Weighted Total Least Squares (WTLS) Solutions for Straight Line Fitting to 3D Point Data
Abstract
:1. Introduction
- (i)
- pointwise weights, i.e., coordinate components with same precision for each point and no correlations between them,
- (ii)
- general weights, i.e., correlated coordinate components of individual precision including singular dispersion matrices.
2. Straight Line Fitting to 3D Point Data
2.1. Direct Total Least Squares Solution for Equally Weighted and Uncorrelated Observations
2.2. Direct Weighted Total Least Squares Solution
2.3. Iterative Weighted Total Least Squares Solution
- (i)
- derived from single point determinations, e.g., using polar elementary measurements of slope distance , direction and tilt angle , e.g., from measurements with a terrestrial laser scanner, so that the coordinates result from the functional relationshipUsing the standard deviations , and of the elementary measurements, a variance-covariance matrix can be provided for the coordinate components , , of each point by variance-covariance propagation based on (25). Covariances among the n different points do not occur in this case.
- (ii)
- derived from a least squares adjustment of an overdetermined geodetic network. From the solution within the GM or GH model, the variance-covariance matrix of the coordinate components , , of all points can be obtained. This matrix is a full matrix, considering also covariances among the n different points. It may even have a rank deficiency in case the coordinates were determined by a free network adjustment.
Algorithm 1 Iterative WTLS solution |
|
2.4. WTLS Solution with Singular Dispersion Matrices
- -
- rank of , with = number of condition equations, since for each of the observed n points two condition equations from Equation (2) are taken into account;
- -
- rank of , with m = number of unknown parameters.
2.5. A Posteriori Error Estimation
3. Numerical Examples
- equal weights, i.e., coordinate components , , as equally weighted and uncorrelated observations,
- pointwise weights, i.e., coordinate components with same precision for each point and without correlations,
- general weights, i.e., correlated coordinate components of individual precision including singular dispersion matrices.
3.1. Equal Weights
3.2. Pointwise Weights
3.3. General Weights
4. Conclusions
- -
- Direct WTLS solution for the case of pointwise weights, i.e., coordinate components with same precision for each point and without correlations,
- -
- Iterative WTLS solution for the case of general weights, i.e., correlated coordinate components of individual precision including singular dispersion matrices. This algorithm works without linearizing the problem by Taylor series at any step of the solution process.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jovičić, D.; Lapaine, M.; Petrović, S. Prilagođavanje pravca skupu točaka prostora [Fitting a straight line to a set of points in space]. Geod. List. 1982, 36, 260–266. (In Croatian) [Google Scholar]
- Kahn, P.C. Simple methods for computing the least squares line in three dimensions. Comput. Chem. 1989, 13, 191–195. [Google Scholar] [CrossRef]
- Drixler, E. Analyse der Form und Lage von Objekten im Raum [Analysis of the Form and Position of Objects in Space]; Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften (DGK): München, Germany, 1993; Volume C, No. 409. (In German) [Google Scholar]
- Späth, H. Zur numerischen Berechnung der Trägheitsgeraden und der Trägheitsebene [Numerical calculation of the straight line of inertia and the plane of inertia]. avn Allg. Vermess. Nachr. 2004, 111, 273–275. (In German) [Google Scholar]
- Kupferer, S. Verschiedene Ansätze zur Schätzung einer ausgleichenden Raumgeraden [Different approaches for estimating an adjusted spatial line]. avn Allg. Vermess.-Nachr. 2004, 111, 162–170. (In German) [Google Scholar]
- Snow, K.; Schaffrin, B. Line Fitting in Euclidian 3D-Space. Stud. Geophys. Geod. 2016, 60, 210–227. [Google Scholar] [CrossRef]
- Ghilani, C. Adjustment Computations, Spatial Data Analysis, 6th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Niemeier, W. Ausgleichungsrechnung [Adjustment Computations], 2nd ed.; Walter de Gruyter: New York, NY, USA, 2008. (In German) [Google Scholar]
- Perović, G. Least Squares (Monograph); Faculty of Civil Engineering, University of Belgrade: Belgrade, Serbia, 2005. [Google Scholar]
- Pope, A. Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. In Proceedings of the 38th Annual Meeting of the American Society of Photogrammetry, Washington, DC, USA, 12–17 March 1972; pp. 449–477. [Google Scholar]
- Lenzmann, L.; Lenzmann, E. Strenge Auswertung des nichtlinearen Gauss-Helmert-Modells [Rigorous solution of the nonlinear Gauss-Helmert-Model]. avn Allg. Vermess. Nachr. 2004, 111, 68–73. (In German) [Google Scholar]
- Golub, G.; Van Loan, C. An analysis of the total least squares problem. SIAM 1980, 17, 883–893. [Google Scholar] [CrossRef]
- Van Huffel, S.; Vandewalle, J. Algebraic Connections Between the Least Squares and Total Least Squares Problems. Numer. Math. 1989, 55, 431–449. [Google Scholar] [CrossRef]
- Van Huffel, S.; Vandewalle, J. The Total Least Squares Problem: Computational Aspects and Analysis; SIAM: Philadelphia, PA, USA, 1991. [Google Scholar]
- Malissiovas, G.; Neitzel, F.; Petrovic, S. Götterdämmerung over total least squares. J. Geod. Sci. 2016, 6, 43–60. [Google Scholar] [CrossRef] [Green Version]
- Schaffrin, B.; Wieser, A. On weighted total least-squares adjustment for linear regression. J. Geod. 2008, 82, 415–421. [Google Scholar] [CrossRef]
- Shen, Y.; Li, B.; Chen, Y. An iterative solution of weighted total least-squares adjustment. J. Geod. 2011, 85, 229–238. [Google Scholar] [CrossRef]
- Amiri-Simkooei, A.; Jazaeri, S. Weighted total least squares formulated by standard least squares theory. J. Geod. Sci. 2012, 2, 113–124. [Google Scholar] [CrossRef]
- Snow, K. Topics in Total Least-Squares within the Errors-In-Variables Model: Singular Cofactor Matrices and Prior Information. Ph.D. Thesis, Division of Geodetic Science, School of Earth Sciences, The Ohio State University, Columbus, OH, USA, 2012. Report. No. 502. [Google Scholar]
- Malissiovas, G. New Nonlinear Adjustment Approaches for Applications in Geodesy and Related Fields; Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften (DGK): München, Germany, 2019; Volume C, No. 841. [Google Scholar]
- Guo, C.; Peng, J.; Li, C. Total least squares algorithms for fitting 3D straight lines. Int. J. Appl. Math. Mach. Learn. 2017, 6, 35–44. [Google Scholar] [CrossRef]
- Neitzel, F.; Petrovic, S. Total Least Squares (TLS) im Kontext der Ausgleichung nach kleinsten Quadraten am Beispiel der ausgleichenden Geraden [Total Least Squares in the context of least squares adjustment of a straight line]. zfv Z. für Geodäsie, Geoinf. und Landmanagement 2008, 133, 141–148. (In German) [Google Scholar]
- Neitzel, F. Generalisation of Total Least-Squares on example of unweighted and weighted similarity transformation. J. Geod. 2010, 84, 751–762. [Google Scholar] [CrossRef]
- Bronshtein, I.; Semendyayev, K.; Musiol, G.; Muehlig, H. Handbook of Mathematics, 5th ed.; Springer: Berlin/Heidelberg, Germnay; New York, NY, USA, 2007. [Google Scholar]
- Borovička, J.; Spurný, P.; Keclíková, J. A new positional astrometric method for all-sky cameras. Astron. Astrophys. Suppl. Ser. 1995, 112, 173–178. [Google Scholar]
- Neitzel, F.; Schaffrin, B. On the Gauss-Helmert model with a singular dispersion matrix where BQ is of smaller rank than B. J. Comput. Appl. Math. 2016, 291, 458–467. [Google Scholar] [CrossRef]
- Neitzel, F.; Schaffrin, B. Adjusting a 2D Helmert transformation within a Gauss-Helmert model with a singular dispersion matrix where BQ is of smaller rank than B. Acta Geod. Geophys. Montan. Hung. 2017, 52, 479–496. [Google Scholar] [CrossRef] [Green Version]
- Wells, D.; Krakiwsky, E.J. The Method of Least Squares; Lecture Notes 18; Department of Geodesy and Geomatics Engineering, University of New Brunswick: Fredericton, NB, Canada, 1971. [Google Scholar]
- Mikhail, E.M. Observations and Least Squares; Harper & Row Publishers: New York, NY, USA; Hagerstown, MD, USA; San Francisco, CA, USA; London, UK, 1976. [Google Scholar]
- Petras, I.; Podlubny, I. State space description of national economies: The V4 countries. Comput. Stat. Data Anal. 2007, 52, 1223–1233. [Google Scholar] [CrossRef] [Green Version]
Line Orientation Components | Standard Deviation | ||
---|---|---|---|
Parameter | 0.219309 | 0.077523 | |
Parameter | 0.677404 | 0.058450 | |
Parameter | 0.702159 | 0.056575 | |
Coordinates of a point on the line | Standard deviation | ||
Parameter | 0.047785 | 0.121017 | |
Parameter | −0.067111 | 0.091456 | |
Parameter | 0.049820 | 0.088503 | |
A posteriori variance factor | 0.7642885 |
Line Orientation Components | Standard Deviation | ||
---|---|---|---|
Parameter | 0.219308632730 | 0.07752314583 | |
Parameter | 0.677404488809 | 0.05844978733 | |
Parameter | 0.702158730025 | 0.05657536189 | |
A posteriori variance factor | 0.76428828602 |
Point i | Point i | |||
---|---|---|---|---|
1 | 0.802 | 26 | 0.792 | |
2 | 0.795 | 27 | 0.799 | |
3 | 0.807 | 28 | 0.801 | |
4 | 0.770 | 29 | 0.807 | |
5 | 0.808 | 30 | 0.798 | |
6 | 0.799 | 31 | 0.796 | |
7 | 0.794 | 32 | 0.792 | |
8 | 0.808 | 33 | 0.806 | |
9 | 0.807 | 34 | 0.805 | |
10 | 0.800 | 35 | 0.801 | |
11 | 0.789 | 36 | 0.808 | |
12 | 0.798 | 37 | 0.778 | |
13 | 0.808 | 38 | 0.795 | |
14 | 0.803 | 39 | 0.794 | |
15 | 0.804 | 40 | 0.803 | |
16 | 0.808 | 41 | 0.772 | |
17 | 0.806 | 42 | 0.791 | |
18 | 0.806 | 43 | 0.806 | |
19 | 0.807 | 44 | 0.804 | |
20 | 0.806 | 45 | 0.807 | |
21 | 0.804 | 46 | 0.803 | |
22 | 0.808 | 47 | 0.808 | |
23 | 0.805 | 48 | 0.801 | |
24 | 0.801 | 49 | 0.805 | |
25 | 0.801 | 50 | 0.779 |
Line Orientation Components | Standard Deviation | ||
---|---|---|---|
Parameter | 0.230818543507 | 0.07646636344 | |
Parameter | 0.677278360907 | 0.05781967335 | |
Parameter | 0.698582007942 | 0.05623243170 | |
A posteriori variance factor | 1.19853799739 |
Line Orientation Components | Standard Deviation | ||
---|---|---|---|
Parameter | 0.225471114499 | 0.076563026291 | |
Parameter | 0.677670055415 | 0.057791104518 | |
Parameter | 0.699947192665 | 0.056127005073 | |
A posteriori variance factor | 0.798915322513 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malissiovas, G.; Neitzel, F.; Weisbrich, S.; Petrovic, S. Weighted Total Least Squares (WTLS) Solutions for Straight Line Fitting to 3D Point Data. Mathematics 2020, 8, 1450. https://doi.org/10.3390/math8091450
Malissiovas G, Neitzel F, Weisbrich S, Petrovic S. Weighted Total Least Squares (WTLS) Solutions for Straight Line Fitting to 3D Point Data. Mathematics. 2020; 8(9):1450. https://doi.org/10.3390/math8091450
Chicago/Turabian StyleMalissiovas, Georgios, Frank Neitzel, Sven Weisbrich, and Svetozar Petrovic. 2020. "Weighted Total Least Squares (WTLS) Solutions for Straight Line Fitting to 3D Point Data" Mathematics 8, no. 9: 1450. https://doi.org/10.3390/math8091450
APA StyleMalissiovas, G., Neitzel, F., Weisbrich, S., & Petrovic, S. (2020). Weighted Total Least Squares (WTLS) Solutions for Straight Line Fitting to 3D Point Data. Mathematics, 8(9), 1450. https://doi.org/10.3390/math8091450