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Abstract: Monotonicity analysis of delta fractional sums and differences of order υ ∈ (0, 1] on
the time scale h Z are presented in this study. For this analysis, two models of discrete fractional
calculus, Riemann–Liouville and Caputo, are considered. There is a relationship between the delta
Riemann–Liouville fractional h-difference and delta Caputo fractional h-differences, which we find
in this study. Therefore, after we solve one, we can apply the same method to the other one due to
their correlation. We show that y(z) is υ-increasing on Ma+υh,h, where the delta Riemann–Liouville
fractional h-difference of order υ of a function y(z) starting at a + υh is greater or equal to zero, and
then, we can show that y(z) is υ-increasing on Ma+υh,h, where the delta Caputo fractional h-difference

of order υ of a function y(z) starting at a+ υh is greater or equal to− 1
Γ(1−υ)

(z− (a+ υh))(−υ)
h y(a+ υh)

for each z ∈ Ma+h,h. Conversely, if y(a + υ h) is greater or equal to zero and y(z) is increasing on
Ma+υh,h, we show that the delta Riemann–Liouville fractional h-difference of order υ of a function
y(z) starting at a + υh is greater or equal to zero, and consequently, we can show that the delta
Caputo fractional h-difference of order υ of a function y(z) starting at a + υh is greater or equal
to − 1

Γ(1−υ)
(z− (a + υh))(−υ)

h y(a + υh) on Ma,h. Furthermore, we consider some related results for
strictly increasing, decreasing, and strictly decreasing cases. Finally, the fractional forward difference
initial value problems and their solutions are investigated to test the mean value theorem on the time
scale h Z utilizing the monotonicity results.

Keywords: discrete fractional calculus; υ-monotonicity analysis; discrete delta fractional operators;
mean value theorem

1. Introduction

Fractional differentiation and integration have opened many new doors for researchers
in recent decades due to their wide and novel applicability in many fields of science in-
cluding mathematical analysis, technology, and engineering (see [1–7]). Many techniques
are used to deal with these new differential and integral operators; for instance, some
researchers used analytical techniques including Laplace transform, spline interpolation,
Green function, Crank–Nicolson approximation method, method of separation of vari-
able, and many others to derive exact solutions to linear differential or integral equations
(see [8–14]). Using the fixed-point technique, some researchers provided the conditions
under which differential and integral equations have unique solutions. Some others pro-
vided numerical schemes that could be used to solve numerically differential and integral
equations with fractional order. Very recently, fractional differentiation and integration
found application in image processing, where the fractional kernel is used to remove noise
in a given image.

Mathematics 2021, 9, 1303. https://doi.org/10.3390/math9111303 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6837-8075
https://orcid.org/0000-0002-8889-3768
https://orcid.org/0000-0001-8437-9043
https://doi.org/10.3390/math9111303
https://doi.org/10.3390/math9111303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9111303
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9111303?type=check_update&version=1


Mathematics 2021, 9, 1303 2 of 17

On the other hand, fractional operators were employed in fuzzy theory. In fact, so
far, researchers have developed a new class of differential and integral equations called
fuzzy fractional differential and integral equations. This topic is highly regarded as its
applications are found in many fields too. We point out that fractional differential and
integral operators can be represented differently in continuous form, discrete form and
discretized form. Discrete fractional calculus has been the focus of many researchers in
recent years. For recent research on this topic, we advise the readers to refer to [15–27].

The aim of this study is to investigate the υ-monotonicity analysis on h-discrete delta
fractional models in the sense of Riemann–Liouville (RL) and Caputo fractional operators
on the time scale h Z. The remainder of our article is structured as follows. In Section 2, we
provide some notations and make some preparations. In Section 3, the monotonicity results
and some corollaries are presented. In Section 4, some results related to the RL fractional
forward difference equation (RL− FFDE) (Section 4.1) and the Caputo fractional forward
difference equation (Caputo−FFDE) (Section 4.2) are prepared. Additionally, we discuss the
mean value theorem (MVT) later as an application of our monotonicity results. The paper is
concluded in Section 5.

2. Preliminaries

Related concepts regarding the discrete fractional operators used in the current article
are shown in this section.

Definition 1 (see [20–22]). Let f be defined on the time scale h Z; then, the forward h-difference
operator is given by

∆h f (z) =
f (σh(z))− f (z)

h
(
∀ z ∈ Ma,h := {a, a + h, a + 2h, . . .}

)
,

and the backward h-difference operator is given by

∇h f (z) =
f (z)− f (ρh(z))

h
(∀ z ∈ Ma,h),

where σh(z) := z + h and ρh(z) := z− h.

Definition 2 (see [20–22]). Let υ > 0 and f : Ma,h → R with a starting point a. Then, the delta
left RL fractional h-sum of order υ is given by

(
a∆−υ

h f
)
(z) =

1
Γ(υ)

z
h−υ

∑
r= a

h

(
z− σh(rh)

)(υ−1)
h f (rh)h (∀ z ∈ Ma+υ h,h

)
, (1)

and for a function f : b,hM := {. . . , b− 2h, b− h, b} → R with an end point b, the delta right RL
fractional h-sum of order υ is given by

(
h∆−υ

b f
)
(z) =

1
Γ(υ)

b
h

∑
r= z

h +υ

(
rh− σh(z)

)(υ−1)
h f (rh)h (∀ z ∈ b−υ h,hM

)
, (2)

where the h-falling factorial function z(υ)h is defined by

z(υ)h = hυ Γ
( z

h + 1
)

Γ
( z

h + 1− υ
) (∀ z, υ ∈ R

)
, (3)

and we use the convention that division at a pole yields 0.
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Definition 3 (see [22]). For 0 ≤ υ < 1, the delta left RL fractional h-difference of order υ is
defined by(

RL
a∆υ

h f
)
(z) =

(
∆h a∆−(1−υ)

h f
)
(z)

=
1

Γ(1− υ)
∆h

 z
h +υ−1

∑
r= a

h

(
z− σh(rh)

)(−υ)

h f (rh)h

 (∀ z ∈ Ma+(1−υ)h,h
)
,

and the delta right RL fractional h-difference of order υ is defined by(
RL

h∆υ
b f
)
(z) =

(
−∆h h∆−(1−υ)

b f
)
(z)

=
1

Γ(1− υ)
∆h

 b
h

∑
r= z

h +1−υ

(
ρh(z)− rh

)(−υ)

h f (rh)h

 (∀ z ∈ b−(1−υ)h,hM
)
.

Definition 4 (see [22]). For 0 ≤ υ < 1, the delta left Caputo fractional h-difference of order υ is
defined by(

C
a∆υ

h f
)
(z) =

(
a∆−(1−υ)

h ∆h f
)
(z)

=
1

Γ(1− υ)

z
h +υ−1

∑
r= a

h

(
z− σh(rh)

)(−υ)

h (∆h f )(rh)h (∀ z ∈ Ma+(1−υ)h,h
)
,

and the delta right Caputo fractional h-difference of order υ is defined by(
C
h∆υ

b f
)
(z) =

(
h∆−(1−υ)

b (−∆h f )
)
(z)

=
1

Γ(1− υ)

b
h

∑
r= z

h +1−υ

(
ρh(z)− rh

)(−υ)

h (∆h f )(rh)h (∀ z ∈ b−(1−υ)h,hM
)
.

In the following lemma, we show that z(υ)h increases on M0,h.

Lemma 1. Let υ > 0 and h > 0, then ∆h

(
z(υ)h

)
= υ z(υ−1)

h . Moreover, z(υ)h increases on M0,h.

Proof. From Definition 1 and Equation (3), we have

∆h

(
z(υ)h

)
=

(z + h)(υ)h − z(υ)h
h

=
1
h

(
hυ Γ

( z
h + 2

)
Γ
( z

h + 2− υ
) − hυ Γ

( z
h + 1

)
Γ
( z

h + 1− υ
))

= hυ−1 Γ
( z

h + 1
)

Γ
( z

h + 1− υ
)( z

h + 1
z
h + 1− υ

− 1
)

= υ hυ−1 Γ
( z

h + 1
)

Γ
( z

h + 1− (υ− 1)
) = υ z(υ−1)

h .

Since υ, h > 0, it follows that

∆h

(
z(υ)h

)
=

(z + h)(υ)h − z(υ)h
h

= υ z(υ−1)
h ≥ 0,

which implies that (z + h)(υ)h ≥ z(υ)h , and this completes the proof.

The following theorem can be seen as an equivalence definition to the delta RL

fractional h-differences.
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Theorem 1. Let 0 < υ < 1. Then, the delta left and delta right RL fractional h-differences of order
υ defined on Ma+(1−υ)h,h and b−(1−υ)h,hM, respectively, are defined by

(
RL

a∆υ
h f
)
(z) =

1
Γ(−υ)

z
h +υ

∑
r= a

h

(z− σh(rh))(−υ−1)
h f (rh)h, (4)

and

(
RL

h∆υ
b f
)
(z) =

1
Γ(−υ)

b
h

∑
r= z

h−υ

(ρh(z)− rh)(−υ−1)
h f (rh)h. (5)

Proof. From Definitions 1 and 3, we have(
RL

a∆υ
h f
)
(z)

=
1

Γ(1− υ)
∆h

 z
h +υ−1

∑
r= a

h

(
z− σh(rh)

)(−υ)

h f (rh)h


=

1
hΓ(1− υ)

 z
h +υ

∑
r= a

h

(z + h− σh(rh))(−υ)
h f (rh)h−

z
h +υ−1

∑
r= a

h

(
z− σh(rh)

)(−υ)

h f (rh)h


=

1
hΓ(1− υ)

 z
h +υ−1

∑
r= a

h

(z + h− σh(rh))(−υ)
h f (rh)h−

z
h +υ−1

∑
r= a

h

(
z− σh(rh)

)(−υ)

h f (rh)h


+

1
hΓ(1− υ)

(z + h− σh(z + υ h))(−υ)
h f (z + υ h)h

=
1

Γ(1− υ)

z
h +υ−1

∑
r= a

h

∆h
(
z− σh(rh)

)(−υ)

h f (rh)h +
−(υ h)(−υ)

h
hΓ(1− υ)

f (z + υ h)h

=
1

(−υ)Γ(−υ)

z
h +υ−1

∑
r= a

h

∆h
(
z− σh(rh)

)(−υ)

h f (rh)h + h1−υ f (z + υ h)h.

Then by using Lemma 1, we get

(
RL

a∆υ
h f
)
(z) =

1
Γ(−υ)

z
h +υ−1

∑
r= a

h

(
z− σh(rh)

)(−υ−1)
h f (rh)h + h−υ−1 f (z + υ h)h

=
1

Γ(−υ)

z
h +υ

∑
r= a

h

(
z− σh(rh)

)(−υ−1)
h f (rh)h,

which is the required Equation (4). In the same manner as Equation (4), we can prove
Equation (5), and thus, the proof is completed.

A relationship between the delta RL fractional and delta Caputo fractional h-differences
are presented in the following proposition.

Proposition 1. Let 0 ≤ υ < 1, then(
C
a∆υ

h f
)
(z) =

(
RL

a∆υ
h f
)
(z)− 1

Γ(1− υ)
(z− a)(−υ)

h f (a) (6)
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for z ∈ Ma+(1−υ)h,h, and(
C
h∆υ

b f
)
(z) =

(
RL

h∆υ
b f
)
(z)− 1

Γ(1− υ)
(b− z)(−υ)

h f (b) (7)

for z ∈ b−(1−υ)h,hM.

Proof. From Definition 4 and the fact that
(
z− σh(rh)

)(−υ)

h = 0 at r = z
h + υ, we have

(
C
a∆υ

h f
)
(z) =

(
a∆−(1−υ)

h ∆h f
)
(z) = a∆−(1−υ)

h

(
f (z + h)− f (z)

h

)

=
1

hΓ(1− υ)

z
h +υ

∑
r= a+h

h

(z + h− σh(rh))(−υ)
h f (rh)h

− 1
hΓ(1− υ)

z
h +υ−1

∑
r= a

h

(
z− σh(rh)

)(−υ)

h f (rh)h

=
1

hΓ(1− υ)

z
h +υ

∑
r= a

h +1
(z + h− σh(rh))(−υ)

h f (rh)h

− 1
hΓ(1− υ)

z
h +υ

∑
r= a

h

(
z− σh(rh)

)(−υ)

h f (rh)h

=
1

hΓ(1− υ)

z
h +υ

∑
r= a

h

(z + h− σh(rh))(−υ)
h f (rh)h− 1

Γ(1− υ)
(z− a)(−υ)

h f (a)

− 1
hΓ(1− υ)

z
h +υ

∑
r= a

h

(
z− σh(rh)

)(−υ)

h f (rh)h

=
1

Γ(1− υ)

z
h +υ

∑
r= a

h

∆h
(
z− σh(rh)

)(−υ)

h f (rh)h− 1
Γ(1− υ)

(z− a)(−υ)
h f (a).

By using Lemma 1 and Theorem 1, we get

(
C
a∆υ

h f
)
(z) =

1
Γ(−υ)

z
h +υ

∑
r= a

h

(
z− σh(rh)

)(−υ−1)
h f (rh)h− 1

Γ(1− υ)
(z− a)(−υ)

h f (a)

=
(

RL
a∆υ

h f
)
(z)− 1

Γ(1− υ)
(z− a)(−υ)

h f (a),

which is the required Equation (6). Using the same technique used for Equation (6), we can
prove Equation (7), and thus, the proof is completed.

In the following lemma, we prove and modify a power rule that appeared in ([22],
Lemma 4). We state and prove the modified result in a simpler way as follows:

Lemma 2. Let υ > 0, µ > −1 and h > 0, then

a+µh∆−υ
h (z− a)(µ)h =

Γ(µ + 1)
Γ(µ + 1 + υ)

(z− a)(υ+µ)
h (8)

for z ∈ Ma+(µ+υ)h,h.
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Proof. Following ([4], Lemma 1), we have

a
h +µ∆−υ

(z
h
− a

h

)(µ)
=

Γ(µ + 1)
Γ(µ + 1 + υ)

(z
h
− a

h

)(υ+µ)
(9)

for z ∈ Ma+(µ+υ)h,h. Calculating both sides of Equation (9), we get

LHS := a
h +µ∆−υ

(z
h
− a

h

)(µ)
=

1
Γ(υ)

z
h−υ

∑
r= a

h +µ

(z
h
− σh(rh)

)(υ−1)(
r− a

h

)(µ)

=
1

Γ(υ)

z
h−υ

∑
r= a

h +µ

(
z− rh− h

h

)(υ−1)( rh− a
h

)(µ)

=
1

Γ(υ)

z
h−υ

∑
r= a

h +µ

Γ
(

z−rh−h
h + 1

)
Γ
(

z−rh−h
h + 1− (υ− 1)

) · Γ
(

rh−a
h + 1

)
Γ
(

rh−a
h + 1− µ

)
=

1
Γ(υ)

z
h−υ

∑
r= a

h +µ

(z− rh− h)(υ−1)
h

hυ−1 ·
(rh− a)(µ)h

hµ

=
1

Γ(υ)

z
h−υ

∑
r= a

h +µ

1
hυ+µ

(
z− σh(rh)

)(υ−1)
h (rh− a)(µ)h h,

and

RHS :=
Γ(µ + 1)

Γ(µ + 1 + υ)

(z
h
− a

h

)(υ+µ)
=

Γ(µ + 1)
Γ(µ + 1 + υ)

Γ
( z−a

h + 1
)

Γ
( z−a

h + 1− (υ + µ)
)

=
Γ(µ + 1)

Γ(µ + 1 + υ)

(z− a)(υ+µ)
h

hυ+µ .

Substituting the LHS and RHS results into Equation (9), we get

1
Γ(υ)

z
h−υ

∑
r= a

h +µ

1
hυ+µ

(
z− σh(rh)

)(υ−1)
h (rh− a)(µ)h h =

Γ(µ + 1)
Γ(µ + 1 + υ)

(z− a)(υ+µ)
h

hυ+µ .

Multiplying by a positive constant hυ+µ on both sides of the equality, we get the
desired Equation (8).

3. The Monotonicity Results

This section illustrates the monotonicity of a discrete function. Monotonicity analysis
of discrete functions defined on M0

1 was originally introduced in [27], and there is extensive
literature on monotonicity analysis techniques and its extensions on Ma,h; for example,
see [22,23,26].

Definition 5 (see [22,23,26]). Let 0 < h, υ ≤ 1, and y : Ma,h → R be a function satisfying
y(a) ≥ 0. Then, y is called an υ-increasing function on Ma,h if

y(z + h) ≥ υ y(z)
(
∀ z ∈ Ma,h

)
.

Observe that, if y(z) is increasing on Ma,h, then y(z + h) ≥ y(z) for all z ∈ Ma,h, and thus,
y(z) is υ-increasing on Ma,h.
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Definition 6 (see [22,23,26]). Let 0 < h, υ ≤ 1, and y : Ma,h → R be a function satisfying
y(a) ≥ 0. Then, y is called an υ-decreasing function on Ma,h if

y(z + h) ≤ υ y(z)
(
∀ z ∈ Ma,h

)
.

Observe that, if y(z) is decreasing on Ma,h, then y(z + h) ≤ y(z) for all z ∈ Ma,h, and thus,
y(z) is υ-decreasing on Ma,h.

Remark 1. Note that, if υ = 1 in Definition 5, then the increasing and υ-increasing concepts
coincide and that, if υ = 1 in Definition 6, then the decreasing and υ-decreasing concepts coincide.

To provide motivation for the above monotonicity definitions, we prove a few funda-
mental results of the discrete RL and Caputo fractional operators.

Theorem 2. Let y : Ma+υh,h → R be a function satisfying y(a + υ h) ≥ 0. Suppose that(
RL

a+υh∆υ
hy
)
(z) ≥ 0 for 0 < h ≤ 1, 0 < υ < 1 and z ∈ Ma+h,h. Then, y(z) is υ-increasing on

Ma+υh,h.

Proof. From the assumption and proof of Theorem 1, we have

(
RL

a+υh∆υ
hy
)
(z) = h−υy(z + υ h) +

1
Γ(−υ)

z
h +υ−1

∑
r= a

h +υ

(
z− σh(rh)

)(−υ−1)
h y(rh)h ≥ 0. (10)

For z = a, we see that(
RL

a+υh∆υ
hy
)
(a) = h−υy(a + υ h) ≥ 0,

and, thus, y(a + υh) ≥ 0.
For z = a + h, we see that(

RL
a+υh∆υ

hy
)
(a + h) = h−υy(a + υ h + h) +

1
Γ(−υ)

(−υh)(−υ−1)
h y(a + υ h)h

= h−υy(a + υ h + h)− υh−υy(a + υ h) ≥ 0,

and, thus, y(a + υh + h) ≥ υy(a + υh) since h−υ > 0 and y(a + υh) ≥ 0.
Now, inductively, we show that

y(z + h) ≥ υy(z), ∀z ∈ Ma+υh,h.

Suppose that y(k + h) ≥ υy(k), ∀ k < z provided that k, z ∈ Ma+υh,h. Then, we have
to show that y(z + h) ≥ υy(z).

Replace z by z + h in Equation (10) to get

h−υy(z + υ h + h) +
1

Γ(−υ)

z
h +υ

∑
r= a

h +υ

(z + h− σh(rh))(−υ−1)
h y(rh)h

= h−υy(z + υ h + h)− υ

Γ(1− υ)

z
h +υ

∑
r= a

h +υ

(z + h− σh(rh))(−υ−1)
h y(rh)h ≥ 0.
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It follows that

h−υy(z + υ h + h)− υ

Γ(1− υ)

[
(z + h− σh(a + υh))(−υ−1)

h y(a + υh)h

+ (z + h− σh(a + υh + h))(−υ−1)
h y(a + υh + h)h + · · ·

+ (z + h− σh(z + υh))(−υ−1)
h y(z + υh)h

]
≥ 0,

or equivalently,

h−υy(z + υ h + h) ≥ υ

Γ(1− υ)

[
(z + h− σh(a + υh))(−υ−1)

h y(a + υh)h

+ (z + h− σh(a + υh + h))(−υ−1)
h y(a + υh + h)h + · · ·

+ (z + h− σh(z + υh))(−υ−1)
h y(z + υh)h

]
≥ υ

Γ(1− υ)
(z + h− σh(z + υh))(−υ−1)

h y(z + υh)h

=
υ

Γ(1− υ)
h−υ−1Γ(1− υ)y(z + υh)h

= υ h−υΓ(1− υ)y(z + υh).

This implies that y(z + υ h + h) ≥ y(z + υ h), and this completes the proof.

Corollary 1. Let y : Ma+υh,h → R be a function satisfying y(a + υ h) ≥ 0. Suppose that(
C
a+υh∆υ

hy
)
(z) ≥ − 1

Γ(1− υ)
(z− (a + υh))(−υ)

h y(a + υh),

for 0 < h ≤ 1, 0 < υ < 1, and z ∈ Ma+h,h. Then, y(z) is υ-increasing on Ma+υh,h.

Proof. The proof follows from Proposition 1 and Theorem 2.

Theorem 3. Let 0 < h ≤ 1, 0 < υ < 1, and y : Ma+υh,h → R be a function satisfying
y(a + υ h) ≥ 0. If y(z) is increasing on Ma+υh,h, then(

RL
a+υh∆υ

hy
)
(z) ≥ 0

(
∀z ∈ Ma,h

)
.

Proof. For each z ∈ Ma+h,h, we have to show that

(
RL

a+υh∆υ
hy
)
(z) =

1
Γ(−υ)

z
h +υ

∑
r= a

h +υ

(
z− σh(rh)

)(−υ−1)
h y(rh)h ≥ 0.

From Equation (10) with z = a, we have(
RL

a+υh∆υ
hy
)
(a) = h−υy(a + υ h) ≥ 0,

since h−υ > 0 and y(a + υ h) ≥ 0. Assume that
(

RL
a+υh∆υ

hy
)
(i) ≥ 0, ∀ i < z; then, we have

to show that
(

RL
a+υh∆υ

hy
)
(z) ≥ 0.
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From Equation (10), we see that

(
RL

a+υh∆υ
hy
)
(z) = h−υy(z + υ h) +

1
Γ(−υ)

z
h +υ−1

∑
r= a

h +υ

(
z− σh(rh)

)(−υ−1)
h y(rh)h

= h−υy(z + υ h)− υ

Γ(1− υ)

z
h +υ−1

∑
r= a

h +υ

(
z− σh(rh)

)(−υ−1)
h y(rh)h

= h−υy(z + υ h)− υh−υy(z + υ h− h)

− υ

Γ(1− υ)

z
h +υ−2

∑
r= a

h +υ

(
z− σh(rh)

)(−υ−1)
h y(rh)h.

(11)

Write r = a
h + υ + `, ` = 0, 1, ..., z

h −
a
h + υ− 2. We see that

υ
(
z− σh(rh)

)(−υ−1)
h

Γ(1− υ)
· h =

υ h−υ

Γ(1− υ)

Γ
( z−a

h − υ− `
)

Γ
( z−a

h − `+ 1
)

=
υ h−υ

Γ(1− υ)

Γ(m− υ)

Γ(m + 1)
,
(

denoting m =
z− a

h
− `
)

,

= − h−υ

Γ(−υ)

Γ(m− υ)

Γ(m + 1)
.

Since ` ≤ z−a
h + υ− 2, we get m > 2− υ > υ for υ ∈ (0, 1) and, hence, m > m− υ > 0.

Additionally, h−υ > 0, and from the graph of the gamma function, we see that Γ(−υ) < 0
for υ ∈ (0, 1). Therefore,

υ
(
z− σh(rh)

)(−υ−1)
h

Γ(1− υ)
· h > 0. (12)

From the assumption that y(z) increases, then y(z + υh) ≥ y(z + υh− h) ≥ y(a + υh)
for each z ∈ Ma,h. It follows that

y(z + υh− h) ≥ y(rh), ∀r =
a
h
+ υ,

a
h
+ υ, ...,

z
h
+ υ− 2. (13)

Considering Equations (11)–(13), it follows that(
RL

a+υh∆υ
hy
)
(z) = h−υy(z + υ h)− υh−υy(z + υ h− h)

− υ

Γ(1− υ)

z
h +υ−2

∑
r= a

h +υ

(
z− σh(rh)

)(−υ−1)
h y(z + υ h− h)h

= h−υy(z + υ h)− υ

Γ(1− υ)

z
h +υ−1

∑
r= a

h +υ

(
z− σh(rh)

)(−υ−1)
h y(z + υ h− h)h

= h−υy(z + υ h)−
(−υh)(−υ)

h
Γ(1− υ)

y(z + υ h− h) +
(−υh)(−υ)

h
Γ(1− υ)

y(z + υ h− h)

− υh
Γ(1− υ)

y(z + υ h− h)

z
h +υ−1

∑
r= a

h +υ

(
z− σh(rh)

)(−υ−1)
h

= h−υ(y(z + υ h)− y(z + υ h− h))

+
1

Γ(1− υ)
y(z + υ h− h)

(−υh)(−υ)
h − υh

z
h +υ−1

∑
r= a

h +υ

(
z− σh(rh)

)(−υ−1)
h

.
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Since y(z) increases, it follows that

(
RL

a+υh∆υ
hy
)
(z) ≥ 1

Γ(1− υ)
y(z + υ h− h)

(−υh)(−υ)
h − υh

z
h +υ−1

∑
r= a

h +υ

(
z− σh(rh)

)(−υ−1)
h


=

1
Γ(1− υ)

y(z + υ h− h)

[
(−υh)(−υ)

h − υh(z− a− υh− h)(−υ−1)
h

− υh(z− a− υh− 2h)(−υ−1)
h − · · · − υh(−υh)(−υ−1)

h

]

=
h−υy(z + υ h− h)

Γ(1− υ)

[
Γ(1− υ)

Γ(1)
− υ

Γ
( z−a

h − υ
)

Γ
( z−a

h + 1
) − υ

Γ
( z−a

h − υ− 1
)

Γ
( z−a

h
)

− · · · − υ
Γ(2− υ)

Γ(3)
− υ

Γ(1− υ)

Γ(2)

]

=
h−υy(z + υ h− h)

Γ(1− υ)

[
Γ(1− υ)

Γ(1)
− υ

Γ(1− υ)

Γ(2)
− υ

Γ(2− υ)

Γ(3)
− υ

Γ(3− υ)

Γ(4)

− · · · − υ
Γ
( z−a

h − υ
)

Γ
( z−a

h + 1
) ]

=
h−υy(z + υ h− h)

Γ(1− υ)

[
Γ(1− υ)

Γ(2)
(1− υ)− υ

Γ(2− υ)

Γ(3)
− υ

Γ(3− υ)

Γ(4)

− · · · − υ
Γ
( z−a

h − υ
)

Γ
( z−a

h + 1
) ]

=
h−υy(z + υ h− h)

Γ(1− υ)

[
Γ(2− υ)

Γ(3)
(2− υ)− υ

Γ(3− υ)

Γ(4)
− · · · − υ

Γ
( z−a

h − υ
)

Γ
( z−a

h + 1
) ]

=
h−υy(z + υ h− h)

Γ(1− υ)

[
Γ(3− υ)

Γ(4)
(3− υ)− · · · − υ

Γ
( z−a

h − υ
)

Γ
( z−a

h + 1
) ].

Continue this process to get

(
RL

a+υh∆υ
hy
)
(z) ≥ h−υy(z + υ h− h)

Γ(1− υ)

(
Γ
( z−a

h − υ
)

Γ
( z−a

h
) − υ

Γ
( z−a

h − υ
)

Γ
( z−a

h + 1
))

=
h−υy(z + υ h− h)

Γ(1− υ)

Γ
( z−a

h − υ
)

Γ
( z−a

h
) (

1− υ
1

z−a
h

)

=
h−υy(z + υ h− h)

Γ(1− υ)

( z−a
h − υ

)
Γ
( z−a

h − υ
)( z−a

h
)
Γ
( z−a

h
)

=
h−υy(z + υ h− h)

Γ(1− υ)

Γ
( z−a

h − υ + 1
)

Γ
( z−a

h + 1
)

=
h−υy(z + υ h− h)

Γ(1− υ)

Γ
(

z−a−υh
h + 1

)
Γ
(

z−a−υh
h + 1− (−υ)

)
=

(z− (a + υh))(−υ)
h

Γ(1− υ)
y(z + υ h− h) ≥ 0,
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which completes the proof.

Corollary 2. Let 0 < h ≤ 1, 0 < υ < 1, and y : Ma+υh,h → R be a function satisfying
y(a + υ h) ≥ 0. If y(z) increases on Ma+υh,h, then(

C
a+υh∆υ

hy
)
(z) ≥ − 1

Γ(1− υ)
(z− (a + υh))(−υ)

h y(a + υh)
(
∀z ∈ Ma,h

)
.

Proof. The proof follows from Proposition 1 and Theorem 3.

Theorem 4. Let 0 < h ≤ 1, 0 < υ < 1, and y : Ma+υh,h → R be a function satisfying
y(a + υ h) > 0. If y(z) strictly increases on Ma+υh,h, then(

RL
a+υh∆υ

hy
)
(z) > 0

(
∀ z ∈ Ma,h

)
.

Proof. The proof is similar to Theorem 3, so it is omitted.

Corollary 3. Let 0 < h ≤ 1, 0 < υ < 1, and y : Ma+υh,h → R be a function satisfying
y(a + υ h) > 0. If y(z) strictly increases on Ma+υh,h, then(

C
a+υh∆υ

hy
)
(z) > − 1

Γ(1− υ)
(z− (a + υh))(−υ)

h y(a + υh)
(
∀z ∈ Ma,h

)
.

Theorem 5. Let y : Ma+υh,h → R be a function satisfying y(a + υ h) ≤ 0. Suppose that(
RL

a+υh∆υ
hy
)
(z) ≤ 0 for 0 < h ≤ 1, 0 < υ < 1 and z ∈ Ma+h,h. Then, y(z) is υ-decreasing on

Ma+υh,h.

Proof. Let g : Ma+υh,h → R be a function such that g(z) = −y(z). Therefore,(
RL

a+υh∆υ
hg
)
(z) =

(
RL

a+υh∆υ
h(−y)

)
(z) = −

(
RL

a+υh∆υ
hy
)
(z) ≥ 0.

Apply Theorem 2 to g(z), and thus, the proof is completed.

Corollary 4. Let y : Ma+υh,h → R be a function satisfying y(a + υ h) ≥ 0. Suppose that(
C
a+υh∆υ

hy
)
(z) ≤ − 1

Γ(1−υ)
(z − (a + υh))(−υ)

h y(a + υh) for 0 < h ≤ 1, 0 < υ < 1 and
z ∈ Ma+h,h. Then, y(z) is υ-decreasing on Ma+υh,h.

Theorem 6. Let 0 < h ≤ 1, 0 < υ < 1, and y : Ma+υh,h → R be a function satisfying
y(a + υ h) ≤ 0. If y(z) decreases on Ma+υh,h, then(

RL
a+υh∆υ

hy
)
(z) ≤ 0

(
∀ z ∈ Ma,h

)
.

Proof. The proof is obtained by applying Theorem 4 to g(z) = −y(z).

Corollary 5. Let 0 < h ≤ 1, 0 < υ < 1, and y : Ma+υh,h → R be a function satisfying
y(a + υ h) ≤ 0. If y(z) decreases on Ma+υh,h, then(

C
a+υh∆υ

hy
)
(z) ≤ − 1

Γ(1− υ)
(z− (a + υh))(−υ)

h y(a + υh)
(
∀z ∈ Ma,h

)
.

4. Fractional Forward Difference Initial Value Problem and Mean Value Theorem

In this section, we move on from monotonicity analysis to the MVT. Having established
the monotonicity analysis for the discrete RL and Caputo fractional operators, we now
obtain the MVT using those discrete monotonicity results.
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4.1. Establishing the Riemann–Liouville case

The following is the main results to start off the MVT here.

Lemma 3 ([2,3]). Let y : Ma,h → R and 0 < h ≤ 1, 0 < υ < 1, then

a∆−υ
h (∆hy(z)) = ∆h

(
a∆−υ

h y
)
(z)−

(z− a)(υ−1)
h

Γ(υ)
y(a).

Lemma 4 ([2,3]). Let y : Ma,h → R and 0 < h ≤ 1, 0 < υ < 1, then

a+βh∆−υ
h

(
a∆−β

h y
)
(z) =

(
a∆−(υ+β)

h y
)
(z) = a+υh∆−β

h
(

a∆−υ
h y

)
(z), z ∈ Ma+(υ+β)h,h.

Theorem 7. Let y : Ma,h → R and 0 < h ≤ 1, 0 < υ < 1, then

a+h∆−υ
h

(
RL

a+υh∆υ
hy
)
(z) = y(z)− h1−υ

Γ(υ)
(z− (a + h))(υ−1)

h y(a + υh).

Proof. Let g(z) := a+h∆−υ
h

(
RL

a+υh∆υ
hy
)
(z), then we have

g(z) = a+h∆−υ
h

(
RL

a+υh∆υ
hy
)
(z) = a+h∆−υ

h

(
∆h

(
a+υh∆−(1−υ)

h y
)
(z)
)

= a+h∆−υ
h (∆h f (z)), where f (z) =

(
RL

a+υh∆−(1−υ)
h y

)
(z).

Apply Lemma 3 but replace a by a + h to get

g(z) = ∆h
(

a+h∆−υ
h f

)
(z)−

(z− (a + h))(υ−1)
h

Γ(υ)
f (a + h). (14)

Calculating f (a + h) using Definition 2, we get

f (a + h) =
(

a+υh∆−(1−υ)
h y

)
(a + h) =

1
Γ(1− υ)

a+h
h −(1−υ)

∑
r= a

h +υ

(a + h− σh(rh))(υ−1)
h y(rh)h

=
1

Γ(1− υ)
(a + h− σh(a + υh))(−υ)

h y(a + υh)h

=
1

Γ(1− υ)
(−υh)(−υ)

h y(a + υh)h

=
h

Γ(1− υ)
h−υ Γ(1− υ)

Γ(1)
y(a + υh) = h1−υy(a + υh).

Substituting this and the value of f (z) in Equation (14), we get

g(z) = ∆h

(
a+h∆−υ

h

(
a+υh∆−(1−υ)

h y
)
(z)
)
−

(z− (a + h))(υ−1)
h

Γ(υ)
h1−υy(a + υh).

Applying Lemma 4 using β = 1− υ, we get

g(z) = ∆h

(
a+h∆−(υ+1−υ)

h y
)
(z)− h1−υ

Γ(υ)
(z− (a + h))(υ−1)

h y(a + υh)

= y(z)− h1−υ

Γ(υ)
(z− (a + h))(υ−1)

h y(a + υh).

This completes the proof.
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Consider RL− FFDE:(
RL

a+υh∆υ
hy
)
(z) = f (z, y(z))

(
∀ z ∈ Ma+h,h

)
(15)

with the initial condition(
RL

a+υh∆−(1−υ)
h y

)
(z)
∣∣∣
z=a+h

= h1−υy(a + υh) = c1, (16)

where a ∈ R, h, υ ∈ (0, 1), and c1 is a constant.

Theorem 8. y is a solution of RL−FFDE in Equation (15) with the initial condition in Equation (16)
if and only if it has the representation

y(z) =
(z− (a + h))(υ−1)

h
Γ(υ)

c1 + a+h∆−υ
h f (z, y(z)).

Proof. This proof follows from Theorem 7.

According to Theorem 7, we can write

a+h∆−υ
h

(
RL

a+υh∆υ
hy
)
(z) = y(z)−Nh(υ, z, a)y(a + υh), (17)

where Nh(υ, z, a) = h1−υ

Γ(υ) (z− (a + h))(υ−1)
h .

It is worthwhile to mention that analyzing the monotonicity property of such fractional
difference operators is useful for better understanding the qualitative properties of solutions
of different discrete fractional dynamic equations. The monotonicity properties are part of
the basics of the discrete fractional calculus, where for example, we used them in this article
to prove a discrete fractional version of MVT. Then, it is of interest to obtain the following
MVT for RL− FFDE in Equation (17).

Theorem 9. Let f and g be functions defined on I := Ma+h,h ∩ b−h,hM = {a + h, a + 2h, a +
3h, . . . , b− 2h, b− h, b}, where b = a + kh for some k ∈ M. Assume that g strictly increases,
g(a + υh) > 0, and 0 < υ < 1, 0 < h ≤ 1. Then, there exist s1, s2 ∈ I such that(

RL
a+υh∆υ

h f
)
(s1)(

RL
a+υh∆υ

hg
)
(s1)

≤ f (b)−Nh(υ, b, a) f (a + υh)
g(b)−Nh(υ, b, a)g(a + υh)

≤

(
RL
a+υh∆υ

h f
)
(s2)(

RL
a+υh∆υ

hg
)
(s2)

. (18)

Proof. First, we prove that the denominators in the inequality in Equation (18) are not zero.
Since g strictly increases with g(a + υh) > 0, then by Theorem 4, we have(

RL
a+υh∆υ

hg
)
(z) > 0

(
∀ z ∈ I

)
. (19)

Apply the fractional sum operator a+h∆−υ
h on both sides in Equation (19) to get

a+h∆−υ
h

(
RL

a+υh∆υ
hg
)
(z) > a+h∆−υ

h (0).

This together with Equation (17) imply that

g(z)−Nh(υ, z, a)g(a + υh) > 0
(
∀ z ∈ I

)
,

and particularly g(b)−Nh(υ, b, a)g(a + υh) > 0.
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To end the proof, we use the contradiction technique: we assume that Equation (18) is
not true. Then, either

f (b)−Nh(υ, b, a) f (a + υh)
g(b)−Nh(υ, b, a)g(a + υh)

<

(
RL

a+υh∆υ
h f
)
(z)(

RL
a+υh∆υ

hg
)
(z)

(
∀ z ∈ I

)
, (20)

or

f (b)−Nh(υ, b, a) f (a + υh)
g(b)−Nh(υ, b, a)g(a + υh)

>

(
RL

a+υh∆υ
h f
)
(z)(

RL
a+υh∆υ

hg
)
(z)

(
∀ z ∈ I

)
. (21)

By means of Equation (19), we can multiply both sides of Equation (20) by a positive
constant, and thus, we get

f (b)−Nh(υ, b, a) f (a + υh)
g(b)−Nh(υ, b, a)g(a + υh)

(
RL

a+υh∆υ
hg
)
(z) <

(
RL

a+υh∆υ
h f
)
(z)

(
∀ z ∈ I

)
.

Applying the fractional sum operator a+h∆−υ
h on both sides of this inequality, we get

f (b)−Nh(υ, b, a) f (a + υh)
g(b)−Nh(υ, b, a)g(a + υh)

(
a+h∆−υ

h

(
RL

a+υh∆υ
hg
)
(z)
)
< a+h∆−υ

h

(
RL

a+υh∆υ
h f
)
(z).

This at z = b and Equation (17) imply

f (b)−Nh(υ, b, a) f (a + υh) < f (b)−Nh(υ, b, a) f (a + υh),

and this implies that f (b) < f (b), which is a contradiction. In the similar manner,
the inequality in Equation (21) leads to a contradiction. The proof follows.

4.2. Establishing the Caputo Case

Let us discuss the following results.

Lemma 5. For any a ∈ R and h, υ > 0, we have

a+h∆−υ
h
(
z− (a + υh)

)(−υ)

h = Γ(1− υ)

[
1− h1−υ

Γ(υ)
(
z− (a + h)

)(υ−1)
h

]
(∀ z ∈ Ma+υ h,h

)
.

Proof. Let f be a function defined on Ma,h; then, from the Definition 2, we have

(
a+h∆−υ

h f
)
(z) =

1
Γ(υ)

z
h−υ

∑
r= a

h +1

(
z− σh(rh)

)(υ−1)
h f (rh)h

=
(

a∆−υ
h f

)
(z)− h

Γ(υ)
(
z− (a + h)

)(υ−1)
h f (a). (22)

Considering f (z) =
(
z− (a + υh)

)(−υ)

h in Equation (22), we get

a+h∆−υ
h
(
z− (a + υh)

)(−υ)

h = a∆−υ
h
(
z− (a + υh)

)(−υ)

h − h
Γ(υ)

(
z− (a + h)

)(υ−1)
h

(
−υh)

)(−υ)

h
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Then, by applying Lemma 2 and the identity (3), it follows that

a+h∆−υ
h
(
z− (a + υh)

)(−υ)

h =
Γ(1− υ)

Γ(1− υ + υ)

(
z− (a + υh)

)(0)
h

− h
Γ(υ)

(
z− (a + h)

)(υ−1)
h h−υ

Γ
(

1− υh
h

)
Γ
(

1− υh
h + υ

)
= Γ(1− υ)− h1−υ

Γ(υ)
(
z− (a + h)

)(υ−1)
h Γ(1− υ).

Hence, the proof is complete.

Theorem 10. Let y : Ma,h → R and 0 < h ≤ 1, 0 < υ < 1; then,

a+h∆−υ
h

(
C

a+υh∆υ
hy
)
(z) = y(z)− y(a + υh). (23)

Proof. We use Proposition 1 in order to proceed(
C

a+υh∆υ
hy
)
(z) =

(
RL

a+υh∆υ
hy
)
(z)− 1

Γ(1− υ)

(
z− (a + υh)

)(−υ)

h y(a + υh). (24)

Taking a+h∆−υ
h on both sides of Equation (24) and then using Theorem 7 and Lemma 5,

we get

a+h∆−υ
h

(
C

a+υh∆υ
hy
)
(z) = a+h∆−υ

h

(
RL

a+υh∆υ
hy
)
(z)− y(a + υh)

Γ(1− υ) a+h∆−υ
h
(
z− (a + υh)

)(−υ)

h

= y(z)− h1−υ

Γ(υ)
(z− (a + h))(υ−1)

h y(a + υh)

− y(a + υh)
Γ(1− υ)

· Γ(1− υ)

[
1− h1−υ

Γ(υ)
(
z− (a + h)

)(υ−1)
h

]
= y(z)− y(a + υh),

and after some simplifications, the result is obtained.

Consider the following Caputo−FFDE:(
C

a+υh∆υ
hy
)
(z) = f (z, y(z))

(
∀ z ∈ Ma+h,h

)
(25)

with the initial condition(
RL

a+υh∆−(1−υ)
h y

)
(z)
∣∣∣
z=a+h

= h1−υy(a + υh) = h1−υc2, (26)

where a ∈ R, h, υ ∈ (0, 1), and c2 is a constant.

Theorem 11. y is a solution of Caputo−FFDE in Equation (25) with the initial condition in
Equation (26) if and only if it has the representation

y(z) = c2 + a+h∆−υ
h f (z, y(z)).

Proof. The proof follows from Theorem 10 directly.
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Remark 2. In the case of Caputo, MVT for Caputo−FFDE in Equation (23),(
C

a+υh∆υ
h f
)
(s1)(

C
a+υh∆υ

hg
)
(s1)

≤ f (b)− f (a + υh)
g(b)− g(a + υh)

≤

(
C
a+υh∆υ

h f
)
(s2)(

C
a+υh∆υ

hg
)
(s2)

, (27)

does not hold, where the assumptions of Theorem 9 are supposed to be given. The reason for this is
that we do not know whether

(
C

a+υh∆υ
hg
)
(z) > 0 when, by assumption and Corollary 3, we have

(
C

a+υh∆υ
hg
)
(z) > − 1

Γ(1− υ)

(
z− (a + υh)

)(−υ)

h g(a + υh)
(
∀ z ∈ I

)
< 0,

since the three quantities 1
Γ(1−υ)

,
(
z− (a + υh)

)(−υ)

h , and g(a + υh) are all positive for υ ∈ (0, 1)
and z ∈ I.

5. Conclusions

In this paper, a discrete υ-monotonicity analysis for discrete functions defined on
Ma,h in the framework of the discrete RL fractional sums, and RL and Caputo fractional
differences on the time scale h Z were successfully studied. The relation between delta RL

and delta Caputo fractional h-differences was established. The RL−FFDE and Caputo−FFDE
were considered, and their solutions were discussed. Utilizing the monotonicity results
and RL− FFDE solution, the MVT was presented. However, MVT for Caputo−FFDE was not
valid using its corresponding monotonicity results and Caputo−FFDE.

A further extension of this study includes improving our findings to study other
classes of discrete fractional sums and differences, including those of exponential kernel(

CFR
a∆υ

hy
)
(z) or Mittag–Liffler kernel

(
ABR

a∆υ
hy
)
(z), defined in [22]. Fortunately, some

research is in progress in this area.
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