On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis
Abstract
:1. Introduction
2. Preliminaries
3. The Monotonicity Results
4. Fractional Forward Difference Initial Value Problem and Mean Value Theorem
4.1. Establishing the Riemann–Liouville case
4.2. Establishing the Caputo Case
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Daftardar-Gejji, V. Fractional Calculus and Fractional Differential Equations; Springer: Singapore, 2019. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin, Germany, 2010. [Google Scholar]
- Wu, J.; Yuan, J.; Gao, W. Analysis of fractional factor system for data transmission in SDN. Appl. Math. Nonlinear Sci. 2019, 4, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Kurt, A.; Şenol, M.; Tasbozan, O.; Chand, M. Two reliable methods for the solution of fractional coupled Burgers’ equation arising as a model of Polydispersive sedimentation. Appl. Math. Nonlinear Sci. 2019, 4, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Touchent, K.A.; Hammouch, Z.; Mekkaoui, T. A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. Appl. Math. Nonlinear Sci. 2020, 5, 35–48. [Google Scholar] [CrossRef]
- Hamasalh, F.K.; Mohammed, P.O. Generalized quartic fractional spline approximation function with applications. IJOPCM 2015, 8, 67–80. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mohammed, P.O.; Guirao, J.L.G.; Hamed, Y.S. Some higher-degree Lacunary fractional splines in the approximation of fractional differential equations. Symmetry 2021, 13, 422. [Google Scholar] [CrossRef]
- Onal, M.; Esen, A. A Crank-Nicolson approximation for the time fractional Burgers equation. Appl. Math. Nonlinear Sci. 2020, 5, 177–184. [Google Scholar] [CrossRef]
- Martinez, M.; Mohammed, P.O.; Valdes, J.E.N. Non-conformable fractional Laplace transform. Kragujev. J. Math. 2022, 46, 341–354. [Google Scholar]
- Wang, Y. The Green’s function of a class of two-term fractional differential equation boundary value problem and its applications. Adv. Differ. Equ. 2020, 2020, 80. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Hong, S. Variable separation method for a nonlinear time fractional partial differential equation with forcing term. J. Comput. Appl. Math. 2018, 339, 297–305. [Google Scholar] [CrossRef]
- Tarasov, V. Handbook of Fractional Calculus with Applications; Applications in Physics, Part A; De Gruyter: Boston, MA, USA; Berlin, Germany, 2019; Volume 4. [Google Scholar]
- Goodrich, C.; Peterson, A. Discrete Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Goodrich, C. Existence of a positive solution to a system of discrete fractional boundary value problems. Appl. Math. Comput. 2011, 217, 4740–4753. [Google Scholar] [CrossRef]
- Atici, F.; Eloe, P. A transform method in discrete fractional calculus. Internat. J. Differ. Equ. 2007, 2, 165–176. [Google Scholar]
- Atici, F.; Eloe, P. Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 2009, 137, 981–989. [Google Scholar] [CrossRef]
- Mohammed, P.O. A generalized uncertain fractional forward difference equations of Riemann-Liouville type. J. Math. Res. 2019, 11, 43–50. [Google Scholar] [CrossRef]
- Abdeljawad, T. On delta and nabla caputo fractional differences and dual identities. Discret. Dyn. Nat. Soc. 2013, 2013, 12. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Jarad, F.; Atangana, A.; Mohammed, P.O. On a new type of fractional difference operators on h-step isolated time scales. J. Fract. Calc. Nonlinear Sys. 2021, 1, 46–74. [Google Scholar]
- Abdeljawad, T. Different type kernel h–fractional differences and their fractional h–sums. Chaos Solit. Fract. 2018, 116, 146–156. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Hamasalh, F.K.; Abdeljawad, T. Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels. Adv. Differ. Equ. 2021, 2021, 213. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems. Math. Meth. Appl. Sci. 2020, 1–26. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Atici, F. On the Definitions of Nabla Fractional Operators. Abstr. Appl. Anal. 2012, 2012, 406757. [Google Scholar] [CrossRef]
- Suwan, I.; Owies, S.; Abdeljawad, T. Monotonicity results for h-discrete fractional operators and application. Adv. Differ. Equ. 2018, 2018, 207. [Google Scholar] [CrossRef]
- Atici, F.; Uyanik, M. Analysis of discrete fractional operators. Appl. Anal. Discr. Math. 2015, 9, 139–149. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.K. On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis. Mathematics 2021, 9, 1303. https://doi.org/10.3390/math9111303
Mohammed PO, Abdeljawad T, Hamasalh FK. On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis. Mathematics. 2021; 9(11):1303. https://doi.org/10.3390/math9111303
Chicago/Turabian StyleMohammed, Pshtiwan Othman, Thabet Abdeljawad, and Faraidun Kadir Hamasalh. 2021. "On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis" Mathematics 9, no. 11: 1303. https://doi.org/10.3390/math9111303
APA StyleMohammed, P. O., Abdeljawad, T., & Hamasalh, F. K. (2021). On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis. Mathematics, 9(11), 1303. https://doi.org/10.3390/math9111303