Next Article in Journal
A Three-Player Game Model for Promoting the Diffusion of Green Technology in Manufacturing Enterprises from the Perspective of Supply and Demand
Previous Article in Journal
Contact Metric Spaces and pseudo-Hermitian Symmetry
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Unique Fixed-Point Results for β-Admissible Mapping under (β-ψˇ)-Contraction in Complete Dislocated Gd-Metric Space

by
Abdullah Eqal Al-Mazrooei
1,
Abdullah Shoaib
2 and
Jamshaid Ahmad
1,*
1
Department of Mathematics, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
2
Department of Mathematics and Statistics, Riphah International University, Islamabad 44000, Pakistan
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(9), 1584; https://doi.org/10.3390/math8091584
Submission received: 6 July 2020 / Revised: 31 July 2020 / Accepted: 4 August 2020 / Published: 14 September 2020

Abstract

:
This paper is designed to display some results which generalize the recent results that cannot be established from the corresponding results in other spaces and do not satisfy the remarks of Jleli et al. (Fixed Point Theor Appl. 210, 2012) and Samet et al. (Int. J. Anal. Article ID 917158, 2013). We obtain unique fixed-point for mapping satisfying β - ψ ˇ contraction only on a closed G d ball in complete dislocated G d -metric space. An example is also discussed to shed light on the main result.

1. Introduction and Preliminaries

Fixed-point theory has several applications in different fields such as engineering, computer sciences, and social sciences and plays a vital role in the study of different aspects of mathematics. By using fixed-point theory results, a lot of methods have been constructed for the solutions of problems in sciences. Let S be a mapping from Y to Y. If S b = b for any b Y then b is known as a fixed point of S .
One of the generalizations of a metric is G metric, which was developed by Sims and Mustafa [1]. Karapınar et al. [2] and Singh et al. [3] discussed fixed-point results in G metric spaces, which distinguish G metric spaces from other spaces. Many results in G metric spaces can be seen in [1,2,4,5,6,7,8,9,10,11,12,13,14,15].
α -admissible mapping and corresponding α - ψ contractive condition was introduced by Samet et al. [16]. They generalized the fixed-point results endowed with a partial order (see [4,17,18]). Several researchers studied and extended the results in [16] in different ways (see [8,19,20,21,22,23]). Recently, Shoaib et al. [24] obtained fixed-point theorems for α - ψ -locally contractive type mappings in right complete dislocated quasi G-metric spaces.
Arshad et al. [25] observed that there were mappings which had fixed points but there were no results to ensure the existence of fixed points of such mappings. They introduced a condition on closed ball to obtain common fixed points for such mappings. For further theorems on closed ball, see [14,26,27,28].
This paper extends the results of Karapinar et al. [2] in four different ways by using
(i)
β -admissible mapping;
(ii)
closed G d ball instead of whole space;
(iii)
β - ψ ˇ contraction;
(iv)
dislocated G d -metric space instead of metric space.
Moreover, our contraction cannot be expressed in two variables, so there is no corresponding result in metric space for our results. This paper also generalizes the recent results given in [13,14,15,24]. The following definitions and results will be useful to understand the paper.
Definition 1.
[15] Let Z ˇ be non-empty and G d : Z ˇ × Z ˇ × Z ˇ R + . Let G d satisfying the constraints given below:
( i )
If G d ( l 1 , l 2 , l 3 ) = 0 , then l 1 = l 2 = l 3 .
( i i )
G d ( l 1 , l 2 , l 3 ) = G d ( l 2 , l 3 , l 1 ) = G d ( l 3 , l 1 , l 2 ) = G d ( l 1 , l 3 , l 2 ) = G d ( l 2 , l 1 , l 3 ) = G d ( l 3 , l 2 , l 1 ) .
( i i i )
G d ( l 1 , l 2 , l 3 ) G d ( l 1 , l 4 , l 4 ) + G d ( l 4 , l 2 , l 3 )
for all l 1 , l 2 , l 3 , l 4 Z ˇ . Then ( Z ˇ , G d ) is said to be dislocated G d metric space. It is noted that if in dislocated G d -metric space G d ( l 1 , l 2 , l 3 ) = 0 whenever l 1 = l 2 = l 3 , then ( Z ˇ , G d ) becomes a G metric space.
Example 1.
[15] Let Z ˇ = [ 0 , 4 ] . G d defined as G d = l 1 + l 2 + l 3 l 1 , l 2 , l 3 Z ˇ . then it can be easily check that G d is dislocated G d -metric space.
Definition 2.
[15] Let { l p } be a sequence in dislocated G d metric space. l Z ˇ is the limit of { l p } if lim p , q G d ( l p , l , l q ) = 0 , and one says { l p } is G d -convergent to l .
Definition 3.
[15] Let ( Z ˇ , G d ) be a dislocated G d -metric space, then
( i )
{ l p } is C G d - sequence or Cauchy G d sequence if for all ε > 0 , there exists p p : G d ( l p , l q , l R )
for all p , q , R p .
( i i )
( Z ˇ , G d ) is called complete if every C- G d - sequence in ( Z ˇ , G d ) is G d -convergent.
Definition 4.
[15] Open G d ball and closed G d ball with center l 0 Z ˇ and radius R ˇ > 0 in dislocated G d -metric space are defined as: B G d ( l 0 , R ˇ ) = { l Z ˇ : G d ( l 0 , l , l ) < R ˇ } , B G d ( l 0 , r ˇ ) ¯ = { l Z ˇ : G d ( l 0 , l , l ) R ˇ } respectively.
Proposition 1.
[15] Let ( Z ˇ , G d ) be a dislocated G d -metric space, then conditions given below are equivalent:
( i )
G d ( l p , l , l p ) 0 as p .
( i i )
G d ( l , l p , l ) 0 as p .
( i i i )
G d ( l , l q , l p ) 0 as p , q .
Definition 5.
[16] Let ψ ˇ : [ 0 , ) [ 0 , ) holds the axioms:
Ψ ˇ 1 ψ ˇ is non-decreasing.
Ψ ˇ 2 for all t ˜ > 0 , we have
μ ˇ 0 t ˜ = a = 0 ψ ˇ a t ˜ < .
The power a denotes the a t h iteration of ψ ˇ . All such functions form a family which is denoted by Ψ ˇ . ψ ˇ Ψ ˇ is called c-comparison function.
Definition 6.
Let Z ˇ be a non-empty set and β : Z ˇ × Z ˇ × Z ˇ [ 0 , ) . We say that R : Z ˇ Z ˇ is β-admissible mapping, if
β ( l 1 , l 2 , l 3 ) 1 β ( R l 1 , R l 2 , R l 3 ) 1 , f o r l 1 , l 2 , l 3 Z ˇ .

2. Main Result

Theorem 1.
Let ( Z ˇ , G d ) be complete dislocated G d metric space, R : Z ˇ Z ˇ be a β-admissible mapping, ψ ˇ Ψ ˇ , r ˇ > 0 and l B G d ( l , r ˇ ) ¯ . Assume that the following assertions hold:
β ( l , k , s ) G d ( R l , R k , R s ) ψ ˇ ( M ˇ ( l , k , s ) ) f o r a l l l , k , s B G d ( l , r ˇ ) ¯ ,
where
M ˇ ( l , k , s ) = max G d ( k , R 2 l , R k ) , G d ( R l , R 2 l , R k ) 2 , G d ( l , R l , k ) 2 , G d ( l , R l , s ) 2 , G d ( s , R 2 l , R s ) , G d ( k , R l , R k ) 2 , G d ( s , R l , R k ) 2 , G d ( R l , R 2 l , R s ) 2 , G d ( l , k , s ) , G d ( l , R l , R l ) , G d ( k , R k , R k ) , G d ( s , R s , R s ) 2 , G d ( k , R s , R s ) 2 , G d ( l , R k , R k ) 2
Also
p a = 0 ψ ˇ a ( G d ( l , R l , R l ) ) r ˇ , f o r a l l b N { 0 } .
( i )
β ( l , R l , R l ) 1
( i i )
If there exists { l p } in B G d ( l , r ˇ ) ¯ such that for all p N { 0 } , β ( l p , l p + 1 , l p + 1 ) 1 and l p e B G d ( l , r ˇ ) ¯ , then β ( l p , l p , e ) 1 .
Then there exists a unique e B G d ( l , r ˇ ) ¯ such that e = R e .
Proof. 
As l B G d ( l , r ˇ ) ¯ . Define a sequence
l p + 1 = R l p for all p N { 0 } .
Let l p + 1 l p , for all p N { 0 } , otherwise if such p exists then R ( l p ) = l p . By using ( 3 ) ,
G d ( l , l 1 , l 1 ) = G d ( l , R l , R l ) p a = 0 ψ ˇ a ( G d ( l , R l , R l ) ) r ˇ .
This implies that l 1 B G d ( l , R ˇ ) ¯ . Since β ( l , R l , R l ) 1 β ( l , l 1 , l 1 ) 1 . Since R is β -admissible on B G d ( l , r ˇ ) ¯ so β ( R l , R l 1 , R l 1 ) 1 .
G d ( l 1 , l 2 , l 2 ) = G d ( R l , R l 1 , R l 1 ) β ( l , l 1 , l 1 ) G d ( R l , R l 1 , R l 1 ) ψ ˇ ( M ˇ ( l , l 1 , l 1 ) ) .
M ˇ ( l , l 1 , l 1 ) = max G d ( l 1 , R 2 l , R l 1 ) , G d ( R l , R 2 l , R l 1 ) 2 , G d ( l , R l , l 1 ) 2 , G d ( l , R l , l 1 ) 2 , G d ( l 1 , R 2 l , R l 1 ) , G d ( l 1 , R l , R l 1 ) 2 , G d ( l 1 , R l , R l 1 ) 2 , G d ( R l , R 2 l , R l 1 ) 2 , G d ( l , l 1 , l 1 ) , G d ( l , R l , R l ) , G d ( l 1 , R l 1 , R l 1 ) , G d ( l 1 , R l 1 , R l 1 ) 2 , G d ( l 1 , R l 1 , R l 1 ) 2 , G d ( l , R l 1 , R l 1 ) 2 = max G d ( l 1 , l 2 , l 2 ) , G d ( l 1 , l 1 , l 2 ) 2 , G d ( l , l 1 , l 1 ) , G d ( l , l 2 , l 2 ) 2
Case 1: If M ˇ ( l , l 1 , l 1 ) = G d ( l 1 , l 2 , l 2 ) . From ( 4 )
G d ( l 1 , l 2 , l 2 ) ψ ˇ ( G d ( l 1 , l 2 , l 2 ) ) .
which give contradiction to fact that ψ ˇ ( t ˜ ) t ˜ .
Case 2: If M ˇ ( l , l 1 , l 1 ) = G d ( l 1 , l 1 , l 2 ) 2 then by using ( 4 ) , we have
G d ( l 1 , l 2 , l 2 ) ψ ˇ ( G d ( l 1 , l 1 , l 2 ) 2 ) ψ ˇ ( G d ( l 1 , l 2 , l 2 ) + G d ( l 2 , l 1 , l 2 ) 2 ) ψ ˇ ( G d ( l 1 , l 2 , l 2 ) ) .
which give contradiction to ψ ˇ ( t ˜ ) t ˜ . From case 1 and case 2, ( 5 ) becomes
M ˇ ( l , l 1 , l 1 ) = max { G d ( l , l 1 , l 1 ) , G d ( l , l 2 , l 2 ) 2 } .
Case 3: If M ˇ ( l , l 1 , l 1 ) = G d ( l , l 2 , l 2 ) 2 then by using ( 6 ) , we have
G d ( l , l 1 , l 1 ) G d ( l , l 2 , l 2 ) 2 G d ( l , l 1 , l 1 ) + G d ( l 1 , l 2 , l 2 ) 2 G d ( l , l 1 , l 1 ) G d ( l 1 , l 2 , l 2 ) .
If
M ˇ ( l , l 1 , l 1 ) = G d ( l , l 2 , l 2 ) 2 .
Using ( 4 ) , ( 7 ) and ( 8 ) , we have
G d ( l 1 , l 2 , l 2 ) ψ ˇ ( G d ( l , l 2 , l 2 ) 2 ) ψ ˇ ( G d ( l , l 1 , l 1 ) + G d ( l 1 , l 2 , l 2 ) 2 ) ψ ˇ ( G d ( l 1 , l 2 , l 2 ) + G d ( l 1 , l 2 , l 2 ) 2 ) ψ ˇ ( G d ( l 1 , l 2 , l 2 ) ) .
which give again contradiction. Hence from case 1, case 2 and case 3, we get
M ˇ ( l , l 1 , l 1 ) = G d ( l , l 1 , l 1 ) .
Now, ( 4 ) becomes
G d ( l 1 , l 2 , l 2 ) ψ ˇ ( G d ( l , l 1 , l 1 ) ) .
Now
G d ( l , l 2 , l 2 ) G d ( l , l 1 , l 1 ) + G d ( l 1 , l 2 , l 2 ) G d ( l , l 1 , l 1 ) + ψ ˇ ( G d ( l , l 1 , l 1 ) ) = 1 a = 0 ψ ˇ a ( G d ( l , l 1 , l 1 ) ) r ˇ .
This shows that l 2 B G d ( l , r ˇ ) ¯ . Let l 3 , l 4 , . . . l h B G d ( l , r ˇ ) ¯ for some h N . Since R is β -admissible on B G d ( l , r ˇ ) ¯ . So β ( l h 1 , l h , l h ) 1 this implies β ( R l h 1 , R l h , R l h ) 1 . Using ( 1 ) , we have
G d ( l h , l h + 1 , l h + 1 ) = G d ( R l h 1 , R l h , R l h ) β ( l h 1 , l h , l h ) G d ( R l h 1 , R l h , R l h ) ψ ˇ ( M ˇ ( l h 1 , l h , l h ) ) .
From ( 2 )
M ˇ ( l h 1 , l h , l h ) = max { G d ( l h , l h + 1 , l h + 1 ) , G d ( l h , l h , l h + 1 ) 2 , G d ( l h 1 , l h , l h ) , G d ( l h 1 , l h + 1 , l h + 1 ) 2 } .
Case 1: If M ˇ ( l h 1 , l h , l h ) = G d ( l h , l h + 1 , l h + 1 ) . From ( 11 ) , we have
G d ( l h , l h + 1 , l h + 1 ) ψ ˇ ( G d ( l h , l h + 1 , l h + 1 ) ) .
which give contradiction to the fact that ψ ˇ ( t ˜ ) t ˜ .
Case 2: If M ˇ ( l h 1 , l h , l h ) = G d ( l h , l h , l h + 1 ) 2 then by using ( 11 ) , we have
G d ( l h , l h + 1 , l h + 1 ) ψ ˇ ( G d ( l h , l h , l h + 1 ) 2 ) ψ ˇ ( G d ( l h , l h + 1 , l h + 1 ) + G d ( l h + 1 , l h , l h + 1 ) 2 ) ψ ˇ ( G d ( l h , l h + 1 , l h + 1 ) ) .
which give contradiction to ψ ˇ ( t ˜ ) t ˜ . From case 1 and case 2, ( 12 ) becomes
M ˇ ( l h 1 , l h , l h ) = max { G d ( l h 1 , l h , l h ) , G d ( l h 1 , l h + 1 , l h + 1 ) 2 } .
Case 3: If M ˇ ( l h 1 , l h , l h ) = G d ( l h 1 , l h + 1 , l h + 1 ) 2 then by using ( 13 ) , we have
G d ( l h 1 , l h , l h ) G d ( l h 1 , l h + 1 , l h + 1 ) 2 G d ( l h 1 , l h , l h ) + G d ( l h , l h + 1 , l h + 1 ) 2 G d ( l h 1 , l h , l h ) G d ( l h , l h + 1 , l h + 1 ) .
If
M ˇ ( l h 1 , l h , l h ) = G d ( l h 1 , l h + 1 , l h + 1 ) 2 .
Using ( 11 ) , ( 14 ) and ( 15 ) , we have
G d ( l h , l h + 1 , l h + 1 ) ψ ˇ ( G d ( l h 1 , l h + 1 , l h + 1 ) 2 ) ψ ˇ ( G d ( l h 1 , l h , l h ) + G d ( l h , l h + 1 , l h + 1 ) 2 ) ψ ˇ ( G d ( l h , l h + 1 , l h + 1 ) + G d ( l h , l h + 1 , l h + 1 ) 2 ) ψ ˇ ( G d ( l h , l h + 1 , l h + 1 ) ) .
which give again contradiction. Hence from all cases, we have
M ˇ ( l h 1 , l h , l h ) = G d ( l h 1 , l h , l h ) .
( 11 ) become
G d ( l h , l h + 1 , l h + 1 ) ψ ˇ ( G d ( l h 1 , l h , l h ) ) ψ ˇ h ( G d ( l , l 1 , l 1 ) ) .
Now
G d ( l , l h + 1 , l h + 1 ) G d ( l , l 1 , l 1 ) + G d ( l 1 , l 2 , l 2 ) + . . . . . + G d ( l h , l h + 1 , l h + 1 ) G d ( l , l 1 , l 1 ) + ψ ˇ ( G d ( l , l 1 , l 1 ) ) + . . . . . + ψ ˇ h G d ( l , l 1 , l 1 ) = h a = 0 ψ ˇ a ( G d ( l , l 1 , l 1 ) ) r ˇ .
This shows that l h + 1 B G d ( l , r ˇ ) ¯ . Hence l p B G d ( l , r ˇ ) ¯ , for all p N by mathematical induction. Now ( 17 ) become
G d ( l p , l p + 1 , l p + 1 ) ψ ˇ p ( G d ( l , l 1 , l 1 ) ) for all p N .
As R is β -admissible on B G d ( l , r ˇ ) ¯ . So β ( l p , l p + 1 , l p + 1 ) 1 . Now we will prove Cauchy sequence. Let p , q N for ε > 0 , there exists p N such that a p ψ ˇ a ( G d ( l , l 1 , l 1 ) ) ε for all q > p p .
G d ( l p , l q , l q ) G d ( l p , l p + 1 , l p + 1 ) + G d ( l p + 1 , l p + 2 , l p + 2 ) + . . . + G d ( l q 1 , l q , l q ) = q a = p ψ ˇ ( G d ( l l , l l + 1 , l l + 1 ) ) a p ψ ˇ ( G d ( l l , l l + 1 , l l + 1 ) ) a p ψ ˇ a ( G d ( l , l 1 , l 1 ) ) ε .
Thus, { l p } is a C- G d -sequence in B G d ( l , r ˇ ) ¯ . As every closed G d ball is closed subset. So { l p } is convergent in B G d ( l , r ˇ ) ¯ and the point of convergence e B G d ( l , r ˇ ) ¯ . Hence l p e as p . So
lim p G d ( e , l p , l p ) = 0 .
By assumption, β ( l p , l p , e ) 1 for all p N { 0 } so β ( R l p , R l p , R e ) 1 . Now we must prove that e = R ( e ) .
G d ( l p + 1 , l p + 1 , R e ) = G d ( R l p , R l p , R e ) β ( l p , l p , e ) G d ( R l p , R l p , R e ) ψ ˇ ( M ˇ ( l p , l p , e ) ) .
M ˇ ( l p , l p , e ) = max G d ( l p , l p + 2 , l p + 1 ) , G d ( l p + 1 , l p + 2 , l p + 1 ) 2 , G d ( l p , l p + 1 , l p ) 2 , G d ( l p , l p + 1 , e ) 2 , G d ( e , l p + 2 , R e ) , G d ( l p , l p + 1 , l p + 1 ) , G d ( e , l p + 1 , l p + 1 ) 2 , G d ( l p + 1 , l p + 2 , R e ) 2 , G d ( l p , l p , e ) , G d ( e , R e , R e ) 2 , G d ( l p , R e , R e ) 2 .
Replace in ( 18 ) and on applying limit p . We get
G d ( e , e , R e ) = ψ ˇ max G d ( e , e , R e ) , G d ( R e , e , R e ) 2 ψ ˇ max G d ( e , e , R e ) , G d ( R e , e , e ) + G d ( e , e , R e ) 2 ψ ˇ ( G d ( e , e , R e ) ) .
Again, contradiction to ψ ˇ ( t ˜ ) < t ˜ . Hence ψ ˇ ( 0 ) = 0 G d ( e , e , R e ) = 0 e = T e . For uniqueness, consider e = T e and d ¨ = T d ¨
G d ( d ¨ , e , e ) = G d ( R d ¨ , R e , R e ) β ( d ¨ , e , e ) G d ( R d ¨ , R e , R e ) ψ ˇ ( M ( d ¨ , e , e ) ) .
M ˇ ( d ¨ , e , e ) = max G d ( e , d ¨ , e ) , G d ( d ¨ , d ¨ , e ) 2 , G d ( d ¨ , d ¨ , d ¨ ) , G d ( e , e , e ) .
If M ˇ ( d ¨ , e , e ) = G d ( e , e , e ) .
G d ( e , e , e ) = G d ( R e , R e , R e ) β ( e , e , e ) G d ( R e , R e , R e ) ψ ˇ ( G d ( e , e , e ) ) .
which give contradiction. Similarly
G d ( d ¨ , d ¨ , d ¨ ) ψ ˇ ( G d ( d ¨ , d ¨ , d ¨ ) ) .
and
G d ( d ¨ , e , e ) ψ ˇ ( G d ( e , d ¨ , e ) ) .
Give a contradiction. Hence ( 20 ) become
G d ( d ¨ , e , e ) ψ ˇ G d ( d ¨ , d ¨ , e ) 2 . ψ ˇ G d ( d ¨ , e , e ) + G d ( e , d ¨ , e ) 2 . ψ ˇ ( G d ( d ¨ , e , e ) ) .
Again contradiction. Hence ψ ˇ ( 0 ) = 0 implies that G d ( d ¨ , e , e ) = 0 . So e = d ¨ .
Example 2.
Let Z ˇ = [ 0 , 2 ] , Let G d : Z ˇ × Z ˇ × Z ˇ R + be a mapping defined by
G d = l + k + s , f o r a l l l , k , s Z ˇ .
It can be easily check that G d is dislocated G d -metric space. Let R : Z ˇ Z ˇ be defined by
R ( l ) = l 2 i f l [ 0 , 3 4 ] 2 l i f l ( 3 4 , 2 ] .
Let l = 1 4 and R ˇ = 7 4 such that B G d ( l , r ˇ ) ¯ = [ 0 , 3 4 ] . Now we define a mapping β : Z ˇ × Z ˇ × Z ˇ [ 0 , ) by
β ( l , k , s ) = 8 7 i f l , k , s [ 0 , 3 4 ] 5 i f l , k , s ( 3 4 , 2 ] .
It is clear that β ( l , k , s ) > 1 β ( R l , R k , R s ) > 1 . Hence R is an β-admissible on Z ˇ . Let for all t ˜ 0 , ψ ˇ ( t ˜ ) = 5 7 t ˜ . Let l , k , s [ 3 4 , 2 ] . Let l = 1 , k = 1.5 , s = 2
β ( l , k , s ) G d ( R l , R k , R s ) = β ( 1 , 1.5 , 2 ) × G d ( R 1 , R 1.5 , R 2 ) = 5 × G d ( 1 , 0.5 , 0 ) = 5 × ( 1.5 ) = 7.5 .
M ˇ ( l , k , s ) = M ˇ ( 1 , 1.5 , 2 ) = max G d ( 1.5 , 1 , 0.5 ) , G d ( 1 , 1 , 0.5 ) 2 , G d ( 1 , 1 , 1.5 ) 2 , G d ( 1 , 1 , 2 ) 2 , G d ( 2 , 1 , 0 ) , G d ( 1.5 , 1 , 1.5 ) 2 , G d ( 2 , 1 , 0.5 ) 2 , G d ( 1 , 1 , 0 ) 2 , G d ( 1 , 1.5 , 2 ) , G d ( 1 , 1 , 1 ) , G d ( 1.5 , 0.5 , 0.5 ) , G d ( 2 , 0 , 0 ) 2 , G d ( 1.5 , 0 , 0 ) 2 , G d ( 1 , 0.5 , 0.5 ) 2 = max 3 , 1.25 , 1.75 , 2 , 3 , 1.5 , 1.75 , 1 , 4.5 , 3 , 2.5 , 1 , 0.75 , 1 = 4.5 .
ψ ˇ ( M ˇ ( l , k , s ) ) = ψ ˇ ( 4.5 ) = 3.2142 .
Hence from ( 21 ) and ( 22 ) , β ( l , k , s ) G d ( R l , R k , R s ) ψ ˇ ( M ˇ ( l , k , s ) ) . Let l , k , s B G d ( l , r ˇ ) ¯ = [ 0 , 3 4 ]
β ( l , k , s ) G d ( R l , R k , R s ) = 8 7 G d ( l 2 , k 2 , s 2 ) = 8 7 ( l 2 + k 2 + s 2 ) β ( l , k , s ) G d ( R l , R k , R s ) = 4 7 ( l + k + s ) .
M ˇ ( l , k , s ) = max 6 k + l 4 , 3 l + 2 k 8 , 3 l + 2 k 4 , 3 l + 2 s 4 , l + 6 s 4 , 3 k + l 4 , l + k + 2 s 4 , 3 l + 2 s 8 , l + k + s , 2 l , 2 k , s , s + k 2 , l + k 2
Now,
0 6 k + l 4 , l + 6 s 4 21 16 . 0 2 l , 2 k 3 2 . 0 3 l + 2 k 4 , 3 l + 2 s 4 15 16 . 0 3 l + 2 k 8 , 3 l + 2 s 8 15 32 . 0 3 k + l 4 , l + k + 2 s 4 , s + k 2 , l + k 2 , s 3 4 . 0 l + k + s 9 4 .
From above inequalities, it is clear that maximum value is l + k + s . i.e., M ( l , k , s ) = l + k + s .
ψ ˇ ( M ˇ ( l , k , s ) ) = 5 7 ( l + k + s ) .
Hence from ( 23 ) and ( 24 ) , β ( l , k , s ) G d ( R l , R k , R s ) ψ ˇ ( M ˇ ( l , k , s ) ) . So the contraction holds for B G d ( l , r ˇ ) ¯ = [ 0 , 3 4 ] . Also
p a = 0 ψ ˇ a ( G d ( l , R l , R l ) ) = p a = 0 ψ ˇ a ( G d ( 1 4 , R 1 4 , R 1 4 ) ) = 1 2 b a = 0 ( 5 7 ) a = 7 4 = r ˇ .
Hence all the constraints of main result holds. We have { l p } in B G d ( l , r ˇ ) ¯ , β ( l p , l p + 1 , l p + 1 ) 1 and { l p } 0 B G d ( l , r ˇ ) ¯ . Also β ( l p , l p , 0 ) 1 for all p N { 0 } . Moreover, R ( 0 ) = 0 .
Corollary 1.
Let ( Z ˇ , G d ) be complete dislocated G d metric space, R : Z ˇ Z ˇ be a β-admissible mapping and ψ ˇ Ψ ˇ . Assume that the following assertions hold:
β ( l , k , s ) G d ( R l , R k , R s ) ψ ˇ ( M ˇ ( l , k , s ) ) ,
where
M ˇ ( l , k , s ) = max G d ( k , R 2 l , R k ) , G d ( R l , R 2 l , R k ) 2 , G d ( l , R l , k ) 2 , G d ( l , R l , s ) 2 , G d ( s , R 2 l , R s ) , G d ( k , R l , R k ) 2 G d ( s , R l , R k ) 2 , G d ( R l , R 2 l , R s ) 2 , G d ( l , k , s ) , G d ( l , R l , R l ) , G d ( k , R k , R k ) , G d ( s , R s , R s ) 2 , G d ( k , R s , R s ) 2 , G d ( l , R k , R k ) 2 .
( i ) There exists l Z ˇ such that β ( l , R l , R l ) 1 ;
( i i ) If there exists { l p } in Z ˇ such that for all p N { 0 } , β ( l p , l p + 1 , l p + 1 ) 1 and l p u Z ˇ , then β ( l p , l p , u ) 1 .
Then there exists a unique e Z ˇ such that e = R e .
Corollary 2.
Let ( Z ˇ , G d ) be complete dislocated G d metric space, R : Z ˇ Z ˇ be a mapping and ψ ˇ Ψ ˇ . Assume that the following assertions hold:
G d ( R l , R k , R s ) ψ ˇ ( M ˇ ( l , k , s ) ) ,
where
M ˇ ( l , k , s ) = max G d ( k , R 2 l , R k ) , G d ( R l , R 2 l , R k ) 2 , G d ( l , R l , k ) 2 , G d ( l , R l , s ) 2 , G d ( s , R 2 l , R s ) , G d ( k , R l , R k ) 2 , G d ( s , R l , R k ) 2 , G d ( R l , R 2 l , R s ) 2 , G d ( l , k , s ) , G d ( l , R l , R l ) , G d ( k , R k , R k ) , G d ( s , R s , R s ) 2 , G d ( k , R s , R s ) 2 , G d ( l , R k , R k ) 2 .
Then there exists a unique e Z ˇ such that e = R e .
Corollary 3.
Let ( Z ˇ , G d ) be complete dislocated G d metric space, R : Z ˇ Z ˇ be a β-admissible mapping and ψ ˇ Ψ ˇ . Assume that the following assertions hold:
β ( l , k , s ) G d ( R l , R k , R s ) ψ ˇ ( G d ( l , k , s ) ) ,
( i ) there exists l Z ˇ such that β ( l , R l , R l ) 1 ;
( i i ) If there exists { l p } in Z ˇ such that for all p N { 0 } , β ( l p , l p + 1 , l p + 1 ) 1 and l p u Z ˇ , then β ( l p , l p , u ) 1 .
Then there exists a unique e Z ˇ such that e = R e .
Remark 1.
By taking non-empty proper subsets of M ˇ ( l , k , s ) instead of M ˇ ( l , k , s ) in Theorem 1, we can obtain different new results.
Remark 2.
Different new results in ordered complete dislocated G-metric space can be obtained by expressing contraction endowed with an order.

3. Application

In this section, we investigate the solution of integral equation:
l ( t ) = a b H ( t , s ) k ( s , l ( s ) ) d s ; t [ a , b ] .
Let Z ˇ = ( C [ a , b ] , R ) represents the family of all continuous functions from [ a , b ] to R.
Define R : Z ˇ Z ˇ by
R l ( t ) = a b H ( t , s ) k ( s , l ( s ) ) d s ; t [ a , b ] .
Theorem 2.
Consider Equation (25) and assume that:
1. 
H : [ a , b ] × [ a , b ] [ 0 , ) is a continuous mapping,
2. 
k : [ a , b ] × R R where K is continuous function,
3. 
max t [ a , b ] a b H ( t , s ) d s < λ , f o r   s o m e λ ( 0 , 1 ) .
4. 
For all l ( s ) , k ( s ) Z ˇ ; s [ a , b ] we have
| k ( s , l ( s ) ) k ( s , k ( s ) ) | | l ( s ) k ( s ) | .
Then Equation (25) has a solution.
Proof. 
Let Z ˇ and R be as defined above. For all l , k , s Z ˇ define the dislocated G d metric space on Z ˇ by
G ( l , k , s ) = d ( l , k ) + d ( k , s ) + d ( l , s )
where
d ( l , k ) = sup t [ a , b ] | l ( t ) k ( t ) | .
Evidently that ( Z ˇ , G d ) is a complete dislocated G d metric space, since ( Z ˇ , d ) is complete dislocated metric space.
Now, Let l ( t ) , k ( t ) Z ˇ , then by (26), (27) and (28), we have
| R l ( t ) R k ( t ) | = | a b H ( t , s ) k ( s , l ( s ) ) k ( s , k ( s ) ) d s | a b H ( t , s ) | k ( s , l ( s ) ) k ( s , k ( s ) | d s a b H ( t , s ) | l ( s ) k ( s ) | d s a b H ( t , s ) sup s [ a , b ] | l ( s ) k ( s ) | d s = sup t [ a , b ] | l ( t ) k ( t ) | a b H ( t , s ) d s λ sup t [ a , b ] | l ( t ) k ( t ) | .
Hence,
sup t [ a , b ] | R l ( t ) R k ( t ) | λ sup t [ a , b ] | l ( t ) k ( t ) | .
Similarly, we have
sup t [ a , b ] | R k ( t ) R s ( t ) | λ sup t [ a , b ] | k ( t ) s ( t ) |
and
sup t [ a , b ] | R l ( t ) R s ( t ) | λ sup t [ a , b ] | l ( t ) s ( t ) | .
Therefore, from (29), (30) and (31), we have
sup t [ a , b ] | R l ( t ) R k ( t ) | + sup t [ a , b ] | R k ( t ) R s ( t ) | + sup t [ a , b ] | R l ( t ) R s ( t ) | λ [ sup t [ a , b ] | l ( t ) k ( t ) | + sup t [ a , b ] | k ( t ) s ( t ) | + sup t [ a , b ] | l ( t ) s ( t ) | ]
which implies
G ( R l , R k , R s ) λ G ( l , k , s ) .
Taking ψ ˇ : [ 0 , ) [ 0 , ) by ψ ˇ ( t ) = λ t for all t > 0 and β : Z ˇ × Z ˇ × Z ˇ [ 0 , ) by
β ( l , k , s ) = 1 , if l k s 0 , otherwise .
Thus, we have
β ( l , k , s ) G ( R l , R k , R s ) ψ ˇ ( G ( l , k , s ) )
Thus, all the assumptions of Corollary 3 are satisfied and the R has fixed point in Z ˇ as a solution of (25). □

Author Contributions

Investigation, A.E.A.-M. and J.A.; Methodology, J.A.; Writing—original draft, J.A. and A.S.; Writing—review and editing, A.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
  2. Karapinar, E.; Agarwal, R.P. Further fixed point results on G-metric spaces. Fixed Point Theory Appl. 2013, 2013, 154. [Google Scholar] [CrossRef] [Green Version]
  3. Singh, D.; Joshi, V.; Imdad, M.; Kumam, P. Fixed point theorems via generalized F-contractions with applications to functional equations occurring in dynamic programming. J. Fixed Point Theory Appl. 2017, 19, 1453–1479. [Google Scholar] [CrossRef]
  4. Altun, I.; Arifi, N.A.; Jleli, M.; Lashin, A.; Samet, B. A New Approach for the Approximations of Solutions to a Common Fixed Point Problem in Metric Fixed Point Theory. J. Funct. Spaces 2016. [Google Scholar] [CrossRef] [Green Version]
  5. Asadi, M.; Karapınar, E.; Salimi, P. A new approach to G-metric and related fixed point theorems. J. Inequal. Appl. 2013, 2013, 12. [Google Scholar] [CrossRef] [Green Version]
  6. Aydi, H.; Bilgili, N.; Karapınar, E. Common fixed point results from quasi metric space to G metric space. J. Egyptian Math. Soc. 2015, 23. [Google Scholar] [CrossRef] [Green Version]
  7. Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math. Appl. 2011, 62, 4222–4229. [Google Scholar] [CrossRef] [Green Version]
  8. Ahmad, J.; Al-Rawashdeh, A.S.; Azam, A. Fixed point results for {α,ξ}-expansive locally contractive mappings. J. Ineq. Appl. 2014, 2014, 364. [Google Scholar] [CrossRef] [Green Version]
  9. Jaradat, M.M.M.; Mustafa, Z.; Ullah Khan, S.; Arshad, M.; Ahmad, J. Some fixed point results on G-metric and Gb-metric spaces. Demonstratio Math. 2017, 50, 190–207. [Google Scholar] [CrossRef] [Green Version]
  10. Ullah Khan, S.; Arshad, M.; Mustafa, Z.; Ahmad, Z.; Jaradat, M.M.M. Common fixed points for multivalued mappings in G-metric Spaces with Applications. J. Nonlinear Sci. Appl. 2017, 10, 2550–2564. [Google Scholar]
  11. Mustafa, Z.; Jaradat, M.M.; Aydi, H.; Alrhayyel, A. Some common fixed points of six mappings on Gb-metric spaces using (E.A) property. Eur. J. Pure Appl. Math. 2018, 11, 90–109. [Google Scholar] [CrossRef] [Green Version]
  12. Shoaib, A.; Ansari, A.H.; Mahmood, Q.; Shahzad, A. Fixed Point Results For Complete Dislocated Gd-metric Space Via C-Class Functions. Bull. Math. Anal. Appl. 2017, 9, 1–11. [Google Scholar]
  13. Shoaib, A.; Arshad, M.; Kazmi, S.H. Fixed Point Results for Hardy Roger Type Contraction in Ordered Complete Dislocated Gd Metric Space. Turkish J. Anal. Number Theory 2017, 5, 5–12. [Google Scholar]
  14. Shoaib, A.; Arshad, M.; Rasham, T.; Abbas, M. Unique fixed points results on closed ball for dislocated quasi G-metric spaces. Trans. A Razmadze Math. Inst. 2017, 30. [Google Scholar]
  15. Shoaib, A.; Nisar, Z.; Hussain, A.; Ozer, O.; Arshad, M. Modified Banach Fixed Point results for locally contractive Mappings in complete Gd metric like space. Electr. J. Math. Anal. Appl. 2018, 6, 144–155. [Google Scholar]
  16. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for αψ contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
  17. Nieto, J.J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22, 223–239. [Google Scholar] [CrossRef]
  18. Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
  19. Hussain, N.; Ahmad, J.; Azam, A. Generalized fixed point theorems for multi-valued α-ψ-contractive mappings. J. Ineq. Appl. 2014, 2014, 348. [Google Scholar] [CrossRef] [Green Version]
  20. Hussain, N.; Karapınar, E.; Salimi, P.; Akbar, F. α-admissible mappings and related fixed point theorems. J. Inequal. Appl. 2013, 2013, 114. [Google Scholar] [CrossRef] [Green Version]
  21. Rasham, T.; Shoaib, A.; Alamri, B.A.S.; Asif, A.; Arshad, M. Fixed Point Results for α*ψ-Dominated Multivalued Contractive Mappings Endowed with Graphic Structure. Mathematics 2019, 7, 307. [Google Scholar] [CrossRef] [Green Version]
  22. Shoaib, A.; Rasham, T.; Hussain, N.; Arshad, M. α*-dominated set-valued mappings and some generalised fixed point results. J. Natl. Sci. Found. Sri Lanka 2019, 47. [Google Scholar] [CrossRef] [Green Version]
  23. Shoaib, A. Fixed Point Results for α*-ψ-multivalued Mappings. Bull. Math. Anal. Appl. 2016, 8, 43–55. [Google Scholar]
  24. Shoaib, A.; Fahimuddin, A.M.; Ali, M.U. Common Fixed Point results for α-ψ-locally contractive type mappings in right complete dislocated quasi G-metric spaces. Thai J. Math. in press.
  25. Arshad, M.; Shoaib, A.; Vetro, P. Common Fixed Points of a Pair of Hardy Rogers Type Mappings on a Closed Ball in Ordered Dislocated Metric Spaces. J. Funct. Spaces 2013. [Google Scholar] [CrossRef]
  26. Arshad, M.; Azam, A.; Abbas, M.; Shoaib, A. Fixed point results of dominated mappings on a closed ball in ordered partial metric spaces without continuity. UPB Sci. Bull. Ser. A 2014, 76. [Google Scholar] [CrossRef]
  27. Azam, A.; Waseem, M.; Rashid, M. Fixed point theorems for fuzzy contractive mappings in qusai-pseudo-metric spaces. Fixed Point Theory Appl. 2013, 27, 14. [Google Scholar] [CrossRef] [Green Version]
  28. Rasham, T.; Shoaib, A.; Hussain, N.; Alamri, B.A.S.; Arshad, M. Multivalued Fixed Point Results in Dislocated b- Metric Spaces with Application to the System of Nonlinear Integral Equations. Symmetry 2019, 11, 40. [Google Scholar] [CrossRef] [Green Version]

Share and Cite

MDPI and ACS Style

Al-Mazrooei, A.E.; Shoaib, A.; Ahmad, J. Unique Fixed-Point Results for β-Admissible Mapping under (β-ψˇ)-Contraction in Complete Dislocated Gd-Metric Space. Mathematics 2020, 8, 1584. https://doi.org/10.3390/math8091584

AMA Style

Al-Mazrooei AE, Shoaib A, Ahmad J. Unique Fixed-Point Results for β-Admissible Mapping under (β-ψˇ)-Contraction in Complete Dislocated Gd-Metric Space. Mathematics. 2020; 8(9):1584. https://doi.org/10.3390/math8091584

Chicago/Turabian Style

Al-Mazrooei, Abdullah Eqal, Abdullah Shoaib, and Jamshaid Ahmad. 2020. "Unique Fixed-Point Results for β-Admissible Mapping under (β-ψˇ)-Contraction in Complete Dislocated Gd-Metric Space" Mathematics 8, no. 9: 1584. https://doi.org/10.3390/math8091584

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop