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1. Introduction and Preliminaries

Fixed-point theory has several applications in different fields such as engineering, computer
sciences, and social sciences and plays a vital role in the study of different aspects of mathematics.
By using fixed-point theory results, a lot of methods have been constructed for the solutions of
problems in sciences. Let S be a mapping from Y to Y. If Sb = b for any b € Y then 6 is known as
a fixed point of S.

One of the generalizations of a metric is G metric, which was developed by Sims and
Mustafa [1]. Karapmar et al. [2] and Singh et al. [3] discussed fixed-point results in G metric
spaces, which distinguish G metric spaces from other spaces. Many results in G metric spaces can be
seen in [1,2,4-15].

a-admissible mapping and corresponding «-i contractive condition was introduced by
Samet et al. [16]. They generalized the fixed-point results endowed with a partial order (see [4,17,18]).
Several researchers studied and extended the results in [16] in different ways (see [8,19-23]).
Recently, Shoaib et al. [24] obtained fixed-point theorems for a-1p-locally contractive type mappings in
right complete dislocated quasi G-metric spaces.

Arshad et al. [25] observed that there were mappings which had fixed points but there were
no results to ensure the existence of fixed points of such mappings. They introduced a condition on
closed ball to obtain common fixed points for such mappings. For further theorems on closed ball,
see [14,26-28].

This paper extends the results of Karapinar et al. [2] in four different ways by using

(i) B-admissible mapping;
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(ii) closed G, ball instead of whole space;
(iii) pB-¢ contraction;
(iv) dislocated G;-metric space instead of metric space.

Moreover, our contraction cannot be expressed in two variables, so there is no corresponding
result in metric space for our results. This paper also generalizes the recent results given in [13-15,24].
The following definitions and results will be useful to understand the paper.

Definition 1. [15] Let Z be non-empty and Gy : Z x Z x Z — R*. Let Gy satisfying the constraints
given below:

(1) If G4(13,1p,13) = 0, then [} =l = [3.
(ii) G4(11, 12, 13) = Gy(Ip, 13,11) = Gy(13,11,12) = G4(ly,13,1) = G4(lp, 11,13) = Gy(13, 12, 17).
(1”) Gd(ILIZ/ 13) S Gd([l,[4, [4) + Gd<[4/ [2’ [3)

forall ly,lp,13,14 € Z. Then (Z,Gy) is said to be dislocated G, metric space. It is noted that if in dislocated
Gg-metric space G(11,1p,13) = 0 whenever | = ly = I3, then (Z, G,) becomes a G metric space.

Example 1. [15] Let Z = [0,4]. Gy defined as Gy =1y + 1o + 13V Iy, I, I3 € Z. then it can be easily check that
G, is dislocated Gg-metric space.

Definition 2. [15] Let {I,} be a sequence in dislocated G, metric space. | € Z is the limit of {lp} if
p,lqlgloocd([p’ [,lg) = 0, and one says {ly} is G4-convergent to .

Definition 3. [15] Let (Z, G4) be a dislocated Gg-metric space, then

(i) {lp} is C — G4- sequence or Cauchy Gy sequence if for all € > 0, there exists p* € p: Gy(lp,ly,lr) < €
forall p,q,v > p*.
(ii) (Z,Gy) is called complete if every C-Gy- sequence in (Z,Gy) is Gy4-convergent.

Definition 4. [15] Open G, ball and closed G, ball with center lg € Z and radius ¥ > 0 in dislocated G -metric
space are defined as: B, (o, ) = {te Z:Gy(lp, 1) < 7}, Bg, (lo,7) = {te Z: Gy(lp,1,1) < ¥} respectively.

Proposition 1. [15] Let (Z, G,) be a dislocated G-metric space, then conditions given below are equivalent:

(i) Ga(lp,Llp) — 0 asp — oo.
(11) Gd(I/[P/[) — 0asp — oo.
(lll) Gd(l,[q,[p) — 0asyp,q — oo.

Definition 5. [16] Let i : [0,00) — [0, 00) holds the axioms:
(¥1) ¢ is non-decreasing.
(¥2) for all F > 0, we have

iio (F) = io 3 (F) < oo

The power a denotes the a'™ iteration of 1. All such functions form a family which is denoted by ¥. ¢ € ¥
is called c-comparison function.

Definition 6. Let Z be a non-empty set and B : Z x Z x Z — [0,00). We say that ® : Z — Z is B-admissible

mapping, if
B(ly,lo,13) > 1= B(Ry, Rp, Riz) > 1, forly,lp, 1z € Z.
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2. Main Result

Theorem 1. Let (Z,Gy) be complete dislocated G4 metric space, & : Z — Z be a B-admissible mapping,
peV¥,7#>0andl, € Bg (o, 7). Assume that the following assertions hold:

B(1, k, ) Ga (R, Tk, Ri) < P(M(L,k,{)) for all |, k,{ € Bg, (o, 7), 1)

where |
G (k, 3, k), SO

V Gd([,ZSRI,k), Gd(l,zﬂﬂ,D, G (f, %21, 9y),
MLk f) = max{  GukMUR) G (RM) G, (RN ?
2 2 2 ’

Gd([, k, |), Gy ([, N, E)i[), Gy (k, Rk, Q‘k),
Gi((RIR) Gk RR))  Ga(LRkRk)
2 ’ 2 ’ 2

Also )
2 (Gy(lo, Mo, Rls)) < 7, forallb € NU{0}. 3)
a=0

(1) ﬁ(lolgﬂo/m[o) Z 1
(ii) Ifthereexists {Ip} inmsuch that for ally € NU {0}, B(lp, ly11,lp41) > landly — e € W,
then B(lp,lp,e) > 1.

Then there exists a unique e € Bg, (lo, 7) such that e = Re.
Proof. Asl, € Bg,(lo, 7). Define a sequence
lpt1 = Ry forallp € NU {0}.
Letly,1 # lp, for allp € NU {0}, otherwise if such p exists then $(ly) = lp. By using (3),
p
Ga(lo,11,11) = Gg(lo, Rlo, R ) < Y 9P (Gy(lo, Flo, Ro)) <

a=0

This implies that [; € B, (lo, 7). Since B(lo, Rlo, Rls) > 1 = B(l,l4,11) > 1. Since R is B-admissible
on Bg, (Lo, 7) so B(Rlo, Riy, Riy) > 1.

Gy ([1r b, [2) = Gy (8&[0, Ry, 9‘[1)
B(lo,11,11) Gy (Ko, Ry, Ry )
P(M(lo,11,1h)). @)

<
<

Ga(ly, %20, R1y),
GaRe R LR Gyl R k)
7 2 7

2
GalloMeh) G (1, 920, 90y),
Ga(l e R) Gy (1Mo, )
3 ‘ 2 ’
2
G G0, 1,1),

Gd([o,gﬂo,gﬂo), Gd(l1,§)i[1,%)ill),
Gd(ll,gﬂl,mll) Gd([l,gﬂl,sml)

2 2
Gy (I 1y Ry )
2

M(lo,l1,1y) = max

Ga(lyly,lp)
Ga(lylp, ), 241222,
= max { Gy(lo by l) ®)
Gd([O/[lI[l)l 2
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Case 1: If M(lo,11,11) = G4(l3,1p,1). From (4)
Ga(l1, o, 12) < P(Gally, 12, 2))-

which give contradiction to fact that ¢(f) < f.
Case 2: If M(lo,11,11) = M then by using (4), we have

¥ Gd(ll 1) )

¥ Gd(ll,lz,lz) J; Ga(l, 11, 12) )

< P(Ga(l o))

Ga(ly,l2, 2)

IN

IN

which give contradiction to ¢(f) < f. From case 1 and case 2, (5) becomes

. (o, b, |
M(lo,13,11) = max{Gg(lo,11,11), M}. (6)

Case 3: If M(lo,11,11) = ([°’[2’[2) then by using (6), we have

Gd([m[lr[l) < M
< Gillo,l1,11) + Ga(ly,Ip, 12)
- 2
Ga(lo,l1,11) < Gy(ly, o, ). @)
If c
v lo, I, [
M(lo,l1,ly) = d(fzz) 8)
Using (4), (7) and (8), we have
v Gyl lp,!
Galt ) < (il
< l)‘b’(Gd(O/[lr[l) ;Gd([lr[2/[2)>
Y, Gd [ /[2/[2 +Gd [ /[2/[2
< $(Gally, I, ).
which give again contradiction. Hence from case 1, case 2 and case 3, we get
M([O/[llll) = Gd([O/ [l/ [1) (9)
Now, (4) becomes
Ga(l, k) < P(Ga(lo, 1)) (10)
Now
Gd([OI[ZIIZ) S Gd([O/Il/[l) + Gd([l/[ZI [2)
< Gyllo 1, 11) +P(Ga(lo, 11, 14))

1
Y % (Gallo 1y, 14)) < F
a=0
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This shows that [ € Bg,(lo, 7). Let I3, ly, ...l € Bg, (lo, 7) for some I € N. Since % is f-admissible

on Bg, (o, 7). So B(lp—1, ) = 1 this impl.

Ga (b g1, g1

From (2)

M([h—lr[hr[h) =

Ga(lh—1, 1, 1),

ies (R

h—17

= Gy(Ry—_q, Ry, R1y,)
ﬁ([hfl/ [h/ [h)Gd (g‘[hflr Suh/ m[h)

<
< P(M(lp—1, 1))

Ga(ln, 1y lpyr
max{ Gy (ln, 11, ht1), ¥/

Ga(l—1, 1, tht1) )
) )

Case 1: If M(1_1, 1, 1) = Ga(ly, lhi1, g1 )- From (11), we have

Gd([h/[h+1/

which give contradiction to the fact that ¢

Case 2: If M(l,_1,ly, 1) = Gl by 1) [2’1 bict)

IN

Ga (b g, 1)

<

1) < P(Galls i1 tpe1))-
(f) <t
then by using (11), we have

Ga (b ng1)
(Gl )

-

(Gd<[hr[h+lr[h+l) + G (b1, s ig1)
2

P(Ga(ly, lrg1, thg))-

-

which give contradiction to ¢(f) < f. From case 1 and case 2, (12) becomes

Ga(th—1, g1, thg1) }

M(Uy—1, 1, 1) = max{Gg(ly_1, s, ), >

Case 3: If M([h—lflh/ ) = M

Ga(lp—1, 1) <

Gd ([hfll[h/ [h) <

If

1) then by using (13), we have

Ga(lh—1, g1, 1)
2
Ga(th—1, ) + Ga (W 1, 1)
2
Ga (g1, ths1)-

Ga(lh—1,t+1,ths1)

M([h—ll[h/[h) = .

Using (11), (14) and (15), we have

Ga(l g1 lhs1) <

IN

IN

2

Ga(lh—1, 41, thg1)
( > )

Ga(lh—1, 1, tn) + Ga(lp, g1, i)
( > )
(Gd([hr[h+1r[h+1) + G (b, g1, hg1)

-

-

-

2
P(Ga (s g1, lhs1))-

Ry, Ri,) > 1. Using (1), we have

)

)

(11)

(12)

(13)

(14)

(15)
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which give again contradiction. Hence from all cases, we have
M (th—1, %, 1) = Ga(li—1, b, ). (16)
(11) become
Ga (b Y1, 1)

lp(Gd ([hfll I, [h))
- < PGyl 1y, 17)). (17)

IN A

Now

IN

Ga(lo,11,1) + G4(13, 1o, 1)
Fooee+ G (U, Gy, Gy
Ga(lo, 11, 11) +9P(Galo, 1, 1))
Fo + PGy (16,14, 1)

h
= Y §"(Gallo, 1, 1)) < F.
a=0

Ga(lo, lnt1,lhs1)

IN

This shows that [, 11 € Bg,(lo, 7). Hence Iy € Bg, (Lo, 7), for all p € N by mathematical induction.
Now (17) become
Ga(tp b1, fp+1) < 9P(Galo, 1, 11)) forallp € N.

As R is B-admissible on Bg, (Lo, 7). So B(lp, lp11,lp+1) > 1. Now we will prove Cauchy sequence.

Let p,q € N for e > 0, there exists p, € Nsuch that Y ¢*(Gy(lo,l1,11)) < eforallq > p > p,.
azyp,

Gallp, 19, 1q) < Gallp, lpt1, 1) + Gallpr, lpt2, Ip+2)
+... +Gd(lq,1,[q,[q)

=

= P(Ga(l,lg1,l141))
P

a

P(Ga(l, 41,41))

IN
M I

a

[\

U
P (Ga(lo, 1y, 1)) <.
pO

IN

a

[\

Thus, {lp} is a C-G4-sequence in Bg, (lo, 7). As every closed G, ball is closed subset. So {lp} is
convergent in Bg, (lo, ) and the point of convergence e € Bg, (lo, 7). Hence ly — e as p — 0. So

plgl;}o Gyle, [p,[p) = 0.

By assumption, B(lp, lp,e) > 1 for allp € NU {0} so B(Rlp, Rip, Re) > 1. Now we must prove that
e =%Re).

Gd (m[p, m[p, Sﬁe)
,B(Ip, lp, E)Gd (m[p, m[p, 9‘6)

~ v

P(M(lp, lp,€)). (18)

Ga(lp+1,lp+1, Re)

IN A
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Gallpy1tpialpst)

7

Ga(lp, lp+2,Tp+1), 2
Ga(lplp-1lp)  Gallplp.1e)
2 ’ 2 !

M(lp, Iy, €) = max Ga(e lp+2,%e), Ga(lp, lps1,lp+1),
Gd(e,[p+1,[p+1) Gd([p+1,[p+2/m5)
2 7

2 7
Gy(ly,Ne R
Gl 1y, ), e S

Replace in (18) and on applying limit p — co. We get

Gd(e/ €, Sﬁe) = lp (max {Gd(e, e, g{e), CW})

. Gy(e, e, Ne),
¢ | max Gy (Reee) +Gyle,eRe)
2

< P(Gyle e, Re)). (19)

IN

Again, contradiction to §(f) < f. Hence §(0) = 0 = G4(e,e,%e) = 0 = e = Te. For uniqueness,
consider e = Teand d = Td

Gi(d,e,e) = Gy(Rd,Me,Ne)
B(d, e, e)Gy(Rd, Re, Re)

<
< P(M(d,ee)). (20)

. i, Galdde)
M(d, e, e) = max Ga (“e, d, f)’ - .
Gd (dr dr d)r Gd (3, e, 6)

If M(d,e,e) = Gyle,e,e).

Gyle,e,e) = Gy(Me,Re, Re)
B(e, e,e)G;(Re, Re, Re)
P(Gale e e)).

IN A

which give contradiction. Similarly
Ga(d,d,d) < §(Gy(d, d,d)).

and
Gald, e e) < P(Gyle,d,e)).

Give a contradiction. Hence (20) become

J (Gd(‘id}‘f)> '

. Gd(d; ee)+ Gyle, c'l',e)
(St fet).

< (Ga(d e e)).

Gy(d, e e)

IN

IN

Again contradiction. Hence §(0) = 0 implies that G;(d,e,e) = 0. Soe = d.
O

Example 2. Let Z = [0,2], Let G4 : Z x Z x Z — R be a mapping defined by

Gy =Il+k+i, forall Lk,j€ Z.
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It can be easily check that G is dislocated Gg-metric space. Let % : Z — 7 be defined by

m([):{zé ifte o, 1]

3
74
—1 ifte (3,2
Let o = § and # = § such that Bg, (I, 7) = [0, 3]. Now we define a mapping B : Z x Z x Z — [0,00) by

8 ¥
[ 8 ifukielo?)
Bk §) = { 5 ifLkie (3,2

It is clear that B(1,k,f) > 1 = B(R, Rk, Rf) > 1. Hence N is an B-admissible on Z. Let forall f > 0,
P(F) = 3F Let Lk,f€ [3,2]. Let =1,k =15, =2

B(L, k, 1) G4 (%1, Rk, )

B(1,1.5,2) x G4(%1,R1.5,%2)
5 x G4(1,0.5,0)
= 5x(15)=75. 1)

M@, kf) = M(1,15,2)

G4(1.5,1,0.5), G1105)
Gi(1115) Gy(1,12)
G4(2,1,0), Sa5L13)
Gy(2,1,05) Gy(11,0)

2 ’ > ,

Ga(1,15,2),G4(1,1,1),

G4(15,05,0.5), Ca(200)
G4(1.500) G4(1,05,05)
7 2 ’ 2

= maX

—  max 3,1.25,1.75,2,3,1.5,1.75,
1,45,3,25,1,0.75,1

= 45.

~ v

P(M(L, k() = P(4.5) = 3.2142. (22)
Hence from (21) and (22), B(1, k, 1) G4 (R, Rk, R)) < ¢(M(L,k,{)). Let L k,{ € Bg, (I, 7) = [0, 3]

8 Lk
B(L, k, )Gy (R, Rk, Rf) = 7Gd(§’§’§)

8 kg

AR
B(Lk, 1) G (N, Tk, %) = §(1+k+f). )

6k+l 342k 3[+2k
4 /"8 7 4
3l+2f [+6f 3K+l

7 4 7 4 7

Y _ [+k+2f 3142
M(L, k,{) = max T", T"'
[+ k41,21 2k,

i [k Lk

7272

7
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Now,
6k + 1 [+6f 3
< . < < —.
0 < 4 1 _16 0_21,2k_2
0 < 3I+2k’31+2f 0<3[+2k/3[+2f
- 4 4 _16 8 8 _32
0 < 3k+1 I+k+2f {+k [+k fgg.

4 7 4 27 27
0 < FH(—HSZ-

4

From above inequalities, it is clear that maximum value is |+ k + . i.e., M(L,k,{) = [+ k +1.

P(M(L k1) = 5 +k+1). (24)

| Q1

Hence from (23) and (24), B(1, k, ) G4 (S, Rk, Rf) < §(M(1,k, f)). So the contraction holds for B, (1o, ¥) =
[0,2]. Also

$*(Gy (1o, Rlo, Mo )

=

a=0

lP”(Gd( 9‘ S ))

|
=

0

Lo

S
Il

NI
\I\U‘l
||
X<

Hence all the constraints of main result holds. We have {lp} in BGd(

os )/ (Ipr[p—Hr[p—H) > 1and
{lp} — 0 € Bg, (Lo, 7). Also B(lp,lp,0) > 1 for all p € NU {0}. Moreover, R(0) =

Corollary 1. Let (Z, G;) be complete dislocated G metric space, X : Z — Z be a B-admissible mapping and
P € Y. Assume that the following assertions hold:

B(1, k, 1) Gy (%1, Rk, %)
< PMLKD),
where |
Ga(k, %21, 9ik), GO
Gy (LR k) Gd[mlf)
2

Gd ("’ 9‘2[, 5{0 M
Ga(FUMe) Gy RN g‘ﬂ, Ga(L k1),

Ga (1,3, 3), Gy (k, Rk, k), SaERRD
Ga(kRUFD Gy (LRkRk)
2 ’ 2

M(1,k,f) = max

(i) There exists l, € Z such that B(lo, Rlo, Rls) > 1;

(ii) If there exists {lp} in Z such that for all p € NU{0}, B(lp,lp41,lp41) > landly — u € Z,
then B(lp,lp, u) > 1.

Then there exists a unique e € Z such that e = Se.
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Corollary 2. Let (Z,G,) be complete dislocated G4 metric space, } : Z — Z be a mapping and ¢ € ¥.
Assume that the following assertions hold:

G4 (%L, Rk, RN < P(M(L, k1)),

where

Gd (k, S‘Z[, Sﬁk), Gd(m[,g‘zl,mk) , Gd([,ziﬁl,k) ,
ClMD, G, (5 02, ), QbR

Mk {) =max §  CullUM) CEMIAND . p),

Ga (1,3, 3), Gy (k, Rk, k), SeERRD
Ga(kRUJD Gy (LRkRk)
2 4 2

Then there exists a unique e € Z such that e = Rte.

Corollary 3. Let (Z, G;) be complete dislocated G, metric space, X : Z — Z be a B-admissible mapping and
P € Y. Assume that the following assertions hold:

:3([/ k, f) Gd (9‘[, Rk, S‘f) < ¢(Gd ([/ k, O)/

(i) there exists lo € Z such that B(lo,Rlo, Rlo) > 1;
(ii) If there exists {ly} in Z such that for all p € NU {0}, B(ly, lp11,lp41) = Land ly — u € Z, then

ﬁ([p, [p,u) > 1.
Then there exists a unique e € Z such that e = Se.

Remark 1. By taking non-empty proper subsets of M(1, k, f) instead of M(1,k,{) in Theorem 1, we can obtain
different new results.

Remark 2. Different new results in ordered complete dislocated G-metric space can be obtained by expressing
contraction endowed with an order.

3. Application

In this section, we investigate the solution of integral equation:

b
(1) = [ H(,9)K(s,())ds; ¢ € [a,b]. (25)
a
Let Z = (Cl[a, b], R) represents the family of all continuous functions from [a, b] to R.
Define &t : Z — Z by
b
() = / H(t,5)K(s,(s))ds; t € [a,b]. (26)
a

Theorem 2. Consider Equation (25) and assume that:

H :[a,b] x [a,b] — [0, 00) is a continuous mapping,
K: [a,b] x R — R where K is continuous function,
mMaX;e(,p] fuh H(t,s)ds < A, for some A € (0,1).
Forall\(s),k(s) € Z; s € [a, b] we have

[K(s,1(s)) — K(s,k(s))| < [i(s) —k(s)]-

s Lo

Then Equation (25) has a solution.
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Proof. Let Z and % be as defined above. For all |, k,{ € Z define the dislocated G, metric space on Z by

G(L k) =d(,k)+d(k ) +d(,0) (27)
where
d(L,k) = sup |i(t) — k(t)]- (28)
tela,b]

Evidently that (Z, G,) is a complete dislocated G, metric space, since (Z, d) is complete dislocated
metric space.
Now, Let [(t),k(t) € Z, then by (26), (27) and (28), we have

|MRU(t) — Rk ()] = /uh H(t,s)[K(s,(s)) — K(s,k(s))]ds‘

b
< / H(t, s)|K(s, 1(s)) — K(s, k(s)|ds
l b
< / H(t,s)|i(s) — k(s)|ds
a
b
< / H(t,s) sup |i(s) — k(s)|ds
a s€(a,b]
b
—  sup |[(t)—k(t)|/ H(t,s)ds
te(a,b] a
< A sup |I((t) —k(t)].
te(a,b)
Hence,
sup |Ri(t) —Rk(t)| < A sup |i(t) — k(t)]. (29)
telab] tela,b]
Similarly, we have
sup [Rk(t) —Ri(t)| < A sup [k(t) —i(t)] (30)
te[a,b] te[u,b]
and
sup [RI(t) —Ri(t)| < A sup |((t) —{(t)]. (31)
telab) tela,b]

Therefore, from (29), (30) and (31), we have

sup [Ri(t) — Rk(t)| +

te(a,b]

sup |Rk(t) — Ri(t)| +
te(a,b]

sup [RU(t) —Ri(t)]
te(a,b]

<A [ sup |((t) —k(t)| +

te(a,b)

sup [k(t) —{(t)] +
te(a,b]

sup [1(t) —{(t)|]
te(a,b]

which implies
G (R, Rk, R) < AG(Lk,f).
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Taking ¢ : [0,00) — [0,00) by §i(t) = At forallt > 0and B:Z x Z x Z — [0,00) by

0, otherwise.

Thus, we have

B(L, k, )G (R, Rk, Ri) < P(G(L k1))

Thus, all the assumptions of Corollary 3 are satisfied and the % has fixed point in Z as a solution

of 25). O
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