An Improvement on the Upper Bounds of the Partial Derivatives of NURBS Surfaces
Abstract
:1. Introduction
2. Preliminary
3. Estimation of Bounds on the Partial Derivatives of NURBS Surfaces
3.1. Bounds on the First-Order Partial Derivatives
3.2. Bounds on the Second-Order Partial Derivatives
4. Numeric Examples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Zheng, J.; Sederberg, T.W. Estimating tessellation parameter intervals for rational curves and surfaces. ACM Trans. Graph. 2000, 19, 56–77. [Google Scholar] [CrossRef]
- Floater, M.S. Derivatives of rational Bezier curves. Comput. Aided Geom. Des. 1992, 9, 161–174. [Google Scholar] [CrossRef]
- Saito, T.; Wang, G.-J.; Sederberg, T.W. Hodographs and normals of rational curves and surfaces. Comput. Aided Geom. Des. 1995, 12, 417–430. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-J.; Sederberg, T.W.; Saito, T. Partial derivatives of rational Bezier surfaces. Comput. Aided Geom. Des. 1997, 14, 377–381. [Google Scholar] [CrossRef]
- Thomas, H. On the derivatives of second and third degree rational Bézier curves. Comput. Aided Geom. Design 1999, 16, 157–163. [Google Scholar] [CrossRef]
- Xie, B.-H.; Wang, G.-J. Approximating the derivative bounds of parametric curves and applying to curve rasterization. J. Softw. 2003, 14, 2106–2112. [Google Scholar]
- Wu, Z.K.; Lin, F.; Soon, S.H.; Yun, C.K. Evaluation of difference bounds for computing rational Bezier curves and surfaces. Comput. Graph.-UK 2004, 28, 551–558. [Google Scholar] [CrossRef]
- Zhang, R.-J.; Ma, W. Some improvements on the derivative bounds of rational Bezier curves and surfaces. Comput. Aided Geom. Des. 2006, 23, 563–572. [Google Scholar] [CrossRef]
- Xu, H.; Wang, G. Hodograph computation and bound estimation for rational B-spline curves. Prog. Nat. Sci. 2007, 17, 988–992. [Google Scholar]
- Bez, H.E.; Bez, N. On derivative bounds for the rational quadratic Bezier paths. Comput. Aided Geom. Des. 2013, 30, 254–261. [Google Scholar] [CrossRef]
- Bez, H.E.; Bez, N. New minimal bounds for the derivatives of rational Bezier paths and rational rectangular Bezier surfaces. Appl. Math. Comput. 2013, 225, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Li, Y. A new bound on the magnitude of the derivative of rational Bézier curve. Comput. Aided Geom. Des. 2013, 30, 175–180. [Google Scholar] [CrossRef]
- Li, Y.; Deng, C.; Jin, W.; Zhao, N. On the bounds of the derivative of rational Bezier curves. Appl. Math. Comput. 2013, 219, 10425–10433. [Google Scholar] [CrossRef]
- Zhang, R.-J. Improved derivative bounds of the rational quadratic Bezier curves. Appl. Math. Comput. 2015, 250, 492–496. [Google Scholar] [CrossRef]
- Jin, W.; Deng, C.; Li, Y.; Liu, J. Derivative bound estimations on rational conic Bezier curves. Appl. Math. Comput. 2014, 248, 113–117. [Google Scholar] [CrossRef]
- Zhang, R.-J.; Jiang, L. A conjecture on the derivative bounds of rational Bézier curves. Int. J. Model. Simul. 2016, 36, 20–27. [Google Scholar] [CrossRef]
- Zheng, J.M. Minimizing the maximal ratio of weights of a rational Bézier curve. Comput. Aided Geom. Des. 2005, 22, 275–280. [Google Scholar] [CrossRef]
- Cai, H.-J.; Wang, G.-J. Minimizing the maximal ratio of weights of rational Bézier curves and surfaces. Comput. Aided Geom. Des. 2010, 27, 746–755. [Google Scholar] [CrossRef]
- Huang, Y.; Su, H. The bound on derivatives of rational Bezier curves. Comput. Aided Geom. Des. 2006, 23, 698–702. [Google Scholar] [CrossRef]
- Cao, J.; Chen, W.; Wang, G.Z. Bound Estimations on Lower Derivatives of Rational Triangular Bézier Surfaces. J. Softw. 2007, 18, 2326–2335. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.-Q.; Wang, G.-J. Improved bounds on partial derivatives of rational triangular Bezier surfaces. Comput. Aided Des. 2007, 39, 1113–1119. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, X.; Cao, J. An improvement on the upper bounds of the magnitudes of derivatives of rational triangular Bezier surfaces. Comput. Aided Geom. Des. 2014, 31, 265–276. [Google Scholar] [CrossRef]
- Wang, G.-J.; Tai, C.-L. On the convergence of hybrid polynomial approximation to higher derivatives of rational curves. J. Comput. Appl. Math. 2008, 214, 163–174. [Google Scholar] [CrossRef]
- Selimovic, I. New bounds on the magnitude of the derivative of rational Bezier curves and surfaces. Comput. Aided Geom. Des. 2005, 22, 321–326. [Google Scholar] [CrossRef]
- Wang, G.-J.; Xu, H.-X.; Hu, Q.-Q. Bounds on partial derivatives of NURBS surfaces. Appl. Math.-A J. Chin. Univ. 2017, 32, 281–293. [Google Scholar] [CrossRef]
- Filip, D.; Magedson, R.; Markot, R. Surface algorithms using bounds on derivatives. Comput. Aided Geom. Des. 1986, 3, 295–311. [Google Scholar] [CrossRef]
- Prochazkova, J. Derivative of B-Spline function. In Proceedings of the 25th Conference on Geometry and Computer Graphics, Prague, Czech Republic, 12–16 September 2005. [Google Scholar]
- Piegl, L.; Tiller, W. The NURBS Book; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Ning, T.; Li, J.; Zheng, J.; Chen, Z. An Improvement on the Upper Bounds of the Partial Derivatives of NURBS Surfaces. Mathematics 2020, 8, 1382. https://doi.org/10.3390/math8081382
Tian Y, Ning T, Li J, Zheng J, Chen Z. An Improvement on the Upper Bounds of the Partial Derivatives of NURBS Surfaces. Mathematics. 2020; 8(8):1382. https://doi.org/10.3390/math8081382
Chicago/Turabian StyleTian, Ye, Tao Ning, Jixing Li, Jianmin Zheng, and Zhitong Chen. 2020. "An Improvement on the Upper Bounds of the Partial Derivatives of NURBS Surfaces" Mathematics 8, no. 8: 1382. https://doi.org/10.3390/math8081382
APA StyleTian, Y., Ning, T., Li, J., Zheng, J., & Chen, Z. (2020). An Improvement on the Upper Bounds of the Partial Derivatives of NURBS Surfaces. Mathematics, 8(8), 1382. https://doi.org/10.3390/math8081382