Multi-Reconstruction from Points Cloud by Using a Modified Vector-Valued Allen–Cahn Equation
Abstract
:1. Introduction
- The first algorithm using a modified vector-valued Allen–Cahn equation for multi-reconstruction from point clouds, which can reconstruct multicomponent surfaces without self-intersections;
- Based on operator splitting techniques, the proposed numerical scheme is simple to implement;
- The algorithm can be straightforwardly applied to a graphics processing unit (GPU), allowing for accelerated implementation that performs many times faster than other central processing units (CPU).
2. Related Work
2.1. Implicit Surface Reconstruction
2.2. Multi-Reconstruction
3. Preliminary: Poisson Surface Reconstruction
4. Methodology
5. Numerical Method
6. Experimental Results
6.1. Basic Mechanism of the Algorithm
6.2. Performance on the Complex Reconstruction
6.3. Multicomponent Surface Reconstruction
6.4. Multi-Reconstruction with Different Density of Point Data
6.5. Parameter Sensitivity Analysis
6.6. Performance of Our Method
6.7. Comparisons with Related Works and Accuracy Test
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shammaa, M.H.; Ohtake, Y.; Suzuki, H. Segmentation of multi-material ct data of mechanical parts for extracting boundary surfaces. Comput. Aided Des. 2010, 42, 118–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Hughes, T.J.; Bajaj, C.L. An automatic 3d mesh generation method for domains with multiple materials. Comput. Methods Appl. Mech. Eng. 2010, 199, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shin, J.; Choi, Y.; Kim, J. Three-dimensional volume reconstruction from slice data using phase-field models. Comput. Vis. Image Underst. 2015, 137, 115–124. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C.O. Three-dimensional volume reconstruction using two-dimensional parallel slices. SIAM J. Imaging Sci. 2019, 12, 1–27. [Google Scholar] [CrossRef]
- Zou, Q. A PDE model for smooth surface reconstruction from 2d parallel slices. IEEE Signal Process. Lett. 2020, 27, 1015–1019. [Google Scholar] [CrossRef]
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry, Cagliari, Sardinia, 26–28 June 2006; Volume 7, pp. 61–70. [Google Scholar]
- Allen, S.M.; Cahn, J.W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 1979, 27, 1085–1095. [Google Scholar] [CrossRef]
- Ilmanen, T. Convergence of the Allen-Cahn equation to brakke’s motion by mean curvature. J. Differ. Geom. 1993, 38, 417–461. [Google Scholar] [CrossRef]
- Li, Y.; Jeong, D.; Kim, H.; Kim, J. Comparison study on the different dynamics between the Allen–Cahn and the Cahn–Hilliard equations. Comput. Math. Appl. 2019, 77, 311–322. [Google Scholar] [CrossRef]
- Long, J.; Luo, C.; Yu, Q.; Li, Y. An unconditional stable compact fourth-order finite difference scheme for three dimensional Allen-Cahn equation. Comput. Math. Appl. 2019, 77, 1042–1054. [Google Scholar] [CrossRef]
- Li, Y.; Kim, J. An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation. Comput. Math. Appl. 2010, 60, 1591–1606. [Google Scholar] [CrossRef] [Green Version]
- Karma, A.; Rappel, W.J. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 1998, 57, 4323. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lee, H.; Kim, J. A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth. J. Cryst. Growth 2011, 321, 176–182. [Google Scholar] [CrossRef]
- Li, Y.; Lee, H.; Kim, J. Phase-field simulations of crystal growth with adaptive mesh refinement. Int. J. Heat Mass Transf. 2012, 55, 7926–7932. [Google Scholar] [CrossRef]
- Beneš, M.; Chalupeckỳ, V.; Mikula, K. Geometrical image segmentation by the Allen–Cahn equation. Appl. Numer. Math. 2004, 51, 187–205. [Google Scholar] [CrossRef]
- Esedog, S.; Tsai, Y.H.R. Threshold dynamics for the piecewise constant Mumford—Shah functional. J. Comput. Phys. 2006, 211, 367–384. [Google Scholar] [CrossRef] [Green Version]
- Kay, D.A.; Tomasi, A. Color image segmentation by the vector-valued Allen–Cahn phase-field model: A multigrid solution. IEEE Trans. Image Process. 2009, 18, 2330–2339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Kim, J. Multiphase image segmentation using a phase-field model. Comput. Math. Appl. 2011, 62, 737–745. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Guo, S. Triply periodic minimal surface using a modified Allen—Cahn equation. Appl. Math. Comput. 2017, 295, 84–94. [Google Scholar] [CrossRef]
- Li, Y.; Xia, Q.; Yoon, S.; Lee, C.; Lu, B.; Kim, J. A simple and efficient volume merging method for triply periodic minimal structure. Comput. Phys. Commun. 2021, 264, 107956. [Google Scholar] [CrossRef]
- Li, Y.; Lee, D.; Lee, C.; Lee, J.; Lee, S.; Kim, J.; Ahn, S.; Kim, J. Surface embedding narrow volume reconstruction from unorganized points. Comput. Vis. Image Underst. 2014, 121, 100–107. [Google Scholar] [CrossRef]
- Li, Y.; Kim, J. Fast and efficient narrow volume reconstruction from scattered data. Pattern Recognit. 2015, 48, 4057–4069. [Google Scholar] [CrossRef]
- Li, Y.; Lan, S.; Liu, X.; Lu, B.; Wang, L. An efficient volume repairing method by using a modified Allen-Cahn equation. Pattern Recognit. 2020, 107, 107478. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, K.; Xia, B.; Li, Y. First and second order unconditionally energy stable schemes for topology optimization based on phase field method. Appl. Math. Comput. 2021, 405, 126267. [Google Scholar]
- Tang, Y.; Feng, J. Multi-scale surface reconstruction based on a curvature-adaptive signed distance field. Comput. Graph. 2018, 70, 28–38. [Google Scholar] [CrossRef]
- Morel, J.; Bac, A.; Véga, C. Surface reconstruction of incomplete datasets: A novel poisson surface approach based on csrbf. Comput. Graph. 2018, 74, 44–55. [Google Scholar] [CrossRef]
- Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface reconstruction from unorganized points. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 1 July 1992; pp. 71–78. [Google Scholar]
- Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C. Reconstruction and representation of 3d objects with radial basis functions. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; pp. 67–76. [Google Scholar]
- Ohtake, Y.; Belyaev, A.; Alexa, M.; Turk, G.; Seidel, H.P. Multi-level partition of unity implicits. In Proceedings of the ACM SIGGRAPH 2003 Papers, Los Angeles, CA, USA, 1 July 2003; p. 173-es. [Google Scholar]
- Manson, J.; Petrova, G.; Schaefer, S. Streaming surface reconstruction using wavelets. In Computer Graphics Forum; Blackwell Publishing Ltd.: Oxford, UK, 2008; Volume 27, pp. 1411–1420. [Google Scholar]
- Kazhdan, M.; Hoppe, H. Screened poisson surface reconstruction. ACM Trans. Graph. 2013, 32, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Eliasof, M.; Sharf, A.; Treister, E. Multimodal 3D shape reconstruction under calibration uncertainty using parametric level set methods. SIAM J. Imaging Sci. 2020, 13, 265–290. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Dyadechko, V.; Shashkov, M. Moment-of-Fluid Interface Reconstruction. Technical Report; Los Alamos National Laboratory (LA-UR-05-7571). 2005. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.7998&rep=rep1&type=pdf (accessed on 29 April 2021).
- Dyadechko, V.; Shashkov, M. Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 2008, 227, 5361–5384. [Google Scholar] [CrossRef]
- Ahn, H.T.; Shashkov, M. Multi-material interface reconstruction on generalized polyhedral meshes. J. Comput. Phys. 2007, 226, 2096–2132. [Google Scholar] [CrossRef]
- Lemoine, A.; Glockner, S.; Breil, J. Moment-of-fluid analytic reconstruction on 2D cartesian grids. J. Comput. Phys. 2017, 328, 131–139. [Google Scholar] [CrossRef]
- Kikinzon, E.; Shashkov, M.; Garimella, R. Establishing mesh topology in multi-material cells: Enabling technology for robust and accurate multi-material simulations. Comput. Fluids 2018, 172, 251–263. [Google Scholar] [CrossRef]
- Yuan, Z.; Yu, Y.; Wang, W. Object-space multiphase implicit functions. ACM Trans. Graph. 2012, 31, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, J. Resolving topology ambiguity for multiple-material domains. Comput. Methods Appl. Mech. Eng. 2012, 247, 166–178. [Google Scholar] [CrossRef]
- Da, F.; Batty, C.; Grinspun, E. Multimaterial mesh-based surface tracking. ACM Trans. Graph. 2014, 33, 112-1–112-11. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Bajaj, C.; Deasy, J.O.; Low, D.A.; Ju, T. Surface reconstruction from non-parallel curve networks. In Computer Graphics Forum; Blackwell Publishing Ltd.: Oxford, UK, 2008; Volume 27, pp. 155–163. [Google Scholar]
- Bermano, A.; Vaxman, A.; Gotsman, C. Online reconstruction of 3d objects from arbitrary cross-sections. ACM Trans. Graph. 2011, 30, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Zou, M.; Carr, N.; Ju, T. Topology-controlled reconstruction of multi-labelled domains from cross-sections. ACM Trans. Graph. 2017, 36, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, J.; Lu, B.; Jeong, D.; Kim, J. Multicomponent volume reconstruction from slice data using a modified multicomponent Cahn–Hilliard system. Pattern Recognit. 2019, 93, 124–133. [Google Scholar] [CrossRef]
- Li, Y.; Jung, E.; Lee, W.; Lee, H.-G.; Kim, J. Volume preserving immersed boundary methods for two-phase fluid flows. Int. J. Numer. Methods Fluids 2012, 69, 842–858. [Google Scholar] [CrossRef]
- Li, Y.; Yun, A.; Lee, D.; Shin, J.; Jeong, D.; Kim, J. Three-dimensional volume-conserving immersed boundary model for two-phase fluid flows. Comput. Methods Appl. Mech. Eng. 2013, 257, 36–46. [Google Scholar] [CrossRef]
- Olshanskii, M.; Xu, X.; Yushutin, V. A finite element method for Allen–Cahn equation on deforming surface. Comput. Math. Appl. 2021, 90, 148–158. [Google Scholar] [CrossRef]
- Marseglia, G.; Medaglia, C.M.; Ortega, F.A.; Mesa, J.A. Optimal alignments for designing urban transport systems: Application to Seville. Sustainability 2019, 11, 5058. [Google Scholar] [CrossRef] [Green Version]
- Carrese, S.; Cuneo, V.; Nigro, M.; Pizzuti, R.; Ardito, C.F.; Marseglia, G. Optimization of downstream fuel logistics based on road infrastructure conditions and exposure to accident events. Transp. Policy 2019. [Google Scholar] [CrossRef]
- The Stanford Volume Data Archive, Copyright©2000 MarcLevoy. 2001. Available online: http://graphics.stanford.edu/data/3Dscanrep (accessed on 29 April 2021).
- Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2004, 28, 258–267. [Google Scholar] [CrossRef]
- Li, Y.; Choi, J.I.; Kim, J. Multi-component Cahn–Hilliard system with different boundary conditions in complex domains. J. Comput. Phys. 2016, 323, 1–16. [Google Scholar] [CrossRef]
Case | Grid Size | Iteration | CPU (pro) | GPU (pro) |
---|---|---|---|---|
Figure 4 | 24 | 36.2 | 9.8 | |
Figure 5 | 12 | 9.2 | 2.5 | |
Figure 6a | 14 | 9.6 | 3.0 | |
Figure 6b | 18 | 20.6 | 5.6 | |
Figure 6c | 30 | 40.2 | 11.3 | |
Figure 7 | 20 | 515.9 | 133.4 | |
Figure 8 | 13 | 87.7 | 23.2 | |
Figure 9b | 20 | 34.3 | 8.8 | |
Figure 10b | 15 | 22.4 | 5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Shi, Z. Multi-Reconstruction from Points Cloud by Using a Modified Vector-Valued Allen–Cahn Equation. Mathematics 2021, 9, 1326. https://doi.org/10.3390/math9121326
Wang J, Shi Z. Multi-Reconstruction from Points Cloud by Using a Modified Vector-Valued Allen–Cahn Equation. Mathematics. 2021; 9(12):1326. https://doi.org/10.3390/math9121326
Chicago/Turabian StyleWang, Jin, and Zhengyuan Shi. 2021. "Multi-Reconstruction from Points Cloud by Using a Modified Vector-Valued Allen–Cahn Equation" Mathematics 9, no. 12: 1326. https://doi.org/10.3390/math9121326
APA StyleWang, J., & Shi, Z. (2021). Multi-Reconstruction from Points Cloud by Using a Modified Vector-Valued Allen–Cahn Equation. Mathematics, 9(12), 1326. https://doi.org/10.3390/math9121326