-track vehicle to move in the city? Electric scooters study case. Procedia Comput. Sci. 2020, 176, 2243–2253. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Kołodziejczyk, J. Effects of the selection of characteristic values on the accuracy of results in the COMET method. Procedia Comput. Sci. 2020, 176, 3581–3590. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Shekhovtsov, A.; Sałabun, W. A New Approach to Eliminate Rank Reversal in the MCDA problems. In International Conference on Computational Science; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Więckowski, J.; Kołodziejczyk, J. Swimming progression evaluation by assessment model based on the COMET method. Procedia Comput. Sci. 2020, 176, 3514–3523. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Dobryakova, L. MCDA based approach to sports players’ evaluation under incomplete knowledge. Procedia Comput. Sci. 2020, 176, 3524–3535. [Google Scholar] [CrossRef]
- Tian, Z.P.; Zhang, H.Y.; Wang, J.Q.; Wang, T.L. Green supplier selection using improved TOPSIS and best-worst method under intuitionistic fuzzy environment. Informatica 2018, 29, 773–800. [Google Scholar] [CrossRef] [Green Version]
- Faizi, S.; Sałabun, W.; Nawaz, S.; ur Rehman, A.; Wątróbski, J. Best-Worst method and Hamacher aggregation operations for intuitionistic 2-tuple linguistic sets. Expert Syst. Appl. 2021, 181, 115088. [Google Scholar] [CrossRef]
- Mi, X.; Tang, M.; Liao, H.; Shen, W.; Lev, B. The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what is next? Omega 2019, 87, 205–225. [Google Scholar] [CrossRef]
- Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria method selection: Rule set database and exemplary decision support system implementation blueprints. Data Brief 2019, 22, 639. [Google Scholar] [CrossRef]
- Zadeh, L.A.; Klir, G.J.; Yuan, B. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers; World Scientific: Singapore, 1996; Volume 6. [Google Scholar]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Pei, Z.; Ruan, D.; Liu, J.; Xu, Y. Linguistic Values Based Intelligent Information Processing: Theory, Methods, and Applications; Springer: Berlin/Heidelberg, Germany, 2010; Volume 259. [Google Scholar]
- Herrera, F.; Herrera-Viedma, E. Linguistic decision analysis: Steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 2000, 115, 67–82. [Google Scholar] [CrossRef]
- Wang, J.H.; Hao, J. A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2006, 14, 435–445. [Google Scholar] [CrossRef]
- Herrera, F.; Martínez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2000, 8, 746–752. [Google Scholar]
- Xu, Z. A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 2004, 166, 19–30. [Google Scholar] [CrossRef]
- Rodriguez, R.M.; Martinez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 2011, 20, 109–119. [Google Scholar] [CrossRef]
- Delgado, M.; Verdegay, J.L.; Vila, M.A. On aggregation operations of linguistic labels. Int. J. Intell. Syst. 1993, 8, 351–370. [Google Scholar] [CrossRef]
- Herrera, F.; Herrera-Viedma, E. A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst. 1996, 78, 73–87. [Google Scholar] [CrossRef]
- Degani, R.; Bortolan, G. The problem of linguistic approximation in clinical decision making. Int. J. Approx. Reason. 1988, 2, 143–162. [Google Scholar] [CrossRef] [Green Version]
- Mendel, J.M. Computing with words and its relationships with fuzzistics. Inf. Sci. 2007, 177, 988–1006. [Google Scholar] [CrossRef]
- Herrera, F.; Martinez, L. An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2000, 8, 539–562. [Google Scholar] [CrossRef]
- Wei, C.; Liao, H. A multigranularity linguistic group decision-making method based on hesitant 2-tuple sets. Int. J. Intell. Syst. 2016, 31, 612–634. [Google Scholar] [CrossRef]
- Beg, I.; Rashid, T. Hesitant 2-tuple linguistic information in multiple attributes group decision making. J. Intell. Fuzzy Syst. 2016, 30, 109–116. [Google Scholar] [CrossRef]
- Faizi, S.; Rashid, T.; Zafar, S. An outranking approach for hesitant 2-tuple linguistic sets. Granul. Comput. 2019, 4, 725–737. [Google Scholar] [CrossRef]
- Faizi, S.; Rashid, T.; Zafar, S. TODIM approach based on score function under hesitant 2-tuple linguistic environment. J. Intell. Fuzzy Syst. 2020, 38, 663–673. [Google Scholar] [CrossRef]
- Bonferroni, C. Sulle medie multiple di potenze. Boll. Dell’Unione Mat. Ital. 1950, 5, 267–270. [Google Scholar]
- Wang, L.; Wang, Y.; Liu, X. Prioritized aggregation operators and correlated aggregation operators for hesitant 2-tuple linguistic variables. Symmetry 2018, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.; Sharma, B.D. Hesitant Fuzzy Geometric Heronian Mean Operators and Their Application to Multi-Criteria Decision Making. Sci. Math. Jpn. 2015, 78, 23–39. [Google Scholar]
- Gou, X.; Xu, Z. Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets and probabilistic linguistic term sets. Inf. Sci. 2016, 372, 407–427. [Google Scholar] [CrossRef]
- Faizi, S.; Rashid, T.; Zafar, S. Additive consistency-based approach for group decision making with hesitant 2-tuple linguistic preference relations. J. Intell. Fuzzy Syst. 2018, 35, 4657–4672. [Google Scholar] [CrossRef]
- Sałabun, W.; Urbaniak, K. A new coefficient of rankings similarity in decision-making problems. In International Conference on Computational Science; Springer: Berlin/Heidelberg, Germany, 2020; pp. 632–645. [Google Scholar]
- Mahmood, T.; Ullah, K.; Khan, Q.; Jan, N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput. Appl. 2019, 31, 7041–7053. [Google Scholar] [CrossRef]
Alternatives | H2TLWA | Score | Ranking Order |
---|---|---|---|
4 | |||
3 | |||
5 | |||
1 | |||
2 |
Alternatives | H2TLBM | Score | Ranking Order |
---|---|---|---|
5 | |||
3 | |||
4 | |||
2 | |||
1 |
Alternatives | H2TLGBM | Score | Ranking Order |
---|---|---|---|
5 | |||
2 | |||
4 | |||
1 | |||
3 |
Alternatives | H2TLGBM | Score | Ranking Order |
---|---|---|---|
5 | |||
2 | |||
4 | |||
1 | |||
3 |
Alternatives | H2TLGBM | Score | Ranking Order |
---|---|---|---|
5 | |||
2 | |||
4 | |||
1 | |||
3 |
Alternatives | H2TLHM | Score | Ranking Order |
---|---|---|---|
5 | |||
3 | |||
4 | |||
2 | |||
1 |
Alternatives | H2TLGHM | Score | Ranking Order |
---|---|---|---|
4 | |||
2 | |||
5 | |||
1 | |||
3 |
Alternatives | H2TLGHM | Score | Ranking Order |
---|---|---|---|
4 | |||
2 | |||
5 | |||
1 | |||
3 |
Alternatives | H2TLGHM | Score | Ranking Order |
---|---|---|---|
4 | |||
2 | |||
5 | |||
1 | |||
3 |
—The TOPSIS method (Beg and Rashid [47]) | |
— [48] | |
—The TODIM method (Faizi et al. [49]) | |
Proposed approach | |
—H2TLWA operator | |
—H2TLBM operator for | |
—H2TLGBM operator for | |
—H2TLGBM operator for | |
—H2TLGBM operator for | |
—H2TLHM operator for | |
—H2TLGHM operator for | |
—H2TLGHM operator for |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faizi, S.; Sałabun, W.; Shaheen, N.; Rehman, A.u.; Wątróbski, J. A Novel Multi-Criteria Group Decision-Making Approach Based on Bonferroni and Heronian Mean Operators under Hesitant 2-Tuple Linguistic Environment. Mathematics 2021, 9, 1489. https://doi.org/10.3390/math9131489
Faizi S, Sałabun W, Shaheen N, Rehman Au, Wątróbski J. A Novel Multi-Criteria Group Decision-Making Approach Based on Bonferroni and Heronian Mean Operators under Hesitant 2-Tuple Linguistic Environment. Mathematics. 2021; 9(13):1489. https://doi.org/10.3390/math9131489
Chicago/Turabian StyleFaizi, Shahzad, Wojciech Sałabun, Nisbha Shaheen, Atiq ur Rehman, and Jarosław Wątróbski. 2021. "A Novel Multi-Criteria Group Decision-Making Approach Based on Bonferroni and Heronian Mean Operators under Hesitant 2-Tuple Linguistic Environment" Mathematics 9, no. 13: 1489. https://doi.org/10.3390/math9131489
APA StyleFaizi, S., Sałabun, W., Shaheen, N., Rehman, A. u., & Wątróbski, J. (2021). A Novel Multi-Criteria Group Decision-Making Approach Based on Bonferroni and Heronian Mean Operators under Hesitant 2-Tuple Linguistic Environment. Mathematics, 9(13), 1489. https://doi.org/10.3390/math9131489