Existence and Symmetry of Solutions for a Class of Fractional Schrödinger–Poisson Systems
Abstract
:1. Introduction
- (V1)
- , for any ;
- (V2)
- Positive constants and exist such that for any ;
- (K1)
- and there exists a constant such that for any ;
- (K2)
- Positive constants and exist such that for any ;
- (f1)
- ;
- (f2)
- There exits such that , where .
- (f3)
- There exists such that for all , where .
- (f4)
- for all .
2. Preliminaries
- (A1)
- I is even for all and.
- (A2)
- There exist two constant such that.
- (A3)
- There exists constant such that for any , where Ω is an arbitrary finite-dimensional subspace of X and.Then the functional I has an unbounded sequence of critical values.
- (i)
- There exists such that for.
- (ii)
- There exists with such that.
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lischke, A.; Pang, G.; Gulian, M.; Song, F.; Glusa, C.; Zheng, X.; Mao, Z.; Cai, W.; Meerschaert, M.M.; Ainsworth, M.; et al. What is the fractional Laplacian? A comparative review with new results. arXiv 2018, arXiv:1801.09767. [Google Scholar] [CrossRef]
- de Pablo, A.; Quirós, F.; Rodríguez, A.; Vázquez, J.L. A fractional porous medium equation. Adv. Math. 2011, 226, 1378–1409. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, M.; Mao, Z. Analysis and Approximation of a Fractional Cahn-Hilliard Equation. SIAM J. Numer. Anal. 2017, 55, 1689–1718. [Google Scholar] [CrossRef] [Green Version]
- Stinga, P.R.; Torrea, J.L. Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial. Differ. Equ. 2010, 35, 2092–2122. [Google Scholar] [CrossRef] [Green Version]
- Zada, A.; Waheed, H.; Alzabut, J.; Wang, X. Existence and stability of impulsive coupled system of fractional integro-differential equations. Demonstr. Math. 2019, 52, 296–335. [Google Scholar] [CrossRef]
- Ionescu, M.V.; Okoudjou, K.A.; Rogers, L.G. The strong maximum principle for Schrödinger operators on fractals. Demonstr. Math. 2019, 52, 404–409. [Google Scholar] [CrossRef]
- Laskin, N. Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Yun, Y.; An, T.; Zuo, J.; Zhao, D. Infinitely many solutions for fractional Schrödinger equation with potential vanishing at infinity. Bound. Value Probl. 2019, 2019, 62. [Google Scholar] [CrossRef]
- Yun, Y.; An, T.; Ye, G. Existence and multiplicity of solutions for fractional Schrödinger equation involving a critical nonlinearity. Adv. Differ. Equ. 2019, 2019, 466. [Google Scholar] [CrossRef]
- Lashkarian, E.; Hejazi, S. Exact solutions of the time fractional nonlinear Schrödinger equation with two different methods. Math. Methods Appl. Sci. 2018, 41, 2664–2672. [Google Scholar] [CrossRef]
- Dinh, V.D. Blow-up criteria for fractional nonlinear Schrödinger equations. Nonlinear Anal. Real World Appl. 2019, 48, 117–140. [Google Scholar] [CrossRef]
- Shang, X.; Zhang, J. Existence and concentration of ground states of fractional nonlinear Schrödinger equations with potentials vanishing at infinity. Commun. Contemp. Math. 2019, 21, 1850048. [Google Scholar] [CrossRef]
- Li, Q.; Teng, K.; Wu, X. Existence of positive solutions for a class of critical fractional Schrödinger equations with equations with potential vanishing at infinity. Mediterr. J. Math. 2017, 14, 1–14. [Google Scholar] [CrossRef]
- Benci, V.; Fortunato, D. An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal. 1998, 11, 283–293. [Google Scholar]
- Azzollini, A.; Pomponio, A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 2008, 345, 90–108. [Google Scholar] [CrossRef] [Green Version]
- Murcia, E.G.; Siciliano, G. Least energy radial sign-changing solution for the Schrödinger-Poisson system in R3 under an asymptotically cubic nonlinearity. J. Math. Anal. Appl. 2019, 474, 544–571. [Google Scholar] [CrossRef]
- Masaki, S. Energy solution to a Schrödinger-Poisson system in the two-dimensional whole space. SIAM J. Math. Anal. 2011, 43, 2719–2731. [Google Scholar] [CrossRef] [Green Version]
- Teng, K. Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent. J. Differ. Equ. 2016, 261, 3061–3106. [Google Scholar] [CrossRef]
- Gu, G.; Tang, X.; Zhang, Y. Existence of positive solutions for a class of critical fractional Schrödinger-Poisson system with potential vanishing at infinity. Appl. Math. Lett. 2020, 99, 105984. [Google Scholar] [CrossRef]
- Shen, L. Existence result for fractional Schrödinger-Poisson systems involving a Bessel operator without Ambrosetti-Rabinowitz condition. Comput. Math. Appl. 2018, 75, 296–306. [Google Scholar]
- Luo, H.; Tang, X. Ground state and multiple solutions for the fractional Schrödinger-Poisson system with critical Sobolev exponent. Nonlinear Anal. Real Word Appl. 2018, 42, 24–52. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, F.; Zhao, L. The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system. Calc. Var. 2017, 56, 116. [Google Scholar] [CrossRef]
- Nezza, E.D.; Palatucci, G.; Valdinoci, E. Hitchhike’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Palais, R.S. Morse theory on Hilbert manifolds. Topology 1963, 2, 299–340. [Google Scholar] [CrossRef] [Green Version]
- Jabri, Y. The Mountain Pass Theorem. Variants, Generalizations and Some Applications. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 2003; Volume 95, pp. 21–32. [Google Scholar]
- Palatucci, G.; Pisante, A. Improved Sobolev embeddings, profle decomposition, and concentration compactness for fractional Sobolev spaces. Calc. Var. Partial. Differ. Equ. 2014, 50, 799–829. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, B.; Repovš, D. Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials. Nonlinear Anal. 2016, 142, 48–68. [Google Scholar] [CrossRef] [Green Version]
- Bogachev, V.I. Measure Theory; Springer: Berlin, Germany, 2007; Volume II, pp. 87–93. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, Y.; An, T.; Ye, G. Existence and Symmetry of Solutions for a Class of Fractional Schrödinger–Poisson Systems. Mathematics 2021, 9, 1149. https://doi.org/10.3390/math9101149
Yun Y, An T, Ye G. Existence and Symmetry of Solutions for a Class of Fractional Schrödinger–Poisson Systems. Mathematics. 2021; 9(10):1149. https://doi.org/10.3390/math9101149
Chicago/Turabian StyleYun, Yongzhen, Tianqing An, and Guoju Ye. 2021. "Existence and Symmetry of Solutions for a Class of Fractional Schrödinger–Poisson Systems" Mathematics 9, no. 10: 1149. https://doi.org/10.3390/math9101149
APA StyleYun, Y., An, T., & Ye, G. (2021). Existence and Symmetry of Solutions for a Class of Fractional Schrödinger–Poisson Systems. Mathematics, 9(10), 1149. https://doi.org/10.3390/math9101149