An Integrated Decision-Making Approach for Green Supplier Selection in an Agri-Food Supply Chain: Threshold of Robustness Worthiness
Abstract
:1. Introduction
1.1. Aim and Originality of the Study
- Are we selecting the optimal suppliers?
- Are we paying the best price for the products?
- Are we adding value to our company?
1.2. Research Background
1.3. Contributions and Structure of the Manuscript
- Applying a AHP-fuzzy TOPSIS method for rating the suppliers in a green agri-food supply chain network;
- Developing a robust goal programming (RGP) model to determine the order allocation under uncertain condition;
- Introducing and investigating the threshold of robustness worthiness (TRW);
- Investigating the applicability of the proposed methodology through an illustrative case study.
2. Methodology
2.1. Analytic Hierarchical Process (AHP)
2.1.1. Phase 1: The Hierarchy Tree Construction
2.1.2. Phase 2: Pairwise Comparisons
2.1.3. Phase 3: The Extraction of Weights from the Pairwise Comparison Matrix
2.2. Similarity to the Ideal Solution
2.2.1. Step 0: Creating the Decision Matrix
2.2.2. Step 1: Normalizing the Decision Matrix
2.2.3. Step 2: Weighted Normalized Decision Matrix
2.2.4. Step 3: Finding the Fuzzy Positive Ideal Solution and Fuzzy Negative Ideal Solution
2.2.5. Step 4: Calculating the Distance of Solutions from the FPIS and FNIS
2.2.6. Step 5: Calculating the Similarity Index
2.2.7. Step 6: Ranking the Solutions
2.3. Robust Goal Programming (RGP)
3. The Robust Goal Programming Mathematical Model
3.1. Interval-Based Robust Optimization
3.2. Objective Functions
3.3. RGP Model
4. Computational Analysis
4.1. Supplier Ranking
4.2. Model Results
4.3. Robustness Acceptance Threshold
5. Discussion
6. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
The Sets, Indices and Parameters | |
Index of items; | |
Index of suppliers; | |
Purchasing cost of item r from supplier s; | |
Order cost of item i from supplier s; | |
Transportation cost of item i; | |
Distance from the supplier s; | |
Holding cost of item r; | |
Overall weight (priority value) of the supplier s to supply item r (obtained by AHP-fuzzy TOPSIS method); | |
Average defect rate of item r from supplier s; | |
Maximum acceptable defect rate of item r; | |
Uncertain demand of item r; | |
Average demand of item r at each period; | |
Deviation quantity in the demand of item r; | |
Maximum acceptable capacity of supplier s for item r; | |
Minimum acceptable capacity of supplier s for item r; | |
Uncertainty level; | |
and | Conservatism levels of constraints from Equations (12) and (13), respectively; |
Transformation coefficient of weight supplier s to cost; | |
Penalty cost for a unit shortage of item r; | |
Advantage of the 1st objective based on the decision-maker idea; | |
Advantage of the 2nd objective based on the decision-maker idea; | |
Ideal value of the 1st objective; | |
Ideal value of the 2nd objective. | |
Variables | |
Purchasing quantity of item r from supplier s; | |
Binary variable; if the item r is supplied from supplier s is 1, otherwise 0; | |
Shortage quantity of item r; | |
Positive deviation from the ideal value of 1st objective; | |
Negative deviation from the ideal value of 1st objective; | |
Positive deviation from the ideal value of 2nd objective; | |
Negative deviation from the ideal value of 2nd objective. |
Appendix A. The Calculations Related to AHP-Fuzzy TOPSIS
Criteria | No. |
---|---|
Price | 1 |
Transportation cost | 2 |
Flexibility | 3 |
Technology | 4 |
Quality | 5 |
On-time delivery | 6 |
Failure | 7 |
Order fulfilment | 8 |
Green competencies | 9 |
Environmental management system | 10 |
Appendix A.1. Meat
Meat | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 5 | 3 | 7 | 1 | 3 | 5 | 3 | 3 | 3 |
2 | 1/5 | 1 | 5 | 3 | 1/5 | 3 | 1 | 1 | 3 | 3 |
3 | 1/3 | 1/5 | 1 | 1 | 1/7 | 1/3 | 1/5 | 1 | 1/3 | 1/3 |
4 | 1/7 | 1/3 | 1 | 1 | 1/9 | 1 | 1/3 | 1/5 | 1 | 1 |
5 | 1 | 5 | 7 | 9 | 1 | 5 | 3 | 7 | 1 | 3 |
6 | 1/3 | 1/3 | 3 | 1 | 1/5 | 1 | 5 | 7 | 3 | 1 |
7 | 1/5 | 1 | 5 | 3 | 1/3 | 1/5 | 1 | 1 | 1 | 1 |
8 | 1/3 | 1 | 1 | 5 | 1/7 | 1/7 | 1 | 1 | 1 | 1 |
9 | 1/3 | 1/3 | 3 | 1 | 1 | 1/3 | 1 | 1 | 1 | 3 |
10 | 1/3 | 1/3 | 3 | 1 | 1/3 | 1 | 1 | 1 | 1/3 | 1 |
Meat | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.238 | 0.344 | 0.094 | 0.219 | 0.224 | 0.2 | 0.27 | 0.129 | 0.205 | 0.173 |
2 | 0.048 | 0.069 | 0.156 | 0.094 | 0.045 | 0.2 | 0.054 | 0.043 | 0.205 | 0.173 |
3 | 0.079 | 0.014 | 0.031 | 0.031 | 0.032 | 0.022 | 0.011 | 0.043 | 0.023 | 0.019 |
4 | 0.034 | 0.023 | 0.031 | 0.031 | 0.025 | 0.067 | 0.018 | 0.009 | 0.068 | 0.058 |
5 | 0.238 | 0.344 | 0.219 | 0.281 | 0.224 | 0.333 | 0.162 | 0.302 | 0.068 | 0.173 |
6 | 0.079 | 0.023 | 0.094 | 0.031 | 0.045 | 0.067 | 0.27 | 0.302 | 0.205 | 0.058 |
7 | 0.048 | 0.069 | 0.156 | 0.094 | 0.075 | 0.013 | 0.054 | 0.043 | 0.068 | 0.058 |
8 | 0.079 | 0.069 | 0.031 | 0.156 | 0.032 | 0.01 | 0.054 | 0.043 | 0.068 | 0.058 |
9 | 0.079 | 0.023 | 0.094 | 0.031 | 0.224 | 0.022 | 0.054 | 0.043 | 0.068 | 0.173 |
10 | 0.079 | 0.023 | 0.094 | 0.031 | 0.075 | 0.067 | 0.054 | 0.043 | 0.023 | 0.058 |
Meat | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.209 | 0.109 | 0.031 | 0.036 | 0.234 | 0.117 | 0.068 | 0.060 | 0.081 | 0.055 |
Suppliers | Meat | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||
Criteria | 1 | (1,3,5) | (3,5,7) | (5,7,9) | (7,9,10) | (9,10,10) |
2 | (1,3,5) | (3,5,7) | (5,7,9) | (7,9,10) | (9,10,10) | |
3 | (1,3,5) | (1,3,5) | (9,10,10) | (5,7,9) | (0,0,1) | |
4 | (3,5,7) | (1,3,5) | (9,10,10) | (5,7,9) | (5,7,9) | |
5 | (5,7,9) | (1,3,5) | (3,5,7) | (7,9,10) | (1,3,5) | |
6 | (1,3,5) | (1,3,5) | (9,10,10) | (7,9,10) | (1,3,5) | |
7 | (7,9,10) | (5,7,9) | (5,7,9) | (9,10,10) | (3,5,7) | |
8 | (1,3,5) | (9,10,10) | (5,7,9) | (7,9,10) | (7,9,10) | |
9 | (1,3,5) | (5,7,9) | (5,7,9) | (1,3,5) | (7,9,10) | |
10 | (9,10,10) | (1,3,5) | (9,10,10) | (3,5,7) | (5,7,9) | |
Variables | 0.49 | 0.2141 | 0.3176 | 0.5091 | 0.2599 | |
0.6858 | 0.2741 | 0.2466 | 0.3673 | 0.3163 | ||
0.5832 | 0.5614 | 0.4371 | 0.4191 | 0.549 |
Appendix A.2. Chicken
Chicken | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 5 | 1/9 | 1/9 | 9 | 5 | 9 | 9 | 3 | 7 |
2 | 1/5 | 1 | 1 | 1/9 | 3 | 1/3 | 7 | 1/7 | 1/3 | 5 |
3 | 9 | 1 | 1 | 1/5 | 9 | 3 | 1/5 | 5 | 1 | 1 |
4 | 9 | 9 | 5 | 1 | 9 | 7 | 3 | 1 | 7 | 1/9 |
5 | 1/9 | 1/3 | 1/9 | 1/9 | 1 | 7 | 5 | 3 | 9 | 1/3 |
6 | 1/5 | 3 | 1/3 | 1/7 | 1/7 | 1 | 5 | 5 | 1/9 | 3 |
7 | 1/9 | 1/7 | 5 | 1/3 | 1/5 | 1/5 | 1 | 5 | 1 | 9 |
8 | 1/9 | 7 | 1/5 | 1 | 1/3 | 1/5 | 1/5 | 1 | 1/5 | 3 |
9 | 1/3 | 3 | 1 | 1/7 | 1/9 | 9 | 1 | 5 | 1 | 3 |
10 | 1/7 | 1/5 | 1 | 9 | 3 | 1/3 | 1/9 | 1/3 | 1/3 | 1 |
Chicken | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.049 | 0.168 | 0.008 | 0.009 | 0.259 | 0.151 | 0.286 | 0.261 | 0.131 | 0.216 |
2 | 0.01 | 0.034 | 0.068 | 0.009 | 0.086 | 0.01 | 0.222 | 0.004 | 0.015 | 0.154 |
3 | 0.445 | 0.034 | 0.068 | 0.016 | 0.259 | 0.091 | 0.006 | 0.145 | 0.044 | 0.031 |
4 | 0.445 | 0.303 | 0.339 | 0.082 | 0.259 | 0.212 | 0.095 | 0.029 | 0.305 | 0.003 |
5 | 0.005 | 0.011 | 0.008 | 0.009 | 0.029 | 0.212 | 0.159 | 0.087 | 0.392 | 0.01 |
6 | 0.01 | 0.101 | 0.023 | 0.012 | 0.004 | 0.03 | 0.159 | 0.145 | 0.005 | 0.092 |
7 | 0.005 | 0.005 | 0.339 | 0.027 | 0.006 | 0.006 | 0.032 | 0.145 | 0.044 | 0.277 |
8 | 0.005 | 0.236 | 0.014 | 0.082 | 0.01 | 0.006 | 0.006 | 0.029 | 0.009 | 0.092 |
9 | 0.016 | 0.101 | 0.068 | 0.012 | 0.003 | 0.272 | 0.032 | 0.145 | 0.044 | 0.092 |
10 | 0.007 | 0.007 | 0.068 | 0.741 | 0.086 | 0.01 | 0.004 | 0.01 | 0.015 | 0.031 |
Meat | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.154 | 0.061 | 0.114 | 0.207 | 0.092 | 0.058 | 0.089 | 0.049 | 0.079 | 0.098 |
Suppliers | Chicken | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||
Criteria | 1 | (9,10,10) | (1,3,5) | (5,7,9) | (7,9,10) | (9,10,10) |
2 | (9,10,10) | (9,10,10) | (5,7,9) | (5,7,9) | (9,10,10) | |
3 | (1,3,5) | (9,10,10) | (5,7,9) | (1,3,5) | (7,9,10) | |
4 | (1,3,5) | (1,3,5) | (7,9,10) | (3,5,7) | (3,5,7) | |
5 | (5,7,9) | (5,7,9) | (3,5,7) | (7,9,10) | (1,3,5) | |
6 | (1,3,5) | (1,3,5) | (3,5,7) | (7,9,10) | (3,5,7) | |
7 | (7,9,10) | (7,9,10) | (9,10,10) | (9,10,10) | (3,5,7) | |
8 | (3,5,7) | (5,7,9) | (3,5,7) | (9,10,10) | (9,10,10) | |
9 | (5,7,9) | (3,5,7) | (7,9,10) | (3,5,7) | (5,7,9) | |
10 | (3,5,7) | (5,7,9) | (9,10,10) | (7,9,10) | (9,10,10) | |
Variables | 0.2909 | 0.459 | 0.6894 | 0.3704 | 0.4568 | |
0.2391 | 0.3722 | 0.7055 | 0.401 | 0.4896 | ||
0.4511 | 0.4478 | 0.5058 | 0.5198 | 0.5174 |
Appendix A.3. Schnitzel
Schnitzel | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 5 | 7 | 3 | 7 | 1/9 | 3 | 7 | 1/7 | 9 |
2 | 1/5 | 1 | 9 | 5 | 9 | 9 | 1/5 | 5 | 3 | 1/3 |
3 | 1/7 | 1/9 | 1 | 7 | 5 | 9 | 1 | 1 | 5 | 9 |
4 | 1/3 | 1/5 | 1/7 | 1 | 1 | 3 | 3 | 1/3 | 1 | 5 |
5 | 1/7 | 1/9 | 1/5 | 1 | 1 | 1 | 1 | 7 | 1 | 3 |
6 | 9 | 1/9 | 1/9 | 1/3 | 1 | 1 | 5 | 1 | 9 | 9 |
7 | 1/3 | 5 | 1 | 1/3 | 1 | 1/5 | 1 | 1 | 1/5 | 1/3 |
8 | 1/7 | 1/5 | 1 | 3 | 1/7 | 1 | 1 | 1 | 3 | 5 |
9 | 7 | 1/3 | 1/5 | 1 | 1 | 1/9 | 5 | 1/3 | 1 | 5 |
10 | 1/9 | 3 | 1/9 | 1/5 | 1/3 | 1/9 | 3 | 1/5 | 1/5 | 1 |
Schnitzel | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.054 | 0.332 | 0.354 | 0.137 | 0.264 | 0.005 | 0.129 | 0.293 | 0.006 | 0.193 |
2 | 0.011 | 0.066 | 0.455 | 0.229 | 0.34 | 0.367 | 0.009 | 0.209 | 0.127 | 0.007 |
3 | 0.008 | 0.007 | 0.051 | 0.32 | 0.189 | 0.367 | 0.043 | 0.042 | 0.212 | 0.193 |
4 | 0.018 | 0.013 | 0.007 | 0.046 | 0.038 | 0.122 | 0.129 | 0.014 | 0.042 | 0.107 |
5 | 0.008 | 0.007 | 0.01 | 0.046 | 0.038 | 0.041 | 0.043 | 0.293 | 0.042 | 0.064 |
6 | 0.489 | 0.007 | 0.006 | 0.015 | 0.038 | 0.041 | 0.216 | 0.042 | 0.382 | 0.193 |
7 | 0.018 | 0.332 | 0.051 | 0.015 | 0.038 | 0.008 | 0.043 | 0.042 | 0.008 | 0.007 |
8 | 0.008 | 0.013 | 0.051 | 0.137 | 0.005 | 0.041 | 0.043 | 0.042 | 0.127 | 0.107 |
9 | 0.38 | 0.022 | 0.01 | 0.046 | 0.038 | 0.005 | 0.216 | 0.014 | 0.042 | 0.107 |
10 | 0.006 | 0.199 | 0.006 | 0.009 | 0.013 | 0.005 | 0.129 | 0.008 | 0.008 | 0.021 |
Schnitzel | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.177 | 0.182 | 0.143 | 0.054 | 0.059 | 0.143 | 0.056 | 0.057 | 0.088 | 0.040 |
Suppliers | Schnitzel | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||
Criteria | 1 | (5,7,9) | (5,7,9) | (7,9,10) | (7,9,10) | (7,9,10) |
2 | (3,5,7) | (7,9,10) | (7,9,10) | (1,3,5) | (1,3,5) | |
3 | (5,7,9) | (9,10,10) | (3,5,7) | (5,7,9) | (3,5,7) | |
4 | (7,9,10) | (3,5,7) | (5,7,9) | (7,9,10) | (9,10,10) | |
5 | (9,10,10) | (5,7,9) | (1,3,5) | (1,3,5) | (3,5,7) | |
6 | (9,10,10) | (3,5,7) | (9,10,10) | (3,5,7) | (9,10,10) | |
7 | (3,5,7) | (1,3,5) | (3,5,7) | (7,9,10) | (5,7,9) | |
8 | (3,5,7) | (9,10,10) | (5,7,9) | (5,7,9) | (9,10,10) | |
9 | (3,5,7) | (7,9,10) | (7,9,10) | (3,5,7) | (5,7,9) | |
10 | (1,3,5) | (1,3,5) | (5,7,9) | (7,9,10) | (9,10,10) | |
Variables | 0.4994 | 0.5016 | 0.4314 | 0.5985 | 0.5713 | |
0.5064 | 0.5598 | 0.4492 | 0.4794 | 0.4968 | ||
0.5035 | 0.5274 | 0.5102 | 0.4448 | 0.4651 |
Appendix A.4. Rice
Rice | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 3 | 1/7 | 1/5 | 1 | 9 | 5 | 5 | 9 | 1/7 |
2 | 1/3 | 1 | 5 | 1/9 | 7 | 1 | 1 | 3 | 1/5 | 3 |
3 | 7 | 1/5 | 1 | 7 | 7 | 5 | 5 | 1/7 | 9 | 3 |
4 | 5 | 9 | 1/7 | 1 | 1/5 | 3 | 9 | 1 | 3 | 5 |
5 | 1 | 1/7 | 1/7 | 5 | 1 | 7 | 3 | 1/3 | 7 | 5 |
6 | 1/9 | 1 | 1/5 | 1/3 | 1/7 | 1 | 1/5 | 7 | 5 | 7 |
7 | 1/5 | 1 | 1/5 | 1/9 | 1/3 | 5 | 1 | 5 | 3 | 7 |
8 | 1/5 | 1/3 | 7 | 1 | 3 | 1/7 | 1/5 | 1 | 1/9 | 1/7 |
9 | 1/9 | 5 | 1/9 | 1/3 | 1/7 | 1/5 | 1/3 | 9 | 1 | 5 |
10 | 7 | 1/3 | 1/3 | 1/5 | 1/5 | 1/7 | 1/7 | 7 | 1/5 | 1 |
Rice | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.046 | 0.143 | 0.01 | 0.013 | 0.05 | 0.286 | 0.201 | 0.13 | 0.24 | 0.004 |
2 | 0.015 | 0.048 | 0.35 | 0.007 | 0.35 | 0.032 | 0.04 | 0.078 | 0.005 | 0.083 |
3 | 0.319 | 0.01 | 0.07 | 0.458 | 0.35 | 0.159 | 0.201 | 0.004 | 0.24 | 0.083 |
4 | 0.228 | 0.428 | 0.01 | 0.065 | 0.01 | 0.095 | 0.362 | 0.026 | 0.08 | 0.138 |
5 | 0.046 | 0.007 | 0.01 | 0.327 | 0.05 | 0.222 | 0.121 | 0.009 | 0.187 | 0.138 |
6 | 0.005 | 0.048 | 0.014 | 0.022 | 0.007 | 0.032 | 0.008 | 0.182 | 0.133 | 0.193 |
7 | 0.009 | 0.048 | 0.014 | 0.007 | 0.017 | 0.159 | 0.04 | 0.13 | 0.08 | 0.193 |
8 | 0.009 | 0.016 | 0.49 | 0.065 | 0.15 | 0.005 | 0.008 | 0.026 | 0.003 | 0.004 |
9 | 0.005 | 0.238 | 0.008 | 0.022 | 0.007 | 0.006 | 0.013 | 0.234 | 0.027 | 0.138 |
10 | 0.319 | 0.016 | 0.023 | 0.013 | 0.01 | 0.005 | 0.006 | 0.182 | 0.005 | 0.028 |
Rice | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.112 | 0.101 | 0.189 | 0.144 | 0.112 | 0.064 | 0.070 | 0.078 | 0.070 | 0.061 |
Suppliers | Rice | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||
Criteria | 1 | (9,10,10) | (7,9,10) | (3,5,7) | (5,7,9) | (5,7,9) |
2 | (1,3,5) | (3,5,7) | (1,3,5) | (1,3,5) | (3,5,7) | |
3 | (5,7,9) | (1,3,5) | (9,10,10) | (9,10,10) | (5,7,9) | |
4 | (5,7,9) | (3,5,7) | (9,10,10) | (3,5,7) | (1,3,5) | |
5 | (7,9,10) | (3,5,7) | (3,5,7) | (5,7,9) | (1,3,5) | |
6 | (1,3,5) | (9,10,10) | (9,10,10) | (5,7,9) | (1,3,5) | |
7 | (3,5,7) | (3,5,7) ( | 9,10,10) | (1,3,5) | (1,3,5) | |
8 | (1,3,5) | (7,9,10) | (7,9,10) | (7,9,10) | (5,7,9) | |
9 | (5,7,9) | (3,5,7) | (7,9,10) | (1,3,5) | (7,9,10) | |
10 | (1,3,5) | (3,5,7) | (7,9,10) | (7,9,10) | (1,3,5) | |
Variables | 0.5863 | 0.258 | 0.5455 | 0.5573 | 0.4213 | |
0.4798 | 0.2317 | 0.4459 | 0.3542 | 23.82 | ||
0.45 | 0.4731 | 0.4497 | 0.3886 | 0.3612 |
Appendix A.5. Fish
Fish | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 9 | 3 | 1/5 | 1/5 | 1/5 | 9 | 1/7 | 1/7 | 5 |
2 | 1/9 | 1 | 5 | 1 | 1/3 | 5 | 1/7 | 9 | 9 | 7 |
3 | 1/3 | 1/5 | 1 | 1/7 | 1/9 | 1/9 | 5 | 9 | 1/5 | 7 |
4 | 5 | 1 | 7 | 1 | 5 | 5 | 7 | 5 | 7 | 1/5 |
5 | 5 | 3 | 9 | 1/5 | 1 | 9 | 7 | 1/5 | 5 | 7 |
6 | 5 | 1/5 | 9 | 1/5 | 1/9 | 1 | 9 | 1/5 | 3 | 7 |
7 | 1/9 | 7 | 1/5 | 1/7 | 1/7 | 1/9 | 1 | 1/3 | 1/9 | 7 |
8 | 7 | 1/9 | 1/9 | 1/5 | 5 | 5 | 3 | 1 | 1/9 | 1 |
9 | 7 | 1/9 | 5 | 1/7 | 1/5 | 1/3 | 9 | 9 | 1 | 7 |
10 | 1/5 | 1/7 | 1/7 | 5 | 1/7 | 1/7 | 1/7 | 1 | 1/7 | 1 |
Fish | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.033 | 0.414 | 0.076 | 0.024 | 0.016 | 0.008 | 0.179 | 0.004 | 0.006 | 0.102 |
2 | 0.004 | 0.046 | 0.127 | 0.122 | 0.027 | 0.193 | 0.003 | 0.258 | 0.35 | 0.142 |
3 | 0.011 | 0.009 | 0.025 | 0.017 | 0.009 | 0.004 | 0.099 | 0.258 | 0.008 | 0.142 |
4 | 0.163 | 0.046 | 0.177 | 0.122 | 0.408 | 0.193 | 0.139 | 0.143 | 0.272 | 0.004 |
5 | 0.163 | 0.138 | 0.228 | 0.024 | 0.082 | 0.348 | 0.139 | 0.006 | 0.194 | 0.142 |
6 | 0.163 | 0.009 | 0.228 | 0.024 | 0.009 | 0.039 | 0.179 | 0.006 | 0.117 | 0.142 |
7 | 0.004 | 0.322 | 0.005 | 0.017 | 0.012 | 0.004 | 0.02 | 0.01 | 0.004 | 0.142 |
8 | 0.228 | 0.005 | 0.003 | 0.024 | 0.408 | 0.193 | 0.06 | 0.029 | 0.004 | 0.02 |
9 | 0.228 | 0.005 | 0.127 | 0.017 | 0.016 | 0.013 | 0.179 | 0.258 | 0.039 | 0.142 |
10 | 0.007 | 0.007 | 0.004 | 0.608 | 0.012 | 0.006 | 0.003 | 0.029 | 0.006 | 0.02 |
Fish | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.086 | 0.127 | 0.058 | 0.167 | 0.146 | 0.092 | 0.054 | 0.097 | 0.102 | 0.070 |
Suppliers | Fish | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||
Criteria | 1 | (1,3,5) | (3,5,7) | (3,5,7) | (5,7,9) | (5,7,9) |
2 | (1,3,5) | (3,5,7) | (5,7,9) | (1,3,5) | (9,10,10) | |
3 | (7,9,10) | (5,7,9) | (5,7,9) | (3,5,7) | (5,7,9) | |
4 | (9,10,10) | (5,7,9) | (5,7,9) | (3,5,7) | (5,7,9) | |
5 | (7,9,10) | (7,9,10) | (3,5,7) | (3,5,7) | (9,10,10) | |
6 | (1,3,5) | (9,10,10) | (9,10,10) | (7,9,10) | (1,3,5) | |
7 | (3,5,7) | (3,5,7) | (7,9,10) | (1,3,5) | (7,9,10) | |
8 | (1,3,5) | (7,9,10) | (5,7,9) | (7,9,10) | (7,9,10) | |
9 | (9,10,10) | (9,10,10) | (3,5,7) | (7,9,10) | (1,3,5) | |
10 | (1,3,5) | (7,9,10) | (5,7,9) | (5,7,9) | (9,10,10) | |
Variables | 0.6807 | 0.5467 | 0.4677 | 0.313 | 0.5252 | |
0.5301 | 0.4946 | 0.3769 | 0.3205 | 0.7269 | ||
0.4378 | 0.4749 | 0.4463 | 0.506 | 0.5808 |
Appendix A.6. Tomato Paste
Tomato Paste | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1/9 | 1/9 | 7 | 5 | 1/9 | 5 | 7 | 7 | 1 |
2 | 9 | 1 | 1/5 | 5 | 9 | 1 | 1/7 | 1/5 | 1 | 1 |
3 | 9 | 5 | 1 | 1 | 3 | 1/7 | 3 | 5 | 5 | 3 |
4 | 1/7 | 1/5 | 1 | 1 | 5 | 1 | 1/7 | 9 | 1 | 5 |
5 | 1/5 | 1/9 | 1/3 | 1/5 | 1 | 1/5 | 1/5 | 5 | 3 | 3 |
6 | 9 | 1 | 7 | 1 | 5 | 1 | 5 | 1/3 | 5 | 5 |
7 | 1/5 | 7 | 1/3 | 7 | 5 | 1/5 | 1 | 1 | 1/3 | 0.1 |
8 | 1/7 | 5 | 1/5 | 1/9 | 1/5 | 3 | 1 | 1 | 1/3 | 1 |
9 | 1/7 | 1 | 1/5 | 1 | 1/3 | 1/5 | 3 | 3 | 1 | 1/9 |
10 | 1 | 1 | 1/3 | 1/5 | 1/3 | 1/5 | 7 | 1 | 9 | 1 |
Tomato Paste | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.034 | 0.005 | 0.01 | 0.298 | 0.148 | 0.016 | 0.196 | 0.215 | 0.214 | 0.049 |
2 | 0.302 | 0.047 | 0.019 | 0.213 | 0.266 | 0.142 | 0.006 | 0.006 | 0.031 | 0.049 |
3 | 0.302 | 0.233 | 0.093 | 0.043 | 0.089 | 0.02 | 0.118 | 0.154 | 0.153 | 0.148 |
4 | 0.005 | 0.009 | 0.093 | 0.043 | 0.148 | 0.142 | 0.006 | 0.277 | 0.031 | 0.247 |
5 | 0.007 | 0.005 | 0.031 | 0.009 | 0.03 | 0.028 | 0.008 | 0.154 | 0.092 | 0.148 |
6 | 0.302 | 0.047 | 0.654 | 0.043 | 0.148 | 0.142 | 0.196 | 0.01 | 0.153 | 0.247 |
7 | 0.007 | 0.327 | 0.031 | 0.298 | 0.148 | 0.028 | 0.039 | 0.031 | 0.01 | 0.007 |
8 | 0.005 | 0.233 | 0.019 | 0.005 | 0.006 | 0.425 | 0.039 | 0.031 | 0.01 | 0.049 |
9 | 0.005 | 0.047 | 0.019 | 0.043 | 0.01 | 0.028 | 0.118 | 0.092 | 0.031 | 0.005 |
10 | 0.034 | 0.047 | 0.031 | 0.009 | 0.01 | 0.028 | 0.275 | 0.031 | 0.276 | 0.049 |
Tomato Paste | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.119 | 0.108 | 0.135 | 0.100 | 0.051 | 0.194 | 0.093 | 0.082 | 0.040 | 0.079 |
Suppliers | Tomato Paste | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||
Criteria | 1 | (3,5,7) | (5,7,9) | (1,3,5) | (9,10,10) | (1,3,5) |
2 | (1,3,5) | (3,5,7) | (1,3,5) | (5,7,9) | (3,5,7) | |
3 | (9,10,10) | (9,10,10) | (1,3,5) | (7,9,10) | (3,5,7) | |
4 | (5,7,9) | (5,7,9) | (9,10,10) | (5,7,9) | (9,10,10) | |
5 | (3,5,7) | (7,9,10) | (7,9,10) | (5,7,9) | (7,9,10) | |
6 | (7,9,10) | (1,3,5) | (1,3,5) | (9,10,10) | (1,3,5) | |
7 | (1,3,5) | (5,7,9) | (9,10,10) | (7,9,10) | (1,3,5) | |
8 | (3,5,7) | (5,7,9) | (9,10,10) | (1,3,5) | (9,10,10) | |
9 | (7,9,10) | (3,5,7) | (1,3,5) | (5,7,9) | (5,7,9) | |
10 | (1,3,5) | (5,7,9) | (3,5,7) | (3,5,7) | (5,7,9) | |
Variables | 0.3543 | 0.354 | 0.3261 | 0.4459 | 0.3603 | |
0.3543 | 0.2893 | 0.2713 | 0.4126 | 0.3119 | ||
0.4845 | 0.4497 | 0.4542 | 0.4806 | 0.4641 |
Appendix A.7. Lemon Juice
Lemon Juice | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 7 | 9 | 1/9 | 7 | 5 | 9 | 3 | 9 | 1/9 |
2 | 1/7 | 1 | 3 | 7 | 7 | 5 | 7 | 1/9 | 1/9 | 1/3 |
3 | 1/9 | 1/3 | 1 | 9 | 5 | 5 | 1/3 | 3 | 1/9 | 1/5 |
4 | 9 | 1/7 | 1/9 | 1 | 1 | 1 | 1/9 | 1 | 1 | 9 |
5 | 1/7 | 1/7 | 1/5 | 1 | 1 | 1/7 | 1 | 1/3 | 5 | 3 |
6 | 1/5 | 1/5 | 1/5 | 1 | 7 | 1 | 9 | 1/7 | 9 | 3 |
7 | 1/9 | 1/7 | 3 | 9 | 1 | 1/9 | 1 | 1/9 | 3 | 1/3 |
8 | 1/3 | 9 | 1/3 | 1 | 3 | 7 | 9 | 1 | 3 | 7 |
9 | 1/9 | 1 | 9 | 1 | 1/5 | 1/9 | 1/3 | 1/3 | 1 | 5 |
10 | 9 | 3 | 5 | 1/9 | 1/3 | 1/3 | 3 | 1/7 | 1/5 | 1 |
Lemon Juice | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.034 | 0.005 | 0.01 | 0.298 | 0.148 | 0.016 | 0.196 | 0.215 | 0.214 | 0.049 |
2 | 0.302 | 0.047 | 0.019 | 0.213 | 0.266 | 0.142 | 0.006 | 0.006 | 0.031 | 0.049 |
3 | 0.302 | 0.233 | 0.093 | 0.043 | 0.089 | 0.02 | 0.118 | 0.154 | 0.153 | 0.148 |
4 | 0.005 | 0.009 | 0.093 | 0.043 | 0.148 | 0.142 | 0.006 | 0.277 | 0.031 | 0.247 |
5 | 0.007 | 0.005 | 0.031 | 0.009 | 0.03 | 0.028 | 0.008 | 0.154 | 0.092 | 0.148 |
6 | 0.302 | 0.047 | 0.654 | 0.043 | 0.148 | 0.142 | 0.196 | 0.01 | 0.153 | 0.247 |
7 | 0.007 | 0.327 | 0.031 | 0.298 | 0.148 | 0.028 | 0.039 | 0.031 | 0.01 | 0.007 |
8 | 0.005 | 0.233 | 0.019 | 0.005 | 0.006 | 0.425 | 0.039 | 0.031 | 0.01 | 0.049 |
9 | 0.005 | 0.047 | 0.019 | 0.043 | 0.01 | 0.028 | 0.118 | 0.092 | 0.031 | 0.005 |
10 | 0.034 | 0.047 | 0.031 | 0.009 | 0.01 | 0.028 | 0.275 | 0.031 | 0.276 | 0.049 |
Lemon Juice | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.192 | 0.103 | 0.105 | 0101 | 0.041 | 0.094 | 0.058 | 0.152 | 0.063 | 0.090 |
Suppliers | Lemon Juice | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||
Criteria | 1 | (3,5,7) | (5,7,9) | (5,7,9) | (5,7,9) | (9,10,10) |
2 | (5,7,9) | (9,10,10) | (7,9,10) | (9,10,10) | (3,5,7) | |
3 | (7,9,10) | (3,5,7) | (7,9,10) | (7,9,10) | (1,3,5) | |
4 | (3,5,7) | (3,5,7) | (7,9,10) | (9,10,10) | (3,5,7) | |
5 | (7,9,10) | (7,9,10) | (1,3,5) | (7,9,10) | (3,5,7) | |
6 | (9,10,10) | (1,3,5) | (5,7,9) | (5,7,9) | (5,7,9) | |
7 | (7,9,10) | (3,5,7) | (7,9,10) | (5,7,9) | (1,3,5) | |
8 | (1,3,5) | (7,9,10) | (5,7,9) | (1,3,5) | (3,5,7) | |
9 | (7,9,10) | (1,3,5) | (7,9,10) | (3,5,7) | (9,10,10) | |
10 | (3,5,7) | (7,9,10) | (1,3,5) | (3,5,7) | (1,3,5) | |
Variables | 0.2941 | 0.3466 | 0.366 | 0.2955 | 0.236 | |
0.4304 | 0.3502 | 0.4683 | 0.4596 | 0.1972 | ||
0.594 | 0.5025 | 0.5613 | 0.6087 | 0.4551 |
Appendix A.8. Tomato
Tomato | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1/9 | 1 | 1/7 | 1/3 | 1 | 1 | 1 | 1/9 | 9 |
2 | 9 | 1 | 5 | 1 | 7 | 3 | 1/9 | 1/5 | 1/5 | 1 |
3 | 1 | 1/5 | 1 | 3 | 9 | 1 | 1/3 | 5 | 5 | 7 |
4 | 7 | 1 | 1/3 | 1 | 1/9 | 1/9 | 1/7 | 7 | 7 | 9 |
5 | 3 | 1/7 | 1/9 | 9 | 1 | 3 | 9 | 1 | 1/5 | 1/9 |
6 | 1 | 1/3 | 1 | 9 | 1/3 | 1 | 1/7 | 1 | 1/7 | 3 |
7 | 1 | 9 | 3 | 7 | 1/9 | 7 | 1 | 1/7 | 9 | 7 |
8 | 1 | 5 | 1/5 | 1/7 | 1 | 1 | 7 | 1 | 3 | 3 |
9 | 9 | 5 | 1/5 | 1/7 | 5 | 7 | 1/9 | 1/3 | 1 | 1 |
10 | 1/9 | 1 | 1/7 | 1/9 | 9 | 1/3 | 1/7 | 1/3 | 1 | 1 |
Tomato | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.03 | 0.005 | 0.083 | 0.005 | 0.01 | 0.041 | 0.053 | 0.059 | 0.004 | 0.219 |
2 | 0.272 | 0.044 | 0.417 | 0.033 | 0.213 | 0.123 | 0.006 | 0.012 | 0.008 | 0.024 |
3 | 0.03 | 0.009 | 0.083 | 0.098 | 0.274 | 0.041 | 0.018 | 0.294 | 0.188 | 0.17 |
4 | 0.211 | 0.044 | 0.028 | 0.033 | 0.003 | 0.005 | 0.008 | 0.412 | 0.263 | 0.219 |
5 | 0.091 | 0.006 | 0.009 | 0.295 | 0.03 | 0.123 | 0.474 | 0.059 | 0.008 | 0.003 |
6 | 0.03 | 0.015 | 0.083 | 0.295 | 0.01 | 0.041 | 0.008 | 0.059 | 0.005 | 0.073 |
7 | 0.03 | 0.395 | 0.25 | 0.229 | 0.003 | 0.286 | 0.053 | 0.008 | 0.338 | 0.17 |
8 | 0.03 | 0.219 | 0.017 | 0.005 | 0.03 | 0.041 | 0.369 | 0.059 | 0.113 | 0.073 |
9 | 0.272 | 0.219 | 0.017 | 0.005 | 0.152 | 0.286 | 0.006 | 0.02 | 0.038 | 0.024 |
10 | 0.003 | 0.044 | 0.012 | 0.004 | 0.274 | 0.014 | 0.008 | 0.02 | 0.038 | 0.024 |
Tomato | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.051 | 0.115 | 0.120 | 0.122 | 0.110 | 0.062 | 0.176 | 0.096 | 0.104 | 0.044 |
Suppliers | Tomato | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||
Criteria | 1 | (5,7,9) | (5,7,9) | (3,5,7) | (7,9,10) | (7,9,10) |
2 | (7,9,10) | (9,10,10) | (9,10,10) | (1,3,5) | (1,3,5) | |
3 | (7,9,10) | (1,3,5) | (5,7,9) | (5,7,9) | (9,10,10) | |
4 | (5,7,9) | (3,5,7) | (7,9,10) | (7,9,10) | (5,7,9) | |
5 | (3,5,7) | (1,3,5) | (5,7,9) | (3,5,7) | (1,3,5) | |
6 | (7,9,10) | (3,5,7) | (5,7,9) | (7,9,10) | (3,5,7) | |
7 | (7,9,10) | (3,5,7) | (7,9,10) | (7,9,10) | (5,7,9) | |
8 | (1,3,5) | (3,5,7) | (5,7,9) | (3,5,7) | (1,3,5) | |
9 | (9,10,10) | (5,7,9) | (9,10,10) | (3,5,7) | (7,9,10) | |
10 | (3,5,7) | (9,10,10) | (7,9,10) | (3,5,7) | (3,5,7) | |
Variables | 0.3979 | 0.2829 | 0.3022 | 0.3359 | 0.542 | |
0.3038 | 0.2532 | 0.3623 | 0.3295 | 0.303 | ||
0.433 | 0.4723 | 0.5452 | 0.4952 | 0.3586 |
Appendix A.9. Yogurt
Yogurt | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1/9 | 3 | 3 | 3 | 7 | 1/7 | 3 | 5 | 9 |
2 | 9 | 1 | 9 | 3 | 1 | 1 | 1 | 1/9 | 1/7 | 3 |
3 | 1/3 | 1/9 | 1 | 1 | 3 | 9 | 1 | 1/7 | 1/3 | 1 |
4 | 1/3 | 1/3 | 1 | 1 | 3 | 9 | 1/9 | 3 | 3 | 3 |
5 | 1/3 | 1 | 1/3 | 1/3 | 1 | 1/7 | 1/5 | 7 | 5 | 3 |
6 | 1/7 | 1 | 1/9 | 1/9 | 7 | 1 | 1 | 3 | 3 | 5 |
7 | 7 | 1 | 1 | 9 | 5 | 1 | 1 | 9 | 1 | 3 |
8 | 1/3 | 9 | 7 | 1/3 | 1/7 | 1/3 | 1/9 | 1 | 3 | 3 |
9 | 1/5 | 7 | 3 | 1/3 | 1/5 | 1/3 | 1 | 1/3 | 1 | 3 |
10 | 1/9 | 1/3 | 1 | 1/3 | 1/3 | 1/5 | 1/3 | 1/3 | 1/3 | 1 |
Yogurt | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.053 | 0.005 | 0.113 | 0.163 | 0.127 | 0.241 | 0.024 | 0.111 | 0.229 | 0.265 |
2 | 0.479 | 0.048 | 0.34 | 0.163 | 0.042 | 0.034 | 0.17 | 0.004 | 0.007 | 0.088 |
3 | 0.018 | 0.005 | 0.038 | 0.054 | 0.127 | 0.31 | 0.17 | 0.005 | 0.015 | 0.029 |
4 | 0.018 | 0.016 | 0.038 | 0.054 | 0.127 | 0.31 | 0.019 | 0.111 | 0.138 | 0.088 |
5 | 0.018 | 0.048 | 0.013 | 0.018 | 0.042 | 0.005 | 0.034 | 0.26 | 0.229 | 0.088 |
6 | 0.008 | 0.048 | 0.004 | 0.006 | 0.296 | 0.034 | 0.17 | 0.111 | 0.138 | 0.147 |
7 | 0.373 | 0.048 | 0.038 | 0.488 | 0.211 | 0.034 | 0.17 | 0.334 | 0.046 | 0.088 |
8 | 0.018 | 0.431 | 0.265 | 0.018 | 0.006 | 0.011 | 0.019 | 0.037 | 0.138 | 0.088 |
9 | 0.011 | 0.335 | 0.113 | 0.018 | 0.008 | 0.011 | 0.17 | 0.012 | 0.046 | 0.088 |
10 | 0.006 | 0.016 | 0.038 | 0.018 | 0.014 | 0.007 | 0.057 | 0.012 | 0.015 | 0.029 |
Yogurt | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Weight | 0.133 | 0.138 | 0.077 | 0.092 | 0.075 | 0.096 | 0.183 | 0.103 | 0.081 | 0.021 |
Suppliers | Yogurt | |||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||
Criteria | 1 | (7,9,10) | (3,5,7) | (7,9,10) | (7,9,10) | (5,7,9) |
2 | (7,9,10) | (3,5,7) | (7,9,10) | (9,10,10) | (9,10,10) | |
3 | (1,3,5) | (3,5,7) | (3,5,7) | (7,9,10) | (5,7,9) | |
4 | (7,9,10) | (3,5,7) | (3,5,7) | (1,3,5) | (7,9,10) | |
5 | (3,5,7) | (3,5,7) | (5,7,9) | (3,5,7) | (7,9,10) | |
6 | (5,7,9) | (1,3,5) | (7,9,10) | (1,3,5) | (3,5,7) | |
7 | (3,5,7) | (5,7,9) | (1,3,5) | (5,7,9) | (1,3,5) | |
8 | (1,3,5) | (7,9,10) | (3,5,7) | (7,9,10) | (9,10,10) | |
9 | (5,7,9) | (7,9,10) | (7,9,10) | (5,7,9) | (7,9,10) | |
10 | (1,3,5) | (9,10,10) | (1,3,5) | (3,5,7) | (7,9,10) | |
Variables | 0.2316 | 0.2642 | 0.2001 | 0.222 | 0.2196 | |
0.2171 | 0.2828 | 0.2139 | 0.2058 | 0.2207 | ||
0.4839 | 0.517 | 0.5167 | 0.4811 | 0.5013 |
References
- Ghodsypour, S.H.; O’Brien, C. A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. Int. J. Prod. Econ. 1998, 56, 199–212. [Google Scholar] [CrossRef]
- Hsu, C.W.; Hu, A.H. Applying hazardous substance management to supplier selection using analytic network process. J. Clean. Prod. 2009, 17, 255–264. [Google Scholar] [CrossRef]
- Srivastava, S.K. Green supply-chain management: A state-of-the-art literature review. Int. J. Manag. Rev. 2007, 9, 53–80. [Google Scholar] [CrossRef]
- Chen, C.T.; Lin, C.T.; Huang, S.F. A fuzzy approach for supplier evaluation and selection in supply chain management. Int. J. Prod. Econ. 2006, 102, 289–301. [Google Scholar] [CrossRef]
- Junior, F.R.L.; Osiro, L.; Carpinetti, L.C.R. A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Appl. Soft Comput. 2014, 21, 194–209. [Google Scholar] [CrossRef]
- Giacomarra, M.; Crescimanno, M.; Sakka, G.; Galati, A. Stakeholder engagement toward value co-creation in the F&B packaging industry. EuroMed J. Bus. 2019, 15, 315–331. [Google Scholar]
- Galati, A.; Giacomarra, M.; Concialdi, P.; Crescimanno, M. Exploring the feasibility of introducing Electric Freight Vehicles in the Short Food Supply Chain: A multi-stakeholder approach. Case Stud. Transp. Policy 2021. [Google Scholar] [CrossRef]
- Paksoy, T.; Özceylan, E.; Weber, G.W. A multi objective model for optimization of a green supply chain network. In Proceedings of the AIP Conference Proceedings, Laurel, MD, USA, 23–25 February 2010; Volume 1239, pp. 311–320. [Google Scholar]
- Paksoy, T.; Özceylan, E. Environmentally conscious optimization of supply chain networks. J. Oper. Res. Soc. 2014, 65, 855–872. [Google Scholar] [CrossRef]
- Moslemi, S.; Sabegh, M.H.Z.; Mirzazadeh, A.; Ozturkoglu, Y.; Maass, E. A multi-objective model for multi-production and multi-echelon closed-loop pharmaceutical supply chain considering quality concepts: NSGAII approach. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 1717–1733. [Google Scholar] [CrossRef]
- Fazli-Khalaf, M.; Mirzazadeh, A.; Pishvaee, M.S. A robust fuzzy stochastic programming model for the design of a reliable green closed-loop supply chain network. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 2119–2149. [Google Scholar] [CrossRef]
- Razmi, J.; Babazadeh, R.; Kaviani, M.A. Optimisation of dynamic hydrogen supply chain network: A mathematical programming approach. Int. J. Appl. Manag. Sci. 2018, 10, 192–216. [Google Scholar] [CrossRef]
- Banaeian, N.; Mobli, H.; Fahimnia, B.; Nielsen, I.E.; Omid, M. Green supplier selection using fuzzy group decision making methods: A case study from the agri-food industry. Comput. Oper. Res. 2018, 89, 337–347. [Google Scholar] [CrossRef]
- Govindan, K.; Kadziński, M.; Sivakumar, R. Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega 2017, 71, 129–145. [Google Scholar] [CrossRef]
- Validi, S.; Bhattacharya, A.; Byrne, P. Sustainable distribution system design: A two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model. Ann. Oper. Res. 2018, 290, 191–222. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.C.; Quan, M.Y.; Li, Z.; Wang, Z.L. A new integrated MCDM model for sustainable supplier selection under interval-valued intuitionistic uncertain linguistic environment. Inf. Sci. 2019, 486, 254–270. [Google Scholar] [CrossRef]
- Chang, K.H. A novel supplier selection method that integrates the intuitionistic fuzzy weighted averaging method and a soft set with imprecise data. Ann. Oper. Res. 2019, 272, 139–157. [Google Scholar] [CrossRef]
- Dickson, G.W. An analysis of vendor selection systems and decisions. J. Purch. 1966, 2, 5–17. [Google Scholar] [CrossRef]
- Lin, R.H. An integrated FANP–MOLP for supplier evaluation and order allocation. Appl. Math. Model. 2009, 33, 2730–2736. [Google Scholar] [CrossRef]
- Kannan, D.; Khodaverdi, R.; Olfat, L.; Jafarian, A.; Diabat, A. Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain. J. Clean. Prod. 2013, 47, 355–367. [Google Scholar] [CrossRef]
- Kumar, A.; Jain, V.; Kumar, S. A comprehensive environment friendly approach for supplier selection. Omega 2014, 42, 109–123. [Google Scholar] [CrossRef]
- Bakeshlou, E.A.; Khamseh, A.A.; Asl, M.A.G.; Sadeghi, J.; Abbaszadeh, M. Evaluating a green supplier selection problem using a hybrid MODM algorithm. J. Intell. Manuf. 2017, 28, 913–927. [Google Scholar] [CrossRef]
- Rueda, X.; Garrett, R.D.; Lambin, E.F. Corporate investments in supply chain sustainability: Selecting instruments in the agri-food industry. J. Clean. Prod. 2017, 142, 2480–2492. [Google Scholar] [CrossRef]
- Shi, H.; Quan, M.Y.; Liu, H.C.; Duan, C.Y. A novel integrated approach for green supplier selection with interval-valued intuitionistic uncertain linguistic information: A case study in the agri-food industry. Sustainability 2018, 10, 733. [Google Scholar] [CrossRef] [Green Version]
- Allaoui, H.; Guo, Y.; Choudhary, A.; Bloemhof, J. Sustainable agro-food supply chain design using two-stage hybrid multi-objective decision-making approach. Comput. Oper. Res. 2018, 89, 369–384. [Google Scholar] [CrossRef] [Green Version]
- Gören, H.G. A decision framework for sustainable supplier selection and order allocation with lost sales. J. Clean. Prod. 2018, 183, 1156–1169. [Google Scholar] [CrossRef]
- Liu, A.; Xiao, Y.; Ji, X.; Wang, K.; Tsai, S.B.; Lu, H.; Cheng, J.; Lai, X.; Wang, J. A novel two-stage integrated model for supplier selection of green fresh product. Sustainability 2018, 10, 2371. [Google Scholar] [CrossRef] [Green Version]
- Haeri, S.A.S.; Rezaei, J. A grey-based green supplier selection model for uncertain environments. J. Clean. Prod. 2019, 221, 768–784. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Mardani, A.; Dashtian, Z.; Soltani, M.; Weber, G.W. A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. J. Clean. Prod. 2020, 250, 119517. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabaee, M.; Amiri, M.; Hashemi-Tabatabaei, M.; Zavadskas, E.K.; Kaklauskas, A. A New Decision-Making Approach Based on Fermatean Fuzzy Sets and WASPAS for Green Construction Supplier Evaluation. Mathematics 2020, 8, 2202. [Google Scholar] [CrossRef]
- Tao, Q.; Huang, Z.; Gu, C.; Zhang, C. Optimization of green agri-food supply chain network using chaotic PSO algorithm. In Proceedings of the 2013 IEEE International Conference on Service Operations and Logistics, and Informatics, Dongguan, China, 28–30 July 2013; pp. 462–467. [Google Scholar]
- Kannan, D.; Govindan, K.; Rajendran, S. Fuzzy axiomatic design approach based green supplier selection: A case study from Singapore. J. Clean. Prod. 2015, 96, 194–208. [Google Scholar] [CrossRef]
- Amorim, P.; Curcio, E.; Almada-Lobo, B.; Barbosa-Póvoa, A.P.; Grossmann, I.E. Supplier selection in the processed food industry under uncertainty. Eur. J. Oper. Res. 2016, 252, 801–814. [Google Scholar] [CrossRef]
- Govindan, K.; Sivakumar, R. Green supplier selection and order allocation in a low-carbon paper industry: Integrated multi-criteria heterogeneous decision-making and multi-objective linear programming approaches. Ann. Oper. Res. 2016, 238, 243–276. [Google Scholar] [CrossRef]
- Baek, S.H.; Kim, J.S. Efficient Algorithms for a Large-Scale Supplier Selection and Order Allocation Problem Considering Carbon Emissions and Quantity Discounts. Mathematics 2020, 8, 1659. [Google Scholar] [CrossRef]
- Alavi, B.; Tavana, M.; Mina, H. A Dynamic Decision Support System for Sustainable Supplier Selection in Circular Economy. Sustain. Prod. Consum. 2021, 27, 905–920. [Google Scholar] [CrossRef]
- Ghahtarani, A.; Najafi, A.A. Robust goal programming for multi-objective portfolio selection problem. Econ. Model. 2013, 33, 588–592. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Models, methods, concepts & applications of the analytic hierarchy process. Interfaces 2012, 32, 93. [Google Scholar] [CrossRef]
- Jäntschi, L. The eigenproblem translated for alignment of molecules. Symmetry 2019, 11, 1027. [Google Scholar] [CrossRef] [Green Version]
- Plavka, J.; Gazda, M. Generalized eigenproblem of interval max-min (fuzzy) matrices. Fuzzy Sets Syst. 2021, 410, 27–44. [Google Scholar] [CrossRef]
- Hanks, R.W.; Weir, J.D.; Lunday, B.J. Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets. Eur. J. Oper. Res. 2017, 262, 636–646. [Google Scholar] [CrossRef]
- Ghasemi Bojd, F.; Koosha, H. A robust goal programming model for the capital budgeting problem. J. Oper. Res. Soc. 2018, 69, 1105–1113. [Google Scholar] [CrossRef]
- Tirkolaee, E.B.; Mahmoodkhani, J.; Bourani, M.R.; Tavakkoli-Moghaddam, R. A self-learning particle swarm optimization for robust multi-echelon capacitated location–allocation–inventory problem. J. Adv. Manuf. Syst. 2019, 18, 677–694. [Google Scholar] [CrossRef]
- Bertsimas, D.; Sim, M. Robust discrete optimization and network flows. Math. Program. 2003, 98, 49–71. [Google Scholar] [CrossRef]
- Bertsimas, D.; Sim, M. The price of robustness. Oper. Res. 2004, 52, 35–53. [Google Scholar] [CrossRef]
- Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A. Robust Optimization; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Hatefi, S.M.; Jolai, F. Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions. Appl. Math. Model. 2014, 38, 2630–2647. [Google Scholar] [CrossRef]
- Govindan, K.; Rajendran, S.; Sarkis, J.; Murugesan, P. Multi criteria decision making approaches for green supplier evaluation and selection: A literature review. J. Clean. Prod. 2015, 98, 66–83. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Jäntschi, L.; Bolboacă, S.D. Informational entropy of B-ary trees after a vertex cut. Entropy 2008, 10, 576–588. [Google Scholar] [CrossRef]
- Jäntschi, L.; Bolboacă, S.D. Performances of Shannon’s entropy statistic in assessment of distribution of data. Ovidius Univ. Ann. Chem. 2017, 28, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Sun, J.; Liang, L.; Zha, Y. Determination of weights for ultimate cross efficiency using Shannon entropy. Expert Syst. Appl. 2011, 38, 5162–5165. [Google Scholar] [CrossRef]
- Bolboacă, S.D.; Jäntschi, L. Sensitivity, specificity, and accuracy of predictive models on phenols toxicity. J. Comput. Sci. 2014, 5, 345–350. [Google Scholar] [CrossRef]
- Ahmad, M.H.; Ibrahim, M.I.; Mohamed, Z.; Ismail, N.; Abdullah, M.A.; Shueb, R.H.; Shafei, M.N. The sensitivity, specificity and accuracy of warning signs in predicting severe dengue, the severe dengue prevalence and its associated factors. Int. J. Environ. Res. Public Health 2018, 15, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.K.; Maity, G.; Weber, G.W. Multi-objective two-stage grey transportation problem using utility function with goals. Cent. Eur. J. Oper. Res. 2017, 25, 417–439. [Google Scholar] [CrossRef]
- Goli, A.; Tirkolaee, E.B.; Aydin, N.S. Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors. IEEE Trans. Fuzzy Syst. 2021. [Google Scholar] [CrossRef]
- Temoçin, B.Z.; Weber, G.W. Optimal control of stochastic hybrid system with jumps: A numerical approximation. J. Comput. Appl. Math. 2014, 259, 443–451. [Google Scholar] [CrossRef]
- Kouhizadeh, M.; Saberi, S.; Sarkis, J. Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. Int. J. Prod. Econ. 2021, 231, 107831. [Google Scholar] [CrossRef]
References | Specific Features | Objectives/Criteria | Probl. Condit. | Case Study | Research Methodology/Solution Technique | |||||
---|---|---|---|---|---|---|---|---|---|---|
Order Allocation | Supplier Selection | Agri or Food Supply Chain | Social | Economic | Environmental | Deterministic | Uncertain | |||
[31] | * | * | * | Particle swarm optimization (PSO) algorithm and genetic algorithm (GA) | ||||||
[32] | * | * | * | * | * | * | Fuzzy axiomatic design (FAD) | |||
[33] | * | * | * | * | Stochastic programming model and Enhanced Benders decomposition algorithm | |||||
[34] | * | * | * | * | * | * | Fuzzy TOPSIS and MOLP approach | |||
[22] | * | * | * | * | * | * | * | FANP, DEMATEL and MOLP approach | ||
[14] | * | * | * | * | * | * | * | Integrated PROMETHEE-based method | ||
[25] | * | * | * | * | * | * | AHP and ordered weighted averaging (OWA) | |||
[13] | * | * | * | * | * | * | Fuzzy TOPSIS, fuzzy VIKOR and fuzzy GRA | |||
[26] | * | * | * | * | * | * | * | DEMATEL, Taguchi loss functions and MOLP approach | ||
[27] | * | * | * | * | * | * | Fuzzy BWM and MULTIMOORA | |||
[24] | * | * | * | * | * | * | GRA-TOPSIS method with IVIUL sets | |||
[16] | * | * | * | * | * | * | BWM and alternative queuing method (AQM) within IVIUL setting | |||
[29] | * | * | * | * | * | * | * | FANP, fuzzy DEMATEL, Fuzzy TOPSIS and WGP approach | ||
[35] | * | * | * | * | * | Nonlinear integer programming model and heuristic algorithms | ||||
[36] | * | * | * | * | * | * | Fuzzy BWM and fuzzy inference system (FIS) | |||
Current research | * | * | * | * | * | * | * | AHP-fuzzy TOPSIS, Shannon entropy method and robust MOLP approach |
Relative Comparison of Criterion i Against j (Regarding the Intended Goal) | Relative Importance Degree (Score) |
---|---|
Equal importance | 1 |
Weak priority of i against j | 3 |
Strong priority of i against j | 5 |
Very strong priority of i against j | 7 |
Absolute priority of i against j | 9 |
Linguistic Variable | Corresponding Fuzzy Number |
---|---|
Very Low (VL) | |
Low (L) | |
Medium Low (ML) | |
Medium (M) | |
Medium High (MH) | |
High (H) | |
Very High (VH) |
Raw Food | Supplier Ranking | Overall Weight of Suppliers | ||||
---|---|---|---|---|---|---|
Material | ||||||
Meat | 0.55 | 0.42 | 0.44 | 0.56 | 0.58 | |
Chicken | 0.52 | 0.52 | 0.51 | 0.45 | 0.45 | |
Schnitzel | 0.47 | 0.44 | 0.51 | 0.53 | 0.50 | |
Rice | 0.36 | 0.39 | 0.45 | 0.47 | 0.45 | |
Fish | 0.58 | 0.51 | 0.45 | 0.47 | 0.44 | |
Tomato paste | 0.46 | 0.48 | 0.45 | 0.45 | 0.48 | |
Lemon juice | 0.46 | 0.61 | 0.56 | 0.50 | 0.59 | |
Tomato | 0.36 | 0.49 | 0.55 | 0.47 | 0.43 | |
Yogurt | 0.50 | 0.48 | 0.52 | 0.52 | 0.48 |
Experts | 1st Objective | 2nd Objective | |
---|---|---|---|
Market | (0.8, 0.2) | 1,469,838.68 | 135,018.95 |
Production | (0.7, 0.3) | 1,474,004.81 | 135,950.58 |
QA | (0.6, 0.4) | 1,481,940.85 | 136,858.73 |
1st Objective | 2nd Objective | |
---|---|---|
(0.8, 0.2) | 0.332108 | 0.331068 |
(0.7, 0.3) | 0.333049 | 0.333353 |
(0.6, 0.4) | 0.334843 | 0.335579 |
Variables | j = 1 | j = 2 |
---|---|---|
0.999732 | 0.999723 | |
0.000268 | 0.000277 | |
0.491743 | 0.508257 |
Alternative | Score | |
---|---|---|
1 | (0.8, 0.2) | 0.004956 |
2 | (0.7, 0.3) | 0.005654 |
3 | (0.6, 0.4) | 0.005904 |
Raw Food Material | Demand | The Purchasing Quantity of Item r | The Quantity of Item r Not Fulfilled |
---|---|---|---|
Meat | 16,789 | 16,594 | 195 |
Chicken | 102,640 | 102,640 | 0 |
Schnitzel | 49,236 | 49,236 | 0 |
Rice | 165,899 | 165,899 | 0 |
Fish | 7801 | 7749 | 52 |
Tomato paste | 8875 | 8875 | 0 |
Lemon juice | 1136 | 1136 | 0 |
Tomato | 22,471 | 22,471 | 0 |
Yogurt | 386,005 | 386,005 | 0 |
Variables | Value |
---|---|
375,661 | |
0 | |
0 | |
64,198 | |
RGP objective | 0.331 |
Total cost (1st objective) | 1,481,940 |
Total weighted purchase (2nd objective) | 136,858 |
No. | Total Cost (USD) | ||
---|---|---|---|
1 | 0 | 0 | 1,224,789.891 |
2 | 0.1 | 0.1 | 1,293,525.1 |
3 | 0.2 | 0.2 | 1,353,025.573 |
4 | 0.25 | 0.25 | 1,370,919.078 |
5 | 0.3 | 0.3 | 1,419,997.981 |
6 | 0.35 | 0.35 | 1,424,101.349 |
7 | 0.4 | 0.4 | 1,451,492.486 |
8 | 0.45 | 0.45 | 1,472,103.694 |
9 | 0.5 | 0.5 | 1,481,940.852 |
10 | 0.55 | 0.55 | 1,499,531.49 |
11 | 0.6 | 0.6 | 1,529,625.198 |
12 | 0.65 | 0.65 | 1,546,078.626 |
13 | 0.7 | 0.7 | 1,565,525.203 |
14 | 0.75 | 0.75 | 1,589,070.859 |
15 | 0.76 | 0.76 | 1,589,413.319 |
16 | 0.77 | 0.77 | 1,593,410.867 |
17 | 0.78 | 0.78 | 1,597,219.738 |
18 | 0.785 | 0.785 | 1,600,295.266 |
19 | 0.8 | 0.8 | 1,664,102.453 |
20 | 1 | 1 | 1,755,981.394 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirkolaee, E.B.; Dashtian, Z.; Weber, G.-W.; Tomaskova, H.; Soltani, M.; Mousavi, N.S. An Integrated Decision-Making Approach for Green Supplier Selection in an Agri-Food Supply Chain: Threshold of Robustness Worthiness. Mathematics 2021, 9, 1304. https://doi.org/10.3390/math9111304
Tirkolaee EB, Dashtian Z, Weber G-W, Tomaskova H, Soltani M, Mousavi NS. An Integrated Decision-Making Approach for Green Supplier Selection in an Agri-Food Supply Chain: Threshold of Robustness Worthiness. Mathematics. 2021; 9(11):1304. https://doi.org/10.3390/math9111304
Chicago/Turabian StyleTirkolaee, Erfan Babaee, Zahra Dashtian, Gerhard-Wilhelm Weber, Hana Tomaskova, Mehdi Soltani, and Nasim Sadat Mousavi. 2021. "An Integrated Decision-Making Approach for Green Supplier Selection in an Agri-Food Supply Chain: Threshold of Robustness Worthiness" Mathematics 9, no. 11: 1304. https://doi.org/10.3390/math9111304
APA StyleTirkolaee, E. B., Dashtian, Z., Weber, G.-W., Tomaskova, H., Soltani, M., & Mousavi, N. S. (2021). An Integrated Decision-Making Approach for Green Supplier Selection in an Agri-Food Supply Chain: Threshold of Robustness Worthiness. Mathematics, 9(11), 1304. https://doi.org/10.3390/math9111304