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Abstract: Ambiguous and uncertain facts can be handled using a hesitant 2-tuple linguistic set
(H2TLS), an important expansion of the 2-tuple linguistic set. The vagueness and uncertainty of
data can be grabbed by using aggregation operators. Therefore, aggregation operators play an
important role in computational processes to merge the information provided by decision makers
(DMs). Furthermore, the aggregation operator is a potential mechanism for merging multisource data
which is synonymous with cooperative preference. The aggregation operators need to be studied and
analyzed from various perspectives to represent complex choice situations more readily and capture
the diverse experiences of DMs. In this manuscript, we propose some valuable operational laws for
H2TLS. These new operational laws work through the individual aggregation of linguistic words
and the collection of translation parameters. We introduced a hesitant 2-tuple linguistic weighted
average (H2TLWA) operator to solve multi-criteria group decision-making (MCGDM) problems.
We also define hesitant 2-tuple linguistic Bonferroni mean (H2TLBM) operator, hesitant 2-tuple
linguistic geometric Bonferroni mean (H2TLGBM) operator, hesitant 2-tuple linguistic Heronian mean
(H2TLHM) operator, and a hesitant 2-tuple linguistic geometric Heronian mean (H2TLGHM) operator
based on the novel operational laws proposed in this paper. We define the aggregation operators for
addition, subtraction, multiplication, division, scalar multiplication, power and complement with
their respective properties. An application example and comparison analysis were examined to show
the usefulness and practicality of the work.

Keywords: decision making; multi-criteria group decision making; fuzzy set theory; aggregation
operators

1. Introduction

Multi-criteria decision making (MCDM) is an immensely important and common
practice in our everyday life. In the literature, countless decision-making techniques
and their extensions have been proposed, for example, the technique for order of pref-
erence by similarity to ideal solution (TOPSIS) [1–3], VIKOR [4–7], Preference Ranking
Organization Method for enrichment of evaluations (PROMETHEE II) [8–10], analytic
hierarchy process (AHP) [11–13], analytic network process (ANP) [14–16], the complex
proportional assessment (COPRAS) [17,18], ELECTRE [19–21], the characteristic objects
method (COMET) [22–27], best–worst method (BWM) [28–30], among others [31]. With the
advancement of society, some new methodologies for capturing cognitive uncertainty
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among DMs in addressing the complexity of management decisions are generally required.
MCDM is an autonomous discipline concerned with prioritizing the appropriate alterna-
tive(s), subject to a range of parameters or characteristics that may be valid or ambiguous.

The fuzzy set theory was proposed by Zadeh [32] in 1965 to tackle imprecise and
ambiguous circumstances. A fuzzy set has been described in some universe of discourse,
each element of which is associated with the degree of membership. Fuzzy set theory
is developed to find unfaithfulness and uncertainty to demonstrate the human mind in
computerized reasoning. The significance of such a theory is expanding step by step in
the field of an expert system. Various types of fuzzy knowledge have been commonly
used to address MCDM problems. As a result, fuzzy set theory and its generalization
have emerged as a possible field of interdisciplinary study. Sometimes, the DMs dealing
with an ambiguous problem cannot interpret their understanding with the help of a single
term because they consider multiple terms all at once. Therefore, in order to overcome
this issue, hesitant fuzzy sets (HFSs) theory [33] was introduced, which can be used in
MCDM problems. Various types of fuzzy knowledge have been commonly used to address
MCDM problems. Consequently, the fuzzy set theory and its generalization emerged as a
potential field of interdisciplinary study. As a rationalization of Zadeh’s fuzzy sets, fuzzy
logic combines linguistic variables in the dynamic display system. The need for linguistic
variables was felt when the DMs preferred variable values in words rather than numbers.
Zadeh himself introduced linguistic variables in 1975 [34]. In a characteristic or natural
language, the linguistic variable carries its values in the form of words or phrases.

The analysis of the different linguistic extensions and the fuzzy linguistic structure
and speculations shows that, for the most part, that the modeling of linguistic informa-
tion is exceptionally constrained since it depends on the causal inference of single and
extremely straight words, which should incorporate and exhibit the linguistic variable
data provided by the DMs. Linguistic variables provide an updated and accurate source
of imprecise or uncertain qualitative knowledge but have certain limitations, like the lim-
itation of the number of linguistic terms, multi-faceted calculational existence, and the
absence of accuracy and adversity in the estimation procedure [35,36]. In order to control
these shortcomings, a 2-tuple proportional model [37], a 2-tuple linguistic model [38],
a virtual linguistic model [39], and a hesitant fuzzy linguistic term sets [40] were suggested.
In the past, many scholars introduced a variety of linguistic term models in their research,
for example, the symbolic model [41,42], the semantic model [43,44], and the model formed
on linguistic 2-tuple. Three such models were introduced in the year 2000 by Herrera
and Martinez. The extension principal is considered as basic for the semantic model, and
the symbolic model is based on computations using the index of linguistic terms.

Several other similar models are carried by the 2-tuple family, so that based on the
principle of symbolic translation, the 2-tuple fuzzy linguistic representation model was
built in [45]. The fundamental belief of this model is to set the correct numerical scale
to make adjustments between linguistic 2-tuple and numerical consistency. Herrera and
Martinez (2000) suggested the 2-tuple linguistic model that guaranteed consistency in
consistently distributing LTs with the same precision. Wang and Hao [37] developed
the proportional 2-tuple fuzzy linguistic representation model in addition to the Herrera
and Martinez model to remove the drawback of 2-tuple linguistic model. Furthermore,
the notation of a hesitant 2-tuple linguistic set introduced by Wei and Liao [46] to make the
computation of hesitant fuzzy linguistic term sets (HFLTS) [40] without information loss
and built up several new operators to accumulate HFLTS from different LTSs. The hesitant
2-tuple linguistic data model presented by Beg and Rashid [47] in 2016 provides a linguistic
and computational framework for coping with the situation in which experts evaluate an
alternative under linguistic terms and feel somewhat hesitant to demonstrate its possible
linguistic translation. Faizi et al. [48,49] first introduced an outranking approach based
on the ELECTRE method and then developed the TODIM approach for solving MCGDM
problems in a hesitant 2-tuple linguistic environment.
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DMs usually focus on consolidating the effect of different criteria. Addressing the
basic situation, Bonferroni [50] presented the Bonferroni mean (BM) operator as a mean
type accumulation operator, which not only represents the correlation of the attributes
entered, but can also minimize mistakes in some compound circumstances. Addition-
ally, the Bonferroni mean operator for H2TLSs has been introduced in [51]. The Heronian
mean (HM) [52] is another form of decision-making operator that can also independently
express the interrelationships between input data. HM is beneficial in different application
areas, including decision making and data mining. From the definition of BM and HM
operators, the BM operator indicates the correlation between different criteria ci and cj
for i 6= j. In contrast, the HM operator accounts for the interaction between criteria and
pays close attention to the aggregated input data. HM indicates the interaction between an
attribute and itself.

Aggregation is an important step in various types of fuzzy information decision-
making methods which use aggregation operators in the last steps of the algorithm. Many
aggregation operators play an important role in the aggregation process throughout MCDM
problems. Many t-norms and t-conorms can be chosen for the computational analysis of
linguistic knowledge. Several researchers have developed multiple aggregation operators
to deal with their problems, i.e., Xunjie and Xu [53] developed aggregation operators
for linguistic terms; Wang et al. [51] defined the H2TLPWA (hesitant 2-tuple linguistic
prioritized weighted averaging) operator, H2TLPWG (hesitant 2-tuple linguistic priori-
tized weighted geometric) aggregation operator and H2TLCG (hesitant 2-tuple linguistic
correlated geometric) aggregation operators for H2TLSs. Faizi et al. introduced an additive
consistency-based approach with hesitant 2-tuple linguistic preference relation in [54].

We can see from the whole discussion that the MCGDM with hesitant 2-tuple linguistic
information is a hot topic and has been investigated by many scholars. In this paper, we
are concerned with group decision making in a hesitant 2-tuple linguistic environment.
In particular, we are interested in the role that the proposed operators for H2TLSs might
play in enhancing group decision making. In part, this has been motivated by our recent
work [48,49], indicating the importance of H2TLSs in real-life problems. To show the
applicability of the proposed operational laws for H2TLSs, we introduced a method to
solve the problems of MCGDM by using the proposed H2TLWA, H2TLBM, H2TLGBM,
H2TLHM and H2TLGHM operators. These operations can prevent operational results
beyond the boundary of the LTSs and translation parameters and hold the likelihood
information complete after operations. To show the efficiency of the proposed MCGDM
method, we apply the method to solve a numerical example concerning selecting the best
investment opportunity for a finance house in Pakistan. Finally, a comparative study of the
proposed approach with the existing ones is conducted to illustrate the application and
superiority of the proposed method.

The remainder of the paper is sorted out as follows: Section 2 addresses some of
the fundamentals applicable to the proposed research. Section 3 establishes new opera-
tional laws for H2TLS along with their properties. The H2TLWA, H2TLBM, H2TLGBM,
H2TLHM, and H2TLGHM operators are also defined in the same section. In Section 4, a re-
alistic example is used to illustrate the efficacy of the proposed novel operational laws by
addressing the MCGDM problem. The results are aggregated using the proposed H2TLWA,
H2TLBM and H2TLHM operators. Section 5 draws some conclusions and outlines some of
the research directions for H2TLS.

2. Preliminaries

This section comprises fundamental notions of LTSs, HFS, H2TLSs and a 2-tuple
linguistic representation model.

Definition 1. The linguistic term set with odd cardinality is indicated by S = {stt = 0, . . . , g}
where each st(0 ≤ t ≤ g) displays a probable value for a linguistic variable. The properties for S
can be defined as follows:
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1. Negation operator: neg(st) = su, such that t + u = g;
2. Ordered set: st ≤ su ⇐⇒ t ≤ u. Therefore, the following operators exist:

a Maximization operator: max(st, su) = st, if su ≤ st;
b Minimization operator: min(st, su) = su, if st ≤ su.

Definition 2. Let X be a fixed defined set, h is a function that, when related to set X, returns a
subset of values in [0, 1], h : X → [0, 1] called HFS on X.

Definition 3 ([40]). Let S = {stt = 0, . . . , g} be a linguistic term set, an HFLTS (Hs) is an
arranged limited subset of the continuous linguistic terms of S. In mathematical form, Hs = {<
x, hs(x) > x ∈ X}, where the possible degree of the linguistic variable x is denoted by hs(x) to the
linguistic term set S. hs(x) is also called a hesitant fuzzy linguistic element (HFLE).

Definition 4. Let S = {stt = 0, . . . , g} represent a linguistic term set and the result of a symbolic
aggregation operation represented by β ∈ [0, g], then the 2-tuple that exhibits the equivalent
information to β is obtained with the function4 : [0, g]→ S× [−0.5, 0.5) as

4(β) = (st, αt), with

{
st, t = round(β);
αt = β− t, αt ∈ [−0.5, 0.5).

∆−1 is used to represent the inverse of4 which can be defined as ∆−1(st, αt) = t + αt.

Definition 5 ([47]). Assume that X is a fixed defined set and S be the linguistic term set as
described earlier, an expression H given by H = {(x, (st, α))x ∈ X} defined an H2TLS in X.
The hesitant 2-tuple linguistic representation model represents the hesitant linguistic information
by means as a 2-tuple, (st, α), where st is the linguistic label and α is an ordered finite subset of
[−0.5, 0.5) that represents the possible symbolic translations of st. It is noted that the cardinality of
α may be different for each x. In particular, if there is a single element in X, then H is referred to as
an H2TLE, which can be denoted by H = (st, α).

Definition 6. For a hesitant 2-tuple linguistic element H = (st, α) where α = {αl} for l =
1, 2, . . . , #(α), we define ∆−1H = {∆−1(st, αl), l = 0, 1, . . . , #(α) and 0 ≤ t ≤ g}. Clearly,
∆−1H is a finite subset of [0, g]. Similarly, we can prove that 4(∆−1H) = H = (st, α) where
t =round(χ) and α = {χ− t, 0 ≤ t ≤ g} where χ ∈ ∆−1H.

Definition 7. Let H1, H2, . . . , Hn be H2TLSs, where Hn = (stn , {αn
l }) for l = 1, 2, . . . , #{αn

l },
then the score function for H2TLTSs is defined as

s(Hn) =
1

#(Hn)

n

∑
j=1

∆−1(Hj) (1)

where ∆−1(Hn) = ∆−1(stn , {αn
l }) = tn + αn

l , for l = 0, 1, . . . , #{αn
l }. The following comparison

analysis holds for the score function of H2TLEs.

Definition 8. For any two H2TLEs, H1 and H2 :

1. s(H1) < s(H2) iff H1 ≺ H2;
2. s(H1) = s(H2) iff H1 = H2.

Definition 9. For a hesitant 2-tuple linguistic element, H = (st, α) , where α = {αl} for
l = 1, 2, . . . , #(α), we define min(H) = H = (st, min(α)) and max(H) = H = (st, max(α)).
It can be easily observed that s(H) ≤ s(H) ≤ s(H) implies H � H � H.

Definition 10 ([53]). Let S = {stt = 0, . . . , g} be an LTS, then the corresponding information
to the membership degree β ∈ [0, 1] expressed by the linguistic variable st is obtained with the
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function f : S −→ [0, 1] defined by f (st) =
t
g = β, ∀st ∈ S. The corresponding inverse function

f−1 : [0, 1]→ S is defined as f−1(β) = st = sgβ.

Definition 11. Let αi be the set of parameter values of an H2TLS, then we define a function g :
[−0.5, 0.5)→ [0, 1], g(αi) = αi +

1
2 = βi, where αi ∈ [−0.5, 0.5) and βi ∈ [0, 1]. Furthermore,

the membership degree βi that shows corresponding information to parameter values of H2TLS,
as obtained with the inverse function g−1 : [0, 1] → [−0.5, 0.5) where g−1(βi) = βi − 1

2 ∈
[−0.5, 0.5).

3. Novel Operational Laws for H2TLSs

In the course of the most recent couple of decades, we used operational laws to
aggregate the H2TLSs that deal with linguistic terms and translation parameters as a single
term, as discussed in the introduction. There is a need to define some new aggregation
operators which deal with the H2TLS in a different way. Two similar transformation
functions have been implemented in Definitions 1 and 2, on the basis of which some new
operational laws for H2TLSs can be defined, including addition, subtraction, multiplication,
division, multiplication of scalers, power and complement.

Definition 12. Let H = (sti , {αi}) be an H2TLTS, where αi ∈ [−0.5, 0.5), and let H1 =
(st1 , {α1

j }) and H2 = (st2 , {α2
k}), j = 1, 2, . . . , #{α1

j }, k = 1, 2, . . . , #{α2
k}, be two H2TLTEs

while α1
j , α2

k ∈ [−0.5, 0.5) are symbolic translation parameters of H2TLEs and λ > 0 is a real
number, then:

1. H1⊕H2 =

(
f−1( f (st1 ) + f (st2 )− f (st1 ) f (st2 )), g−1

 ∪
α1∈α1

j ,

α2∈α2
k

(g(α1) + g(α2)− g(α1)g(α2)




2. H1 ⊗ H2 =

(
f−1( f (st1) f (st2)), g−1

 ∪
α1∈α1

j ,

α2∈α2
k

(g(α1)g(α2))




3. H1 	 H2 =



 f−1(
f (st1 )− f (st2 )

1− f (st2 )
), g−1 ∪

α1∈α1
j ,

α2∈α2
k{

g(α1)−g(α2)
1−g(α2)

}) if f (st1) ≥ f (st2),
f (st2) 6= 1 and

α1 ≥ α2, α2 6= 1
(s0, {0}) otherwise

4. H1 � H2 =



 f−1(
f (st1 )

f (st2 )
), g−1 ∪

α1∈α1
j ,

α2∈α2
k

{
g(α1)
g(α2)

}
if f (st1) ≤ f (st2), f (st2) 6= 0
and α1 ≤ α2, α2 6= 0

(s0, {0}) otherwise

5. λH =

(
f−1{1− (1− f (st))λ

}
, g−1

{
∪

α∈αi
(1− (1− g(α))λ)

})
6. Hλ =

(
f−1{( f (st))λ

}
, g−1

{
∪

α∈αi
(g(α))λ

})
7. Hc =

(
f−1{1− f (st)}, g−1

{
∪

α∈αi
(1− g(α))

})
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Theorem 1. Let S = {s0, s1, . . . , sg} be a linguistic term set, H = (st, {αj}), H1 = (st1 , {α1
j })

and H2 = (st2 , {α2
k}) be two H2TLTSs. Then, for real numbers λ1, λ2, . . . , λn, we have:

1. H1 ⊕ H2 = H2 ⊕ H1 2. H1 ⊗ H2 = H2 ⊗ H1
3. (H1 	 H2)⊕ H2 = H1 4. (H1 � H2)⊗ H2 = H1
5. λ(H1 ⊕ H2) = λH1 ⊕ λH2 6. λ(H1 	 H2) = λH1 	 λH2
7. (H1 ⊗ H2)

λ = H1
λ ⊗ H2

λ 8. (H1 � H2)
λ = H1

λ � H2
λ

9. λ1H ⊕ λ2H = (λ1 ⊕ λ2)H 10. λ1H 	 λ2H = (λ1 	 λ2)H
11. Hλ1 ⊗ Hλ2 = Hλ1⊕λ2 12. Hλ1 � Hλ2 = Hλ1	λ2

Proof. Here, 1 and 2 are obvious.

3. (H1 	 H2)⊕ H2

=

(
f−1
{ t1

g −
t2
g

1− t2
g

}
⊕ st2 , g−1

{
∪

α1∈α1
j ,α2∈α2

k

( g(α1)−g(α2
1−g(α2)

)⊕ g(α2)

})

=

(
f−1
{

t1−t2
g−t2

}
⊕ st2 , g−1

{
∪

α1∈α1
j ,α2∈α2

k

g(α1)−g(α2)
1−g(α2)

+g(α2)− g(α1)−g(α2)
1−g(α2)

g(α2)
})

=

(
s{ t1−t2

g−t2

}
g
⊕ st2 ,

g−1

 ∪
α1∈α1

j ,

α2∈α2
k

g(α1)−g(α2)+(1−g(α2)g(α2)−(g(α1)−g(α2)g(α2)
1−g(α2)




=

(
f−1
{

f
(

s{ t1−t2
g−t2

}
g

)
+ f (st2)− f

(
s{ t1−t2

g−t2

}
g

)
f (st2)

}
,

g−1

 ∪
α1∈α1

j ,

α2∈α2
k

g(α1)−g(α2)+g(α2)−g2(α2)−g(α1)g(α2)+g2(α2)
1−g(α2)




=

 f−1
{

t1−t2
g−t2

+ t2
g −

(
t1−t2
g−t2

)(
t2
g

)}
, g−1

 ∪
α1∈α1

j ,

α2∈α2
k

g(α1)(1−g(α2))
1−g(α2)




=

(
f−1
{

gt1−gt2+gt2−(t2)
2−t1t2+(t2)

2

g(g−t2)

}
, g−1{ ∪

α1∈α1
j

g(α1)}
)

=

(
f−1
{

t1(g−t2)
g(g−t2)

}
, g−1{ ∪

α1∈α1
j

g(α1)}
)

=

(
f−1
(

t1
g

)
, g−1{ ∪

α1∈α1
j

g(α1)}
)

=

(
s

g t1
g

, g−1{ ∪
α1∈α1

j

g(α1)}
)

= (st1 , {α1
j }) = H1

4. (H1 � H2)⊗ H2
= [(st1 � st2)⊗ st2 , {α1

j � α2
k} ⊗ {α

2
k}]

=

( f−1(
f (st1 )

f (st2 )
)
)
⊗ st2 , g−1

 ∪
α1∈α1

j ,

α2∈α2
k

{ g(α1)
g(α2)
} ⊗ g(α2)



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=

 f−1( t1
t2
)⊗ st2 , g−1

 ∪
α1∈α1

j ,

α2∈α2
k

g(α1)
g(α2)

g(α2)




=

(
s

g· t1t2
⊗ st2 , g−1

{
∪

α1∈α1
j

g(α1)

})

=

(
f−1
(

f (s
g t1

t2

) f (st2)

)
, g−1

{
∪

α1∈α1
j

g(α1)

})

=

(
f−1
(

gt1
gt2
· t2

g

)
, g−1

{
∪

α1∈α1
j

g(α1)

})

=

(
s

g t1
g

, g−1

{
∪

α1∈α1
j

g(α1)

})

=

(
st1 , g−1

{
∪

α1∈α1
j

g(α1)

})
= (st1 , {α1

j }) = H1

5. λ(H1⊕ H2)
= λ(st1 ⊕ st2), λ{α1

j ⊕ α2
k}

=
(
λ f−1 ( f (st1) + f (st2)− f (st1) f (st2)) ,

λg−1

{
∪

α1∈α1
j ,α2∈α2

k

{g(α1) + g(α2)− g(α1)g(α2)}
})

=

(
λ f−1

(
t1
g + t2

g −
t1
g ·

t2
g

)
, g−1

{
∪

α1∈α1
j ,α2∈α2

k

{1−

(1− g(α1))
λ + 1− (1− g(α2))

λ − (1− (1− g(α1)g(α2))
λ)}
})

=

(
λ f−1

(
g(t1+t2)−t1t2

g2

)
, g−1

{
∪

α1∈α1
j ,α2∈α2

k

{1− ((1−

g(α1))
λ(1− g(α2))

λ}
})

=

λs (t1+t2)g−t1t2
g

, g−1

 ∪
α1∈α1

j ,

α2∈α2
k

{1− ((1− g(α1))
λ(1− g(α2))

λ}
})

=

(
f−1(1− {1− ( f (s (t1+t2)g−t1t2

g
}λ), g−1

{
∪

α1∈α1
j ,α2∈α2

k

{1− (1− g(α1))
λ(1− g(α2))

λ}
})

=

(
f−1(1− {1− ( (t1+t2)g−t1t2

g2 )}λ), g−1

{
∪

α1∈α1
j ,α2∈α2

k

{1− (1− g(α1))
λ(1− g(α2))

λ}
})

=

(
f−1(1− { g2−(t1+t2)g−t1t2

g2

}λ), g−1

{
∪

α1∈α1
j ,α2∈α2

k

{1− (1− g(α1))
λ(1− g(α2))

λ}
})

=

(
f−1(1− { (g−t1)(g−t2)

g2
}λ), g−1

{
∪

α1∈α1
j ,α2∈α2

k

{1− (1 −g(α1))
λ(1− g(α2))

λ}
})

=

(
f−1
(

1−
(
( g−t1

g )( g−t2
g )
)λ
)
⊕ f−1

(
1− (1− t2

g )
λ
)

,

∪
α1∈α1

j

1− (1− g(α1))
λ ⊕ ∪

α2∈α2
k

1− (1− g(α2))
λ

)
=
(

f−1
(

1− (1− t1
g )

λ
)
⊕ f−1

(
1− (1− t2

g )
λ
)

,
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∪
α1∈α1

j

1− (1− g(α1))
λ ⊕ ∪

α2∈α2
k

1− (1− g(α2))
λ

)
=
(

λst1 ⊕ λst2 , λα1
j ⊕ λα2

k

)
= λH1⊕ λH2

6. λ(H1	 H2)

=
(

λ(st1 	 st2), λ{α1
j 	 α2

k}
)

=

λ f−1
( f (st1 )− f (st2 )

1− f (st2 )

)
, λg−1 ∪

α1∈α1
j ,

α2∈α2
k

{
g(α1)−g(α2)

1−g(α2)

}

=

λs
(

t1−t2
g−t2

)g
, g−1

 ∪
α1∈α1

j ,

α2∈α2
k

(1−(1−g(α1))
λ)−(1−(1−g(α2))

λ)
1−(1−(1−g(α2))λ)




=

(
f−1
(

1−
(

1− f (s
(

t1−t2
g−t2

)g
)λ

))
,

g−1

 ∪
α1∈α1

j ,

α2∈α2
k

1−(1−g(α1))
λ

1−(1−(1−g(α2))λ)
− 1−(1−g(α2))

λ

1−(1−(1−g(α2))λ)




=

(
f−1
(

1−
(

1− t1−t2
g−t2

)λ
))

, g−1

{
∪

α1∈α1
j

(1− (1− g(α1))
λ 	 ∪

α2∈α2
k

(1− (1− g(α2))
λ

})

=

(
f−1
(

1− ( g−t1
g−t2

)λ
)

, g−1

{
∪

α1∈α1
j

(1− (1− g(α1))
λ 	 ∪

α2∈α2
k

(1− (1− g(α2))
λ

})

=

(
f−1
(

1− ( g−t1
g ·

g
g−t2

)λ
)

, g−1

{
∪

α1∈α1
j

(1− (1 −g(α1))
λ 	 ∪

α2∈α2
k

(1− (1− g(α2))
λ

})
=
(

f−1
(

1− (1− t1
g )

λ
)
	 f−1

(
1− (1− t2

g )
λ
)

,

g−1

{
∪

α1∈α1
j

(1− (1− g(α1))
λ

}
	 g−1

{
∪

α2∈α2
k

(1− (1− g(α2))
λ

})
= λH1 	 λH2

7. (H1 ⊗ H2)
λ

=
[
(st1 ⊗ st2)

λ, (α1
j ⊗ α2

k)
λ
]

=

((
f−1( f (st1) f (st2))

)λ, g−1

{
∪

α1∈α1
j ,α2∈α2

k

(g(α1)g(α2))
λ

})

=

((
f−1
(

t1t2
g2

))λ
,

{
g−1

(
∪

α1∈α1
j

(g(α1))
λ

)
g−1

(
∪

α2∈α2
k

(g(α2))
λ

)})

=

((
f−1
(

t1
g ·

t2
g

))λ
,

{
g−1

(
∪

α1∈α1
j

(g(α1))
λ

)
g−1

(
∪

α2∈α2
k

(g(α2))
λ

)})

=

(
f−1
(

t1
g

)λ
· f−1

(
t2
g

)λ
,

{
g−1

(
∪

α1∈α1
j

(g(α1))
λ

)
g−1

(
∪

α2∈α2
k

(g(α2))
λ

)})
=
(
(st1)

λ ⊗ (st2)
λ, (α1

j )
λ ⊗ (α2

k)
λ
)
= H1

λ ⊗ H2
λ

8. (H1 � H2)
λ

= [(st1 � st2)
λ, (α1

j � α2
k)

λ]

=

( f−1
( f (st1 )

f (st2 )

))λ
, g−1

{
∪

α1∈α1
j ,α2∈α2

k

( g(α1)

g(α2)
)

}λ

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=

((
f−1( t1

g )
)λ
�
(

f−1( t2
g )
)λ

, g−1

{
∪

α1∈α1
j

(g(α1))
λ

}
�g−1

{
∪

α2∈α2
k

(g(α2))
λ

})
=
(
(st1)

λ � (st2)
λ, (α1

j )
λ � (α2

k)
λ
)
= H1

λ � H2
λ

9. λ1H ⊕ λ2H
= λ1(st, {αj})⊕ λ2(st, {αj})

=

(
f−1(1− (1− f (st))λ1)⊕ f−1(1− (1− f (st))λ2),

g−1

{
∪

α1∈α1
j

(1− (1− g(α1))
λ1

}
⊕ g−1

{
∪

α1∈α1
j

(1− (1− g(α1))
λ2

})

=

(
f−1(1− (1− t

g )
λ1)⊕ f−1(1− (1− t

g )
λ2),

g−1

{
∪

α1∈α1
j

(1− (1− g(α1))
λ1

}
⊕ g−1

{
∪

α1∈α1
j

(1− (1− g(α1))
λ2

})

=

(
f−1(1− (1− t

g )
λ1+λ2 ), g−1

{
∪

α1∈α1
j

(1− (1− g(α1))
λ1+λ2)

})
= (λ1 ⊕ λ2)H

10. λ1H 	 λ2H

=

(
f−1(1− (1− f (st))λ1)	 f−1(1− (1− f (st))λ2),

g−1

{
∪

α1∈α1
j

(1− (1− g(α1))
λ1

}
	 g−1

{
∪

α1∈α1
j

(1− (1− g(α1))
λ2

})

=

(
f−1(1− (1− t

g )
λ1)	 f−1(1− (1− t

g )
λ2),

g−1

{
∪

α1∈α1
j

(1− (1− g(α1))
λ1

}
	 g−1

{
∪

α1∈α1
j

(1 −(1− g(α1))
λ2

})
=

(
f−1(1− (1− t

g )
λ1−λ2 ), g−1

{
∪

α1∈α1
j

(1− (1 −g(α1))
λ1−λ2)

})
= ( λ1 	 λ2)H

11. Hλ1 ⊗ Hλ2

=

(
f−1( f (st))λ1 ⊗ f−1( f (st))λ2 , g−1

{
∪

α1∈α1
j

(g(α1))
λ1

}
⊗ g−1

{
∪

α1∈α1
j

(g(α1))
λ2

})

=

(
f−1( f (st))λ1+λ2 , g−1

{
∪

α1∈α1
j

(g(α1))
λ1+λ2

})
= Hλ1+λ2

12. Hλ1 � Hλ2 =

=

(
f−1 f (st))λ1 � f−1( f (st))λ2 , g−1

{
∪

α1∈α1
j

(g(α1))
λ1

}
� g−1

{
∪

α1∈α1
j

(g(α1))
λ2

})

=

(
f−1( f (st))λ1−λ2 , g−1

{
∪

α1∈α1
j

(g(α1))
λ1−λ2

})
= Hλ1−λ2

Definition 13. Let {H1, H2, ldotsHn} be a set of n H2TLSs where Hn = (stn , {αn
l }) for l =

1, 2, . . . , #{αn
l } and w = (w1, w2, . . . , wn)t is the weight vector with wk ∈ [0, 1] such that
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∑n
k=1 wk = 1, then the hesitant 2-tuple linguistic fuzzy weighted average (H2TLWA) operator is

defined as

H2TLWA(H1, H2, . . . , Hn) =

(
n
⊕

k=1
wkstk ,

n

∑
k=1

(wk �
{

αk
l

}
)

)

=

(
f−1(1−Πn

k=1(1− f (stk ))
wk ), g−1

(
∪βk∈g(ak)

k=1,2,...,n

{1− Πn
k=1(1− βk)

wk

}))
.

Definition 14. Let {H1, H2, ldotsHn} be a set of H2TLSs where Hn = (stn , {αn
l }) for

l = 1, 2, . . . , #{αn
l } and w = (w1, w2, . . . , wn)t is the weight vector with wk ∈ [0, 1] such

that ∑n
k=1 wk = 1, then the Boneferri mean operator for H2TLSs is defined as

H2TLBMp,q(H1, H2, . . . , Hn) =

 f−1

 1
n(n− 1)

n
⊕

j,k=1
j 6=k

( f (stj))
p

( f (stk ))
q) 1

p+q , ∪
αi∈Hi

i=1,2,...,n

g−1

 1
n(n− 1)

n

∑
j,k=1

j 6=k

(g
{

αj
}
)p.(g{αk})q


1

p+q


and the geometric Bonferroni mean as

H2TLGBMp,q(H1, H2, . . . , Hn) =

(
f−1

(
1

p + q
n
⊗

j=1

(
p f (stj)⊕

(
n
⊗

j 6=k

(
q f (stk )

) 1
n−1

))) 1
n

, ∪
αi∈Hi

i=1,2,...,n

g−1

(
1

p + q
n
⊗

j=1

(
pg
{

αj
}
⊕

(
n
Π
j 6=k

(qg{αk})
1

n−1

))) 1
n
)

Theorem 2. Let p, q ≥ 0 with p + q 6= 0, H = {H1, H2, . . . , Hn} be set of n H2TLSs as
mentioned previously. Then, some characteristics of the H2TLBM operator are shown below.

1. Commutativity: If H′ = {H′1, H′2, . . . , H′n} is any permutation of H = {H1, H2, . . . , Hn}
then:

H2TLBMp,q(H′1, H′2, . . . , H′n) = H2TLBMp,q(H1, H2, . . . , Hn).

Proof. Since H′ is any permutation of H, then:
H2TLBMp,q(H1, H2, . . . , Hn)

=



f−1

 1
n(n−1)

n
⊕

j,k=1
j 6=k

( f (stj))
p.( f (stk ))

q


1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

 1
n(n−1)

n
∑

j,k=1
j 6=k

(g
{

αj
}
)p.(g{αk})q


1

p+q


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=



f−1

 1
n(n−1)

n
⊕

j,k=1
j 6=k

( f (s′tj
))p.( f (s′tk

))q


1

p+q

,

∪
α′i∈H′i

i=1,2,...,n

g−1

 1
n(n−1)

n
∑

j,k=1
j 6=k

(g
{

α′j

}
)p.(g

{
α′k
}
)q


1

p+q



2. Boundedness: Let H = {H1, H2, . . . , Hn} be a set of n H2TLSs where Hn = (stn , {αn
l })

for l = 1, 2, . . . , #{αn
l }, then:

min H � H2TLBMp,q(H1, H2, . . . , Hn) � max H

where Hn = (stn , min(αn
l )) and Hn = (stn , max(αn

l )) for l = 1, 2, . . . , #{αn}}.

Proof. Due to H � Hi � H for i ∈ {1, 2, . . . , n}, we can obtain:

min{H} �

 f−1

 1
n(n− 1)

n
⊕

j,k=1
j 6=k

( f (stj))
p.( f (stk ))

q


1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

 1
n(n− 1)

n

∑
j,k=1

j 6=k

(g
{

min(αj)
}
)p.(g{min(αk)})q


1

p+q


�

 f−1

 1
n(n− 1)

n
⊕

j,k=1
j 6=k

( f (stj))
p.( f (stk ))

q


1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

 1
n(n− 1)

n

∑
j,k=1

j 6=k

(g
{

αj
}
)p.(g{αk})q


1

p+q


�

 f−1

 1
n(n− 1)

n
⊕

j,k=1
j 6=k

( f (stj))
p.( f (stk ))

q


1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

 1
n(n− 1)

n

∑
j,k=1

j 6=k

(g
{

max(αj)
}
)p.(g{max(αk)})q


1

p+q


� max{
_
H}
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3. Monotonicity: Let H = {H1, H2, . . . , Hn} and H′ = {H′1, H′2, . . . , H′n} be two sets of n
H2TLSs, that satisfy Hi � H′i for i ∈ {1, 2, . . . , n}, then:

H2TLBMp,q(H1, H2, . . . , Hn) �

H2TLBMp,q(H′1, H′2, . . . , H′n).

Proof. If H and H′ satisfy Hi � H′i for i ∈ {1, 2, . . . , n}, it implies that:

H2TLBMp,q(H1, H2, . . . , Hn)

=



f−1

 1
n(n−1)

n
⊕

j,k=1
j 6=k

( f (stj))
p.( f (stk ))

q


1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

 1
n(n−1)

n
∑

j,k=1
j 6=k

(g
{

αj
}
)p.(g{αk})q


1

p+q



�



f−1

 1
n(n−1)

n
⊕

j,k=1
j 6=k

( f (st′j
))p.( f (st′k

))q


1

p+q

,

∪
α′i∈H′i

i=1,2,...,n

g−1

 1
n(n−1)

n
∑

j,k=1
j 6=k

(g
{

α′j

}
)p.(g

{
α′k
}
)q


1

p+q



= H2TLBMp,q(H′1, H′2, . . . , H′n)

Definition 15. Let {H1, H2, ldotsHn} be a set of H2TLSs where Hn = (stn , {αn
l }) for

l = 1, 2, . . . , #{αn
l }, then the Heronian mean for H2TLSs using novel operational laws is de-

fined as
H2TLHMp,q(H1, H2, . . . , Hn)

=


f−1

(
2

n(n+1)

n
⊕

j,k=1

(
( f (stj))

p ⊗ ( f (stk ))
q
)) 1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

(
2

n(n+1)

n

∑
j,k=1

((g
{

αj
}
)p ⊗ (g{αk})q)

) 1
p+q


and the geometric Heronian mean for H2TLSs as

H2TLGHMp,q(H1, H2, . . . , Hn)

=


f−1

(
1

p+q
n
⊗

i=1,j=i

(
p f (sti )⊕ q f (stj)

) 2
n(n+1)

)
,

∪
αi∈Hi

i=1,2,...,n

g−1
(

1
p+q

n
Π

i=1,j=i

(
pg{αi} ⊕ qg

{
αj
}) 2

n(n+1)

)


Theorem 3. Let p, q ≥ 0 with p + q 6= 0, H = {H1, H2, . . . , Hn} be a set of n H2TLSs. Then,
some characteristics of the H2TLHM operator are shown below.
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1. Commutativity: If H′ = {H′1, H′2, . . . , H′n} is any permutation of H = {H1, H2, . . . , Hn},
then

H2TLHMp,q(H′1, H′2, . . . , H′n) = H2TLHMp,q(H1, H2, . . . , Hn).

Proof. Since H′ is any permutation of H, therefore, we can obtain:

H2TLHMp,q(H1, H2, . . . , Hn)

=


f−1

(
2

n(n+1)

n
⊕

j,k=1

(
( f (stj))

p ⊗ ( f (stk ))
q
)) 1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

(
2

n(n+1)

n

∑
j,k=1

(
(g
{

αj
}
)p ⊗ (g{αk})q)) 1

p+q



=


f−1

(
2

n(n+1)

n
⊕

j,k=1

(
( f (st′j

))p ⊗ ( f (st′k
))q
)) 1

p+q

,

∪
α′i∈H′i

i=1,2,...,n

g−1

(
2

n(n+1)

n

∑
j,k=1

(
(g
{

α′j

}
)p ⊗ (g

{
α′k
}
)q
)) 1

p+q


= H2TLHMp,q(H′1, H′2, . . . , H′n)

2. Boundedness: Let H = {H1, H2, . . . , Hn} be set of n H2TLSs, then:

min H � H2TLHMp,q(H1, H2, . . . , Hn) � max H,

where Hn = (stn , min(αn
l )) and Hn = (stn , max(αn

l )) for l = 1, 2, . . . , #{αn}}.

Proof. Due to H � Hi � H for i ∈ {1, 2, . . . , n}, we can obtain:

min H

�

 f−1

(
2

n(n + 1)
n
⊕

j,k=1

(
( f (stj))

p ⊗ ( f (stk ))
q
)) 1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

(
2

n(n + 1)

n

∑
j,k=1

(g(min(αj))
p ⊗ (g(min(αk))

q

) 1
p+q


�

 f−1

(
2

n(n + 1)
n
⊕

j,k=1

(
( f (stj))

p ⊗ ( f (stk ))
q
)) 1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

(
2

n(n + 1)

n

∑
j,k=1

((g(αj))
p ⊗ (g(αk))

q)

) 1
p+q


�

 ∪
αi∈Hi

i=1,2,...,n

g−1

(
2

n(n + 1)

n

∑
j,k=1

(g(max(αj))
p ⊗ (g(max(αk))

q

) 1
p+q


� max H
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3. Monotonicity: Let H = {H1, H2, . . . , Hn} and H′ = {H′1, H′2, . . . , H′n} be two sets of n
H2TLSs, that satisfy Hi � H′i for i ∈ {1, 2, . . . , n}, then:

H2TLHMp,q(H1, H2, . . . , Hn) � H2TLHMp,q(H′1, H′2, . . . , H′n).

Proof. If H and H′ satisfy Hi � H′i for i ∈ {1, 2, . . . , n}, then:

H2TLHMp,q(H1, H2, . . . , Hn)

=


f−1

(
2

n(n+1)

n
⊕

j,k=1

(
( f (stj))

p ⊗ ( f (stk ))
q
)) 1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

(
2

n(n+1)

n

∑
j,k=1

(
(g
{

αj
}
)p ⊗ (g{αk})q)) 1

p+q



�


f−1

(
2

n(n+1)

n
⊕

j,k=1

(
( f (st′j

))p ⊗ ( f (st′k
))q
)) 1

p+q

,

∪
α′i∈H′i

i=1,2,...,n

g−1

(
2

n(n+1)

n

∑
j,k=1

(
(g
{

α′j

}
)p ⊗ (g

{
α′k
}
)q
)) 1

p+q


= H2TLHMp,q(H′1, H′2, . . . , H′n)

4. Let H = {H1, H2, . . . , Hn} be a set of n H2TLSs, then we can get
H2TLHMp,q(H1, H2, . . . , Hn) = H2TLHMq,p(H1, H2, . . . , Hn).

Proof. From the Definition 15, we can obtain:

H2TLHMp,q(H1, H2, . . . , Hn)

=


f−1

(
2

n(n+1)

n
⊕

j,k=1

(
( f (stj))

p ⊗ ( f (stk ))
q
)) 1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

(
2

n(n+1)

n

∑
j,k=1

(
(g
{

αj
}
)p ⊗ (g{αk})q)) 1

p+q



=


f−1

(
2

n(n+1)

n
⊕

j,k=1

(
( f (stk ))

q ⊗ ( f (stj))
p
)) 1

p+q

,

∪
αi∈Hi

i=1,2,...,n

g−1

(
2

n(n+1)

n

∑
j,k=1

(
(g{αk})q ⊗ (g

{
αj
}
)p)) 1

p+q


= H2TLHMq,p(H1, H2, . . . , Hn)

An Approach to MCGDM Using H2TLEs

Here, we construct a MCGDM approach with H2TL information. For an MCGDM
problem with H2TLSs, let {A1, . . . , Am} indicates a set of alternatives and {C1, . . . , Cn}
indicates a set of criteria. Let the criteria weight vector be given by w = (w1, . . . , wn)

t where

wk ∈ [0, 1], (k = 1, . . . , n),
n
∑

k=1
wl = 1. Let {D1, . . . , Dp} be a set of DMs with a weight vector

ω = (ω1, . . . , ωp), where ωl ∈ [0, 1], (l = 1, . . . , p),
p
∑

l=1
ωl = 1. Let M(l) = [r(l)ij ]m×n, (l =
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1, . . . , p) be p evaluation matrices provided by DMs, where r(l)ij = (s(l)αij , {α
(l)
ij }) is an H2TLE

indicating the preference value of alternative Ai(i = 1, . . . , m) under the criteria Cj(j =
1, . . . , n). The proposed MCGDM approach can be categorized as follows (see Figure 1):

Step 1: Establish the H2TL decision matrices M(l) = [r(l)ij ]m×n with the help of DMs
Dl(l = 1, . . . , p);

Step 2: Use the novel operational laws to aggregate all the decision matrices M(l)(l =
1, . . . , p) provided by the DMs to get the aggregated matrix M = [rij]m×n;

Step 3: Aggregate rij(j = 1, . . . , n) to obtain the collective comprehensive selection
value ri(i = 1, . . . , m) for each alternative Ai(i = 1, . . . , m) using H2TLWA,
H2TLBM, H2TLGBM, H2TLHM and H2TLGHM operators;

Step 4: Rank the comprehensive selection value ri(i = 1, . . . , m) corresponding
to each alternative Ai(i = 1, . . . , m) by computing the score values using
Equation (1) and choose the best alternative Ai, where 1 ≤ i ≤ m.

Figure 1. Framework containing the proposed MCGDM approach with H2TL information.

4. Numerical Example on an Investment Problem

Suppose a finance house is in place that needs to invest capital in the best way
possible [47–49]. The money is to be invested in five possible areas: a refrigerator firm (A1);
a food corporation (A2); a construction firm (A3); a film industry (A4); and a software
organization (A5). Suppose that three decision makers/directors Di(i = 1, 2, 3) establish
a committee to evaluate the four attributes Bi(i = 1, 2, 3, 4) with respect to the following
criteria: growth factor (B1); tax problems (B2); risk issue (B3); and social impact (B4).
Let w = (0.2, 0.4, 0.15, 0.25)t be the criteria weights. Suppose the three DMs with weight
vector ω = (0.3, 0.5, 0.2) provide their opinions about the performance of alternatives
A1, A2, A3 and A4 with respect to the criteria C1, C2, C3, C4 and C5 using the linguistic
term set S. Let M(1), M(2) and M(3) be the hesitant 2-tuple linguistic decision matrices
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containing the individual preferences of the DMs D1, D2 and D3 in the form of hesitant
2-tuple linguistic information. A predefined LTS used by the DMs during the assessments
of all alternatives under the given criteria is given as S = {s0 = Extremely Poor, s1 = Very
Poor, s2 = Medium, s3 = Good, s4 = Very Good, s5 = Extremely Good}. The hesitant
2-tuple linguistic decision matrices, M(1), M(2) and M(3), provided by the DMs can be seen
in Tables 1–3.

Table 1. The decision matrix M(1).

B1 B2 B3 B4

A1 (s3, {−0.3, 0.2}) (s4, {0.2, 0.3, 0.4}) (s2, {0.1, 0.3}) (s2, {0.1})
A2 (s2, {0, 0.2, 0.1}) (s3, {−0.1,−0.2}) (s3, {−0.1, 0}) (s4, {0.1, 0.2})
A3 (s4, {0.1,−0.3, 0.2}) (s3, {−0.2}) (s5, {−0.2, 0, 0.4}) (s2, {−0.3})
A4 (s5, {−0.1, 0, 0.1}) (s2, {0}) (s2, {−0.5}) (s3, {−0.4,−0.2})
A5 (s6, {−0.4,−0.3, 0.1}) (s2, {−0.1, 0.2, 0.3}) (s1, {−0.4,−0.2}) (s4, {−0.4})

Table 2. The decision matrix M(2).

B1 B2 B3 B4

A1 (s2, {−0.3,−0.1}) (s5, {−0.1, 0, 0.1}) (s1, {−0.2}) (s3, {−0.2,−0.1, 0})
A2 (s1, {0.4}) (s2, {0.2}) (s4, {0.3, 0.4}) (s5, {−0.1})
A3 (s3, {0, 0.3}) (s2, {−0.1, 0.2}) (s4, {0.1}) (s1, {−0.2,−0.3, 0})
A4 (s6, {0.2}) (s3, {−0.4, 0.3}) (s3, {0.2, 0.4}) (s4, {0.3})
A5 (s5, {−0.2, 0.1}) (s3, {0.1}) (s2, {−0.1, 0}) (s5, {−0.3,−0.1})

Table 3. The decision matrix M(3).

B1 B2 B3 B4

A1 (s3, {−0.5, 0.1, 0.2}) (s5, {0.2, 0.3}) (s2, {0.1, 0.2}) (s1, {0, 0.1, 0.2})
A2 (s3, {−0.4,−0.1}) (s2, {0, 0.2, 0.4}) (s5, {−0.2}) (s3, {−0.1,−0.2})
A3 (s2, {−0.2, 0, 0.1}) (s3, {−0.05, 0.1}) (s4, {0, 0.1}) (s1, {0})
A4 (s4, {−0.3,−0.1}) (s4, {0, 0.2, 0.4}) (s2, {0.1, 0.2, 0.3}) (s3, {−0.1, 0.2, 0.3})
A5 (s5, {−0.1}) (s2, {−0.1,−0.2, 0}) (s3, {0.4}) (s6, {−0.05})

By using the H2TLWA operator, the decision matrices M(l)(l = 1, . . . , p) provided by
the DMs are aggregated to obtain the collective evaluation matrix M = [rij]m×n which is
shown in Table 4.

Table 4. The aggregated decision matrix M.

B1 B2

A1 (s5, {−0.3,−0.2, 0.1, 0.2, 0.3, 0.4}) (s5.9, {0.3, 0.4, 0.5})
A2 (s4.3, {0.05, 0.2, 0.3, 0.5}) (s4.6, {0.2, 0.3, 0.4})
A3 (s5.3, {−0.1, 0.1, 0.2, 0.3, 0.5}) (s5, {0.08, 0.2, 0.3})
A4 (s6, {0.1, 0.2, 0.3, 0.4}) (s5.3, {0.05, 0.3, 0.4, 0.5})
A5 (s6, {−0.2,−0.1, 0.1, 0.2, 0.3, 0.4}) (s4.6, {0.08, 0.2, 0.3, 0.4})

B3 B4

A1 (s3.7, {0.2, 0.3, 0.4}) (s4.3, {0.2, 0.3, 0.4})
A2 (s5.8, {0.08, 0.2, 0.4, 0.5}) (s5.8, {0.2, 0.3})
A3 (s5.8, {0.2, 0.3, 0.4}) (s3.2, {−0.2,−0.1, 0.1})
A4 (s4.6, {0.1, 0.2, 0.3, 0.4}) (s5.5, {−0.1, 0.1, 0.3, 0.4})
A5 (s4.3, {−0.1, 0.1, 0.2, 0.4}) (s6, {−0.2,−0.1, 0.01})
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By using the H2TLWA operator, we aggregate rij(j = 1, . . . , 4) to obtain the collective
overall preference value ri(i = 1, . . . , 5) for each alternative Ai(i = 1, . . . , 5). The score
values of the preference value of each alternative Ai(i = 1, . . . , 5) are then calculated to
obtain the final ranking of alternatives which can be seen in Table 5. The ranking order
of alternatives is A4 > A5 > A2 > A1 > A3, which shows that the best and preferable
alternative is A4.

Table 5. Ranking of alternatives by using H2TLWA operator.

Alternatives H2TLWA(H1, H2, . . . , Hn) Score Ranking Order

A1 (s5.2, {0.1, 0.2, 0.3, 0.4, 0.5}) 5.50 4
A2 (s5.3, {0.2, 0.3, 0.4, 0.5}) 5.65 3
A3 (s5.1, {−0.01,−0.1, 0.1, 0.2, 0.3, 0.5}) 5.26 5
A4 (s6, {0.1, 0.2, 0.3, 0.4, 0.5}) 6.30 1
A5 (s6, {−0.001,−0.01,−0.02,−0.1, 0.1, 0.2, 0.3, 0.4}) 6.11 2

Now, by using the H2TLBM and H2TLGBM operators, rij(j = 1, . . . , 4) are aggre-
gated again to obtain the collective overall preference value ri(i = 1, . . . , 5) for each alter-
native Ai(i = 1, . . . , 5). After getting the score values of each alternative Ai(i = 1, . . . , 5),
the final ranking of alternatives are obtained for different values of p and q which can be
seen in Tables 6–9.

Table 6. Ranking of alternatives by using H2TLBM operator when p = q = 1.

Alternatives H2TLBM(H1, H2, . . . , Hn) Score Ranking Order

A1 (s4.7, {0.1, 0.2, 0.5}) 4.96 5
A2 (s5.2, {0.2, 0.5}) 5.55 3
A3 (s4.9, {−0.02, 0.01, 0.03, 0.06, 0.5}) 5.02 4
A4 (s5.4, {0.03, 0.06, 0.5}) 5.59 2
A5 (s6, {−0.08, 0.5}) 6.01 1

Table 7. Ranking of alternatives by using H2TLGBM operator when p = q = 1.

Alternatives H2TLGBM(H1, H2, . . . , Hn) Score Ranking Order

A1 (s4.77, {0.1, 0.2, 0.3, 0.4, 0.5}) 5.07 5
A2 (s5.16, {0.1, 0.2, 0.3, 0.4, 0.5}) 5.46 2
A3 (s4.91, {0.1, 0.2, 0.3}) 5.11 4
A4 (s5.40, {0.1, 0.2, 0.3, 0.4, 0.5}) 5.70 1
A5 (s5.33, {−0.1, 0, 0.1, 0.2, 0.3}) 5.41 3

Table 8. Ranking of alternatives by using H2TLGBM operator when p = 1, q = 2.

Alternatives H2TLGBM(H1, H2, . . . , Hn) Score Ranking Order

A1 (s4.65, {0.1, 0.2, 0.3, 0.5}) 4.93 5
A2 (s5.04, {0.2, 0.3, 0.5}) 5.37 2
A3 (s4.75, {0, 0.1, 0.2, 0.3, 0.5}) 4.97 4
A4 (s5.31, {0, 0.1, 0.2, 0.3, 0.5}) 5.53 1
A5 (s5.14, {−0.1, 0, 0.1, 0.2, 0.3, 0.5}) 5.31 3
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Table 9. Ranking of alternatives by using H2TLGBM operator when p = 2, q = 1.

Alternatives H2TLGBM(H1, H2, . . . , Hn) Score Ranking Order

A1 (s4.64, {0.2, 0.3, 0.4, 0.5}) 4.99 5
A2 (s5.03, {0.3, 0.4, 0.5}) 5.43 2
A3 (s4.76, {0.1, 0.2, 0.3, 0.4, 0.5}) 5.06 4
A4 (s5.30, {0.2, 0.3, 0.4, 0.5}) 5.65 1
A5 (s5.12, {0, 0.1, 0.2, 0.3, 0.4}) 5.32 3

Similarly, by using the H2TLHM and H2TLGHM operators, the final ranking of
alternatives for different values of p and q was obtained and given using Tables 10–13.

Table 10. Ranking of alternatives by using H2TLHM operator when p = q = 1.

Alternatives H2TLHM(H1, H2, . . . , Hn) Score Ranking Order

A1 (s5, {0.15, 0.16, 0.18, 0.2, 0.5}) 5.24 5
A2 (s5.39, {0.18, 0.2, 0.5}) 5.68 3
A3 (s5.15, {0.02, 0.04, 0.06, 0.1, 0.5}) 5.29 4
A4 (s5.58, {0.06, 0.1, 0.5}) 5.80 2
A5 (s6, {−0.04, 0.5}) 6.23 1

Table 11. Ranking of alternatives by using H2TLGHM operator when p = q = 1.

Alternatives H2TLGHM(H1, H2, . . . , Hn) Score Ranking Order

A1 (s4.65, {0.1, 0.2, 0.3, 0.4, 0.5}) 4.95 4
A2 (s5.04, {0.1, 0.2, 0.3, 0.4, 0.5}) 5.34 2
A3 (s4.69, {0.1, 0.2, 0.3}) 4.89 5
A4 (s5.29, {0.1, 0.2, 0.3, 0.4, 0.5}) 5.59 1
A5 (s5.13, {−0.1, 0, 0.1, 0.2, 0.3}) 5.23 3

Table 12. Ranking of alternatives by using H2TLGHM operator when p = 1, q = 2.

Alternatives H2TLGHM(H1, H2, . . . , Hn) Score Ranking Order

A1 (s4.51, {0.1, 0.2, 0.3, 0.5}) 4.78 4
A2 (s4.95, {0.2, 0.3, 0.5}) 5.28 2
A3 (s4.39, {0, 0.1, 0.2, 0.3}) 4.54 5
A4 (s5.18, {0, 0.1, 0.2, 0.3, 0.5}) 5.40 1
A5 (s4.94, {−0.1, 0, 0.1, 0.2, 0.3}) 5.04 3

Table 13. Ranking of alternatives by using H2TLGHM operator when p = 2, q = 1.

Alternatives H2TLGHM(H1, H2, . . . , Hn) Score Ranking Order

A1 (s4.54, {0, 0.1, 0.2, 0.3, 0.5}) 4.76 4
A2 (s4.87, {0.1, 0.2, 0.3, 0.5}) 5.15 2
A3 (s4.55, {−0.1, 0, 0.1, 0.2}) 4.60 5
A4 (s5.18, {0, 0.1, 0.2, 0.3, 0.5}) 5.40 1
A5 (s4.96, {−0.1, 0, 0.1, 0.2}) 5.01 3

Comparison Analysis

We solved an MCGDM problem in the H2TL environment using novel operations and
proposed aggregation operators. Firstly, we see that the ranking order of the alternatives
by utilizing the H2TLWA operator is A4 > A5 > A2 > A1 > A3 (see Table 5), while
the ranking sequence of the alternatives is A5 > A4 > A2 > A3 > A1 by utilizing
the proposed H2TBM and H2TLHM operators for p = q = 1 (see Tables 6 and 10).
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Furthermore, the ranking order of the alternatives by utilizing the H2TLGBM operator
is A4 > A2 > A5 > A3 > A1 for various estimations of p and q with the exception
of p = q = 1 (see Tables 7–9) while the ranking order is A4 > A2 > A5 > A1 > A3
by utilizing the H2TLGHM operator for various p and q aside from p = q = 1 (see
Tables 11–13). We can observe little change in the ranking order of A4 and A2 in three
previously mentioned operators, for example, H2TLWA, H2TBM and H2TLHM operators,
however, the general positioning of alternatives is steady. We can likewise observe a little
change in the ranking order of A4 and A5 by utilizing H2TLGBM and H2TLGHM operators
where the best option is A4 trailed by the second best option A5. The option A5 shows up
at the third in the ranking order using H2TLWA operator.

To show advantages of the proposed method, we further compared the proposed
method with existing methods [47–49]. Beg and Rashid [47] utilized the TOPSIS method to
solve the same problem while Faizi et al. [48] used the outranking approach based on the
ELECTRE method with H2TLSs. Faizi et al. [49] further solved the same problem with the
help of the TODIM approach under a hesitant 2-tuple linguistic environment. The detailed
comparison results are described in Table 14. Table 14 also presents reference rankings
(r1)–(r3) and rankings calculated by using the proposed approaches (a)–(h). The similarity
coefficients between these rankings are shown in Figure 2 (between references) and Figure 3
(references and proposed rankings). A comparison of these coefficients shows that the
proposed approaches return similar rankings as in the reference case. The differences may
come from the different operational approach.

Table 14. Results for the ranking of the alternatives.

(r1)—The TOPSIS method (Beg and Rashid [47]) A5 � A4 � A2 � A1 � A3
(r2)—The Outranking approach (Faizi et al. [48]) A4 � A5 � A1 � A2, A3
(r3)—The TODIM method (Faizi et al. [49]) A4 � A5 � A1 � A2 � A3

Proposed approach

(a)—H2TLWA operator A4 � A3 � A5 � A1 � A2
(b)—H2TLBM operator for p = q = 1 A5 � A3 � A4 � A2 � A1
(c)—H2TLGBM operator for p = q = 1 A5 � A2 � A4 � A1 � A3
(d)—H2TLGBM operator for p = 1, q = 2 A5 � A2 � A4 � A1 � A3
(e)—H2TLGBM operator for p = 2, q = 1 A5 � A2 � A4 � A1 � A3
( f )—H2TLHM operator for p = q = 1 A5 � A3 � A4 � A2 � A1
(g)—H2TLGHM operator for p = q = 1 A4 � A2 � A5 � A1 � A3
(h)—H2TLGHM operator for p = 1, q = 2 A4 � A2 � A5 � A1 � A3
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Figure 2. Comparison of rw and WS similarity coefficients [55] for reference rankings (r1)–(r3).
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Figure 3. Comparison of rw and WS similarity coefficients [55] between reference rankings (r1)–(r3)

and rankings obtained by using proposed operators (a–h).

From Table 14, we can observe that the best alternative (A4 or A5) mostly maintains
the position on top regardless of which technique is used, i.e., TOPSIS, outranking method,
TODIM method or the proposed approach. However, a little bit of variation in the ranking
order of alternatives is also observed in Table 14. The reason behind these little changes
is that, there are some absurd parts of existing operational laws while calculating the
multiplications of real numbers of the interval [0, g] and symbolic translation parameters
of linguistic variables of LTS. In any case, in spite of this, we can say that the proposed
operators are successful and practical. Furthermore, the current operational laws of lin-
guistic term and the extended linguistic terms at some point result in conflicting outcomes
in light of the fact that their operational values surpass the limits of LTSs. Be that as it
may, the operational values utilizing the proposed operators for H2TLSs do not surpass
the limits during the calculation procedure. Moreover, the computational work is a lot
smaller during the time spent conducting estimations by utilizing these operators. Taking
everything into account, the attributes of the suggested approach are described as follows:

1. Linguistic preference structure along with the symbolic translation are simultane-
ously utilized in the evaluation procedure of alternatives to make assessments un-
der specific criteria. This can portray the fuzziness and uncertainty of DMs all the
more appropriately;

2. The proposed H2TLBM, H2TLHM, H2TLGBM and H2TLGHM operators for
H2TLSs are exceptionally helpful and successful that can be utilized to aggregate
the DMs preferences in MCGDM problems which can exhibit the predominance of the
proposed approach.

3. The proposed operators are suitable for a linguistic variable with the translational
arguments and permits the DMs to have more options while choosing aggregation
techniques utilizing H2TLSs.

5. Conclusions

This paper investigates some novel operational laws for H2TLSs to analyze attributes
in MCGDM, which carries the values of the alternative as H2TLEs. We presented some
hesitant 2-tuple linguistic aggregation operators that are more common and versatile,
namely H2TLBM, H2TLHM, H2TLGBM and H2TLGHM operators. We also analyzed
specific cases and properties related to the established operators. In addition, we proposed
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a method for MCGDM based on H2TBM, H2TLHM, H2TLGBM and H2TLGHM operators
using H2TLS. Finally, the procedure of the developed technique was illustrated with the
help of an example, and the impact of particular parameters p and q is talked about. The es-
sential benefits of our approach over other techniques include its capacity to aggregate
the information in the form of H2TLSs and the ability that the linguistic values do not
surpass the limits of LTSs during the computation. This can keep away from loss of data
and distortion of information that was initially provided by the DMs. Furthermore, we
would diversify the suggested operators into many other uncertain circumstances and
apply them in risk management, supply chain management and cluster analysis in our
future work. The interesting direction can also be a comparison in the field of decision
making and medical diagnosis problems and try to combine them with [56].
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