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Abstract: The Non-Uniform Rational B-spline (NURBS) surface not only has the characteristics of
the rational Bézier surface, but also has changeable knot vectors and weights, which can express the
quadric surface accurately. In this paper, we investigated new bounds of the first- and second-order
partial derivatives of NURBS surfaces. A pilot study was performed using inequality theorems and
degree reduction of B-spline basis functions. Theoretical analysis provides simple forms of the new
bounds. Numerical examples are performed to illustrate that our method has sharper bounds than
the existing ones.
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1. Introduction

The bounds on derivatives of NURBS surfaces have very important applications for Computer
Aided Geometric Design (CAGD). For example, various algorithms for parametric curves and surfaces,
such as linear approximation, subdivision of trimmed surfaces and segmentation errors of surfaces [1],
depend on knowing the bounds of the estimated derivatives. Therefore, a tight upper bound on the
derivative contributes to improve the efficiency and stability of these algorithms.

For this reason, many researchers have concentrated on the bounds of the derivatives of
representative curves and surfaces. Since Floater [2] gave a classical inequality to estimate the
upper bounds of the first-order derivatives of Bézier curves, several improved results have been
derived for rational Bézier curves and surfaces [3–18]. Huang [19] obtained the bounds on derivatives
of rational Bézier curves. Cao [20], Hu [21] and Liu [22] presented methods for the bounds estimation
of the second-order derivatives of rational triangular Bézier surfaces. Wang [23] obtained the upper
bounds expression of the third-order derivatives of the rational Bézier curves by moving control points.
To the best of our knowledge, few published articles have studied the bounds of derivatives on NURBS
surfaces. This usually involves tedious expressions and knot vector analysis of B-spline basis functions.
Unfortunately, it is difficult to generalize the study of derivative bounds on NURBS surfaces to the
second-order derivative form due to the complex product representation. One available reference for
obtaining the bounds of the derivatives of rational Bézier surfaces was presented by Selimovic [24].
Subsequently, Wang [25] estimated the partial derivative bounds for NURBS surfaces.

As the case stands, the NURBS surfaces with the characteristics of changeable knot vectors and
weights are a natural extension of the Bézier surfaces. They control the curves of the object surfaces
better than traditional mesh modeling. Furthermore, NURBS surfaces are considered to be more
suitable for complex surface modeling and surface subdivision. Obtaining a tight upper bound of the
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second-order derivative can achieve a more perfect surface tessellation without increasing the amount
of data.

In this paper, we deduce powerful unified bounds of the first- and second-order derivatives of
NURBS surfaces based on the degree reduction of the B-spline basis functions, geometrical properties
of NURBS surfaces and some basic inequality skills. The bounds on first-order derivatives of NURBS
surfaces given in this paper are sharper than the existing ones [24,25]. Furthermore, they are less
affected by the change of weights, knot vectors and control points. We also present a novel estimation
method for the bounds of the second-order derivatives of NURBS surfaces. The new proposed
approach is more practical in application. For instance, the new method can also be applied to rational
Bézier surfaces, which means it can be used for estimating derivatives of surfaces without judging the
surface type. Moreover, tighter upper bounds than some existed methods are also given in our method.
In the piecewise linear approximation algorithm proposed by Filip et al. [26], a more convergent
derivative bound can make the result of surface subdivision more accurate. Both theoretical analysis
and numerical examples are provided to verify the superiority of the proposed method.

The rest of the paper is organized as follows. Section 2 briefly reviews the definition and properties
of NURBS surfaces. Furthermore, it introduces the preliminary lemma that will be needed later.
Section 3 deduces new bounds on the first- and second-order partial derivatives of NURBS surfaces.
The numerical experiments are shown in Section 4 to compare the existing bounds and the new bounds.
Finally, Section 5 concludes this paper.

2. Preliminary

Before deducing the main results, we briefly introduce some definitions and notations in
this section.

The degree reduction method of B-spline functions is given below. Let T = (t0, t1, · · · , tn) be a
knot vector. B-spline function of order p (degree k) is defined as

Ni,1(t) =
{

1 for t ∈ [ti, ti+1)

0 otherwise

Ni,p(t) =
t − ti

ti+p−1 − ti
Ni,p−1(t) +

ti+p − t
ti+p − ti+1

Ni+1,p−1(t)

where p = k + 1, 0 ≤ i ≤ n− p, 2 ≤ p ≤ n, 0
0 = 0

(1)

Let P0, P1, · · · , Pm
(
Pi ∈ Rd

)
be m + 1 control points, T =

(
t0, t1, · · · , tm+p+1

)
knot vector. B-spline

curve of order p for control points Pi and knot vector T is defined as

C(t) =
m∑

i=0

PiNi,p(t) (2)

The first derivative of the B-spline curve defined in (2) can be evaluated as
C(t)′ =

m∑
i=0

Ni,p(t)
′Pi

Ni,p(t)
′ =

p − 1
ti+p−1 − ti

Ni,p−1(t) −
p − 1

ti+p − ti+1
Ni+1,p−1(t)

(3)

In cases where the first and the last p knots are identical, we have{
N0,p−1(t) ≡ 0, tp−1 − t0 = 0
Nm+1,p−1(t) ≡ 0, tm+p − tm+1 = 0

Equation (3) is proved in [27]. Using (1), (2) and (3), the degree of B-spline functions is reduced.
The degree reduction method of B-spline curves can be extended to B-spline surfaces. Both u parameter
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direction and v parameter direction need to use a method of degree reduction. Projecting the result of
the B-spline surfaces onto the ω = 1 hyperplane, the result of the NURBS surface is obtained.

The NURBS book [28] provides the definition of a NURBS surface. Given the control points Pi j
and positive weights ωi j, a NURBS surface R(u, v) of order p× q is defined by

R(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u)N j,q(v)Pi jωi j

n∑
i=0

m∑
j=0

Ni,p(u)N j,q(v)ωi j

=
P(u, v)
W(u, v)

(4)

where the B-spline basis functions Ni,p(u), N j,q(v) (i = 0, · · · , n, j = 0, · · · , m) are defined on the knot
vectors [u0, u1, · · · , un+p] and [v0, v1, · · · , vm+q], respectively, and assume that the two knot vectors
satisfy the endpoint conditions:

u0 = u1 · · · = up−1, un+1 = un+2 · · · = un+p, v0 = v1 · · · = vq−1, vm+1 = vm+2 · · · = vm+q (5)

According to the properties of B-spline basis functions, some basic derivative formulas of NURBS
surfaces are listed in Appendix A; Pu, Pv, Puu, Pvv, Puv, Wu, Wv, Wuu, Wvv, and Wuv are included.
It should also be noted that the notations Qu

ij, Qv
ij, Ru

ij, Rv
ij, Quv

ij , du
ij, dv

ij, eu
ij, ev

ij, duv
ij , ωu

ij, ω
v
ij, ω̃

u
ij, ω̃

v
ij, d

u
ij

and d
v
ij are introduced in Appendix A to simplify the expressions, and these notations will appear

repeatedly in later theorems and proofs. In addition, in the remainder of this paper, if the scope of an
intermediate variable is not given, the variables i, I, and s are always from 0 to n, and the variable j, J,
and t are from 0 to m.

Additionally, to estimate the derivative bounds of NURBS surfaces, the following lemma will
be used for the proof of our results. A similar lemma was used in references [7,19] to estimate upper
bounds for Bézier curves.

Lemma 1. If ai(t) ≥ 0, bi(t) > 0, ci(t) ≥ 0, i = 0, · · · , n, parameter t ∈ [t1, t2], and ∀t ∈ [t1, t2],

n∑
i=0

ci(t)bi(t) > 0, then

n∑
i=0

ci(t)ai(t)

n∑
i=0

ci(t)bi(t)
≤ max

i,t∈[t1,t2]

ai(t)
bi(t)

.

3. Estimation of Bounds on the Partial Derivatives of NURBS Surfaces

In this section, we provide the bounds on the first- and second-order partial derivatives of the
NURBS surfaces.

3.1. Bounds on the First-Order Partial Derivatives

Theorem 1. For a NURBS surface R(u, v) of order p × q defined by (4), a bound on the magnitude of the
first-order partial derivative with respect to u can be expressed as

‖Ru‖ ≤ (p− 1) max
1≤i≤n, j,I,J

‖

(
Pi j − PIJ

)
ωi j −

(
Pi−1 j − PIJ

)
ωi−1 j‖(

ui+p−1 − ui
)
min

{
ωi j,ωi−1 j

} (6)

Proof. The first-order partial derivative of a NURBS surface with respect to u can be written as

Ru =
PuW − PWu

W2 (7)
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Rewrite the numerator and denominator of PuW − PWu
W2 , so that we can get the bound by applying

Lemma 1. By replacing Pu and Wu in (7) with (A1) and (A6), it follows that

PuW − PWu = (p− 1)
n∑

i=1

m∑
j=0

n∑
I=0

m∑
J=0

Ni,p−1(u)N j,q(v)NI,p(u)NJ,q(v)
(
Qu

ij − PIJdu
ij

)
ωIJ (8)

Rearranging all the terms in W2 by applying (A11), rewrite W2 as

W2 =
n∑

i=1

m∑
j=0

n∑
I=0

m∑
J=0

Ni,p−1(u)N j,q(v)NI,p(u)NJ,q(v)ω
u
ijωIJ (9)

Now, considering the bound of ‖Ru‖, we have

‖Ru‖ = ‖
PuW − PWu

W2 ‖ =

(p − 1)‖
n∑

i=1

m∑
j=0

n∑
I=0

m∑
J=0

Ni,p−1(u)N j,q(v)NI,p(u)NJ,q(v)
(
Qu

ij − PIJdu
ij

)
ωIJ‖

n∑
i=1

m∑
j=0

n∑
I=0

m∑
J=0

Ni,p−1(u)N j,q(v)NI,p(u)NJ,q(v)ω
u
ijωIJ

≤ (p − 1) max
1≤i≤n, j,I,J

‖Qu
ij − PIJdu

ij‖

ωu
ij

≤ (p − 1) max
1≤i≤n, j,I,J

‖(Pi j − PIJ)ωi j − (Pi−1 j − PIJ)ωi−1 j‖

(ui+p−1 − ui)min
{
ωi j,ωi−1 j

}
(10)

Similarly,

‖Rv‖ ≤ (q− 1) max
i,1≤ j≤m,I,J

‖

(
Pi j − PIJ

)
ωi j −

(
Pi j−1 − PIJ

)
ωi j−1‖(

v j+q−1 − v j
)
min

{
ωi j,ωi j−1

} (11)

�

3.2. Bounds on the Second-Order Partial Derivatives

Theorem 2. For a NURBS surface R(u, v) of order p × q defined by (4), a bound on the magnitude of the
second-order partial derivative with respect to u can be expressed as

‖Ruu‖ < (p− 1) max
i, j,1≤I≤n,J,2≤s≤n,t

max‖Fuu
ijIJst(u)‖

min
{
ωIJ,ωI−1J

}
·min{ωst,ωs−1t,ωs−2t}

(12)

where each component of Fuu
ijIJst(u) denotes a linear polynomial of u,

Fuu
ijIJst(u) = (p− 2)

(
Ru

st − Pi jeu
st

)
ωu

IJ − 2(p− 1)
(
Qu

IJ − Pi jdu
IJ

)
d

u
st (13)

Proof. The second-order partial derivative of a NURBS surface with respect to u can be written as

Ruu =
(PuuW − PWuu)W − 2(PuW − PWu)Wu

W3 (14)

First, we need to estimate the bound of ‖Ruu‖ using Lemma 1. The following theorem will use the
main results (A1), (A3), (A6), (A8), (A11), (A13), and (A15) in Appendix A. Following degree reduction
of B-spline functions and rearrange subscripts, we have

W3 =
n∑

i=0

m∑
j=0

n∑
I=1

m∑
J=0

n∑
s=2

m∑
t=0

Ni,p(u)N j,q(v)NI,p−1(u)NJ,q(v)Ns,p−2(u)Nt,q(v)ωi jω
u
IJω̃

u
st (15)
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(PuuW − PWuu)W =

(p− 1)(p− 2)
n∑

i=0

m∑
j=0

n∑
I=1

m∑
J=0

n∑
s=2

m∑
t=0

Ni,p(u)N j,q(v)NI,p−1(u)NJ,q(v)Ns,p−2(u)Nt,q(v)ωi jω
u
IJ

(
Ru

st − Pi jeu
st

)
(16)

(PuW − PWu)Wu =

(p− 1)2 n∑
i=0

m∑
j=0

n∑
I=1

m∑
J=0

n∑
s=2

m∑
t=0

Ni,p(u)N j,q(v)NI,p−1(u)NJ,q(v)Ns,p−2(u)Nt,q(v)ωi j
(
Qu

IJ − Pi jdu
IJ

)
d

u
st

(17)

(PuuW − PWuu)W − 2(PuW − PWu)Wu =

(p− 1)
n∑

i=0

m∑
j=0

n∑
I=1

m∑
J=0

n∑
s=2

m∑
t=0

Ni,p(u)N j,q(v)NI,p−1(u)NJ,q(v)Ns,p−2(u)Nt,q(v)Fuu
ijIJst(u)ωi j

(18)

Before we estimate the bound of ‖Ruu‖, the minimum value of ωu
IJω̃

u
st should be given. It is easy to

confirm that

minωu
IJ = min

(u− uI)ωIJ +
(
uI+p−1 − u

)
ωI−1J

uI+p−1 − uI
= min

{
ωIJ,ωI−1J

}
(19)

minω̃u
st = min

(u− us)ω
u
st +

(
us+p−2 − u

)
ωu

s−1t

us+p−2 − us
≥ min{ωst,ωs−1t,ωs−2t} (20)

Hence
ωu

IJω̃
u
st ≥ min

{
ωIJ,ωI−1J

}
·min{ωst,ωs−1t,ωs−2t} (21)

Each component of Fuu
ijIJst(u) is a linear polynomial of u. By estimating the maximum value of

‖Fuu
ijIJst(u)‖, we obtain

max‖Fuu
ijIJst(u)‖ = max

{
‖Fuu

ijIJst(uα)‖, ‖F
uu
ijIJst(uβ)‖

}
(22)

where [uα, uβ] = [ui, ui+p] ∩ [uI, uI+p−1] ∩ [us, us+p−2]; here, [ui, ui+p], [uI, uI+p−1] and [us, us+p−2] are
support intervals of B-spline basis functions Ni,p(u), NI,p−1(u) and Ns,p−2(u), and 0 ≤ i ≤ n, 1 ≤ I ≤ n,
2 ≤ s ≤ n. [uα, uβ] may be empty, but it does not affect the following results. It is easy to obtain
uα = max{ui, uI, us} and uβ = min

{
ui+p, uI+p−1, us+p−2

}
. �

Based on the above discussion, the bound of the partial derivative can be estimated by

‖Ruu‖ = ‖
(PuuW − PWuu)W − 2(PuW − PWu)Wu

W3 ‖

=

‖(p − 1)
n∑

i=0

m∑
j=0

n∑
I=1

m∑
J=0

n∑
s=2

m∑
t=0

Ni,p(t)N j,q(t)NI,p−1(t)NJ,q(t)Ns,p−2(t)Nt,q(t)Fuu
ijIJst(u)ωi j‖

n∑
i=0

m∑
j=0

n∑
I=1

m∑
J=0

n∑
s=2

m∑
t=0

Ni,p(t)N j,q(t)NI,p−1(t)NJ,q(t)Ns,p−2(t)Nt,q(t)ωi jω
u
IJω̃

u
st

≤ (p − 1) max
i, j,1≤I≤n,J,26s≤n,t

max‖Fuu
ijIJst(u)‖

min{ωIJ ,ωI−1J} · min{ωst,ωs−1t,ωs−2t}

(23)

Due to the symmetric property of parameter u and v of NURBS surface, the bound on Rvv can be
derived in the same way as Ruu. It can be expressed as

‖Rvv‖ ≤ (q− 1) max
i, j,I,1≤J≤m,s,2≤t≤m

max‖Fvv
ijIJst(v)‖

min
{
ωIJ,ωIJ−1

}
·min{ωst,ωst−1,ωst−2}

(24)

where each component of Fvv
ijIJst(v) is a linear polynomial of v,

Fvv
ijIJst(v) = (q− 2)

(
Rv

st − Pi jev
st

)
ωv

IJ − 2(q− 1)
(
Qv

IJ − Pi jdv
IJ

)
d

v
st (25)
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From (22), it is easy to determine that

max‖Fvv
ijIJst(v)‖ = max

{
‖Fvv

ijIJst(vα)‖, ‖F
vv
ijIJst(vβ)‖

}
(26)

where [vα, vβ] = [v j, v j+q] ∩ [vJ, vJ+q−1] ∩ [vt, vt+q−2]; here, [v j, v j+q], [vJ, vJ+q−1] and [vt, vt+q−2] are
support intervals of B-spline basis functions N j,q(v), NJ,q−1(v) and Nt,q−2(v), and vα = max

{
v j, vJ, vt

}
,

vβ = min
{
v j+q, vJ+q−1, vt+q−2

}
.

In the following, we will derive the bound on the mixed partial derivative in a similar way.

Theorem 3. For a NURBS surface R(u, v) of order p× q defined by (4), its mixed partial derivative satisfies

‖Ruv‖ ≤ (p− 1)(q− 1) max
i, j,1≤I≤n,J,s,1≤t≤m

‖Fuv
ijIJst‖

min
{
ωIJ,ωI−1J

}
·min{ωst,ωst−1}

(27)

where Fuv
ijIJst is a constant vector and can be expressed by the control points, weights and knot vectors of the

NURBS surface R(u, v) explicitly as

Fuv
ijIJst = Quv

It ωsJ −Qu
IJd

v
st −Qv

std
u
IJ − PsJωsJduv

It + 2Pi jdu
IJd

v
st (28)

Proof. The mixed partial derivative of a NURBS surface can be expressed as

Ruv =
PuvW2

− PuWvW − PvWuW − PWuvW + 2PWuWv

W3 (29)

We deal with the numerator and denominator of R(u, v) separately. Applying (A11) and (A12),
we have

W3 =
n∑

i=0

m∑
j=0

n∑
I=1

m∑
J=0

n∑
s=0

m∑
t=1

Ni,p(u)N j,q(v)NI,p−1(u)NJ,q(v)Ns,p(u)Nt,q−1(v)ωi jω
u
IJω

v
st (30)

By recalling the definitions of ωu
ij and ωv

ij in (A11) and (A12), the minimum of ωu
IJω

v
st can be

computed. We know that ωu
ij and ωv

ij are linear polynomials of u and v, respectively; thus, it is easy to
obtain that

ωu
IJ ≥ min

{
ωIJ,ωI−1J

}
(31)

ωv
st ≥ min{ωst,ωst−1} (32)

Next, we substitute the expressions of (A1), (A2), (A5), (A6), (A7) and (A10) into the numerator of
(29). Therefore, we find that

PuvW2
− PuWvW − PvWuW − PWuvW + 2PWuWv

= (p− 1)(q− 1)
n∑

i=0

m∑
j=0

n∑
I=1

m∑
J=0

n∑
s=0

m∑
t=1

Ni,p(u)N j,q(v)NI,p−1(u)NJ,q(v)Ns,p(u)Nt,q−1(v)(
Quv

It ωsJ −Qu
IJd

v
st −Qv

std
u
IJ − PsJωsJduv

It + 2Pi jdu
IJd

v
st

)
ωi j

= (p− 1)(q− 1)
n∑

i=0

m∑
j=0

n∑
I=1

m∑
J=0

n∑
s=0

m∑
t=1

Ni,p(u)N j,q(v)NI,p−1(u)NJ,q(v)Ns,p(u)Nt,q−1(v)Fuv
ijIJstωi j

(33)
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Combing with (30), (31), (32) and (33), the following result is obtained.

‖Ruv‖ = ‖
PuvW2

− PuWvW − PvWuW − PWuvW + 2PWuWv
W3 ‖

≤ (p− 1)(q− 1)

n∑
i=0

m∑
j=0

n∑
I=1

m∑
J=0

n∑
s=0

m∑
t=1

Ni,p(u)N j,q(v)NI,p−1(u)NJ,q(v)Ns,p(u)Nt,q−1(v)‖Fuv
ijIJst‖ωi j

n∑
i=0

m∑
j=0

n∑
I=1

m∑
J=0

n∑
s=0

m∑
t=1

Ni,p(u)N j,q(v)NI,p−1(u)NJ,q(v)Ns,p(u)Nt,q−1(v)ωi jω
u
IJω

v
st

≤ (p− 1)(q− 1) max
i, j,1≤I≤n,J,s,1≤t≤m

‖Fuv
ijIJst‖

min{ωIJ ,ωI−1J} · min{ωst,ωst−1}

(34)

�

4. Numeric Examples

In this section, numerical experiments are provided to show the correctness and superiority of
the proposed bounds of the derivative of NURBS surfaces. In the following experiments, the ratios
of the approximate bounds of the NURBS surface to their exact bounds instead of the true value are
used for comparison. Let the parameter domain of a NURBS surface be [a1, a2] × [b1, b2]. The repeated
control points can be supplemented to ensure that the surface always meets the endpoint condition
(5), and the properties of the surface will not change. The ground truth bound of a derivative is
approximated by iteratively selecting the maximum value of the derivatives at the sampled points{
(u, v)

∣∣∣u = a1 + i/100·(a2 − a1), v = b1 + j/100·(b2 − b1), 0 ≤ i, j ≤ 100
}

on the surface. The horizontal
axis represents the number of experiments, and the vertical axis means the ratio of the estimated
bound to the exact bound. For each experiment, the closer the result is to the true bound (represented
by the green line in the figure), the more accurate it is. All numeric examples are included in the
Supplementary Materials.

Since our bounds of NURBS surfaces involve knot vectors, weights and control
points, we compare ours with the results in Selimovic [24] and Wang [25] in three
ways. In Figures 1 and 2, we set the NURBS surface with control points R =

[(1, 1, 1), (1, 1, 2), (0, 5, 5), (4, 3, 2), (7, 2, 1), (6, 2, 1), (3, 1, 1), (8, 6, 3), (0, 1, 2)] and corresponding knot
vectors U = {0, 1, 1.3, 2.1, 3.6, 4.0}, V = {0, 0.8, 1.2, 2.3, 3.1, 4.2}. Weights are randomly generated
in the interval [1,100]. This experiment was conducted 50 times. It can be seen that our results are
closer to the true bounds than those in Selimovic [24] and Wang [25]. Moreover, the new bounds are
less affected by fluctuations of weights. The effectiveness of the bounds on the second-order partial
derivatives can also be seen in Figure 2.



Mathematics 2020, 8, 1382 8 of 15

Mathematics 2020, 8, x FOR PEER REVIEW 8 of 16 

 

Moreover, the new bounds are less affected by fluctuations of weights. The effectiveness of the 
bounds on the second-order partial derivatives can also be seen in Figure 2. 

 
Figure 1. Comparison between bounds on the first-order derivative ( )uR u  of NURBS surfaces with 

fixed control points, fixed knot vectors and randomly selected weights. 

 
Figure 2. Comparison between bounds on the second-order derivative ( )uvR u  of NURBS surfaces 

with fixed control points, fixed knot vectors and randomly selected weights. 

The second comparison group (Figures 3 and 4) has the same control points as the first group. 

The monotonic non-decreasing knot vectors of the NURBS surfaces are randomly sampled in interval
[ ]0,300 . Then the weights are defined as [ ]0.85,0.76,0.82,0.88,0.79,0.85,0.75,0.84,0.78ω = . Again, 

this experiment was performed 50 times. It can be observed that our bounds are closer to the green 

line than the results in Selimovic [24] and Wang [25]. It is easy to conclude that the knot vector has 

little effect on our bounds, proving that our bounds are stronger than those in Selimovic [24] and 

Wang [25]. It is worth noting that the method in Selimovic [24] fails in some examples. The situation 
of the | |uvR  also illustrates the superiority of the new bounds. 

Figure 1. Comparison between bounds on the first-order derivative Ru(u) of NURBS surfaces with
fixed control points, fixed knot vectors and randomly selected weights.

Mathematics 2020, 8, x FOR PEER REVIEW 8 of 16 

 

Moreover, the new bounds are less affected by fluctuations of weights. The effectiveness of the 
bounds on the second-order partial derivatives can also be seen in Figure 2. 

 
Figure 1. Comparison between bounds on the first-order derivative ( )uR u  of NURBS surfaces with 

fixed control points, fixed knot vectors and randomly selected weights. 

 
Figure 2. Comparison between bounds on the second-order derivative ( )uvR u  of NURBS surfaces 

with fixed control points, fixed knot vectors and randomly selected weights. 

The second comparison group (Figures 3 and 4) has the same control points as the first group. 

The monotonic non-decreasing knot vectors of the NURBS surfaces are randomly sampled in interval
[ ]0,300 . Then the weights are defined as [ ]0.85,0.76,0.82,0.88,0.79,0.85,0.75,0.84,0.78ω = . Again, 

this experiment was performed 50 times. It can be observed that our bounds are closer to the green 

line than the results in Selimovic [24] and Wang [25]. It is easy to conclude that the knot vector has 

little effect on our bounds, proving that our bounds are stronger than those in Selimovic [24] and 

Wang [25]. It is worth noting that the method in Selimovic [24] fails in some examples. The situation 
of the | |uvR  also illustrates the superiority of the new bounds. 

Figure 2. Comparison between bounds on the second-order derivative Ruv(u) of NURBS surfaces with
fixed control points, fixed knot vectors and randomly selected weights.

The second comparison group (Figures 3 and 4) has the same control points as the first group.
The monotonic non-decreasing knot vectors of the NURBS surfaces are randomly sampled in interval
[0, 300]. Then the weights are defined as ω = [0.85, 0.76, 0.82, 0.88, 0.79, 0.85, 0.75, 0.84, 0.78]. Again,
this experiment was performed 50 times. It can be observed that our bounds are closer to the green line
than the results in Selimovic [24] and Wang [25]. It is easy to conclude that the knot vector has little
effect on our bounds, proving that our bounds are stronger than those in Selimovic [24] and Wang [25].
It is worth noting that the method in Selimovic [24] fails in some examples. The situation of the |Ruv|

also illustrates the superiority of the new bounds.
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In the third comparison group (Figures 5 and 6), we set knot vectors U = {0, 1, 1.3, 2.1, 3.6, 4.0},
V = {0, 0.8, 1.2, 2.3, 3.1, 4.2} and weights ω = [0.85, 0.76, 0.82, 0.88, 0.79, 0.85, 0.75, 0.84, 0.78].
Control points are randomly selected in the interval [0, 10]. Similarly, the experiment was conducted 50
times. It can be concluded from the comparison that our bounds are sharper than the known bounds
in Selimovic [24] and Wang [25], confirming that the new bounds are more stable.
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A set of all randomly selected variables comparison group is also provided in Figures 7 and 8.
We first select the same examples as in Wang [25]. Then we extend these examples by changing the
parameters. Weights are randomly generated in the interval [1, 100], knot vectors are randomly sampled
in the interval [0, 300], and control points are randomly selected in the interval [0, 10]. The remaining
cases of surfaces are provided in Appendix B. The experiment was still performed 50 times. Under the
combined influence of the changes of the three factors, our method still guarantees better stability.
The bounds on the second-order partial derivatives are very close to the real bound, confirming the
superiority of the method.
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Figure 8. Comparison between bounds on the second-order derivative Ruv(u) of NURBS surfaces with
randomly selected knot vectors, weights and control points.

5. Conclusions

This paper presents a novel method for estimating the bounds of the first- and second-order
partial derivatives of NURBS surfaces. Theoretical analysis and numerical examples show that the new
bounds we provide are closer to the exact bounds than the existing ones. Furthermore, our bounds are
less affected by changes in weights, knot vectors and control points, verifying the superiority of our
method. It is particularly useful for studies on computer graphics and complex geometric modeling.
We compared the bounds of Ruu(u) and Rvv(u) of NURBS surfaces, and discovered that the results
were similar to those in Section 4, and hence are not reported. The proposed method also performs
well for the bounds of derivatives of rational Bézier surfaces. We tested some estimation methods
using many numerical examples. The existing bounds in the literature have large errors when the
weights change greatly. Thus, a natural problem is whether the influence of the weight factor can be
reduced or not. This is a valuable research direction for studying the influence of the weight factors of
different positions on the upper bounds of the derivatives of freeform surfaces.
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Appendix A

We provide some derivative formulas of NURBS surfaces. For a NURBS surface R(u, v) of order
p× q defined by (4), the two knot vectors satisfy the endpoint condition (5). Then we have:

Pu = (p− 1)
n∑

i=1

m∑
j=0

Ni,p−1(u)N j,q(v)
Pi jωi j − Pi−1 jωi−1 j

ui+p−1 − ui
= (p− 1)

n∑
i=1

m∑
j=0

Ni,p−1(u)N j,q(v)Qu
ij (A1)

Pv = (q− 1)
n∑

i=0

m∑
j=1

Ni,p(u)N j,q−1(v)
Pi jωi j − Pi j−1ωi j−1

v j+q−1 − v j
= (q− 1)

n∑
i=0

m∑
j=1

Ni,p(u)N j,q−1(v)Qv
ij (A2)

Puu = (p− 1)(p− 2)
n∑

i=2

m∑
j=0

Ni,p−2(u)N j,q(v)
Qu

ij−Qu
i−1 j

ui+p−2−ui

= (p− 1)(p− 2)
n∑

i=2

m∑
j=0

Ni,p−2(u)N j,q(v)Ru
ij

(A3)

Pvv = (q− 1)(q− 2)
n∑

i=0

m∑
j=2

Ni,p(u)N j,q−2(v)
Qv

ij−Qv
ij−1

v j+q−2−v j

= (q− 1)(q− 2)
n∑

i=0

m∑
j=2

Ni,p(u)N j,q−2(v)Rv
ij

(A4)

Puv = (p− 1)(q− 1)
n∑

i=1

m∑
j=1

Ni,p−1(u)N j,q−1(v)
Pi jωi j − Pi−1 jωi−1 j − Pi j−1ωi j−1 + Pi−1 j−1ωi−1 j−1

(ui+p−1 − ui)(v j+q−1 − v j)

= (p− 1)(q− 1)
n∑

i=1

m∑
j=1

Ni,p−1(u)N j,q−1(v)Quv
ij

(A5)

Wu = (p− 1)
n∑

i=1

m∑
j=0

Ni,p−1(u)N j,q(v)
ωi j −ωi−1 j

ui+p−1 − ui
= (p− 1)

n∑
i=1

m∑
j=0

Ni,p−1(u)N j,q(v)du
ij (A6)

Wv = (q− 1)
n∑

i=0

m∑
j=1

Ni,p(u)N j,q−1(v)
ωi j −ωi j−1

v j+q−1 − v j
= (q− 1)

n∑
i=0

m∑
j=1

Ni,p(u)N j,q−1(v)dv
ij (A7)

Wuu = (p− 1)(p− 2)
n∑

i=2

m∑
j=0

Ni,p−2(u)N j,q(v)
du

ij−du
i−1 j

ui+p−2−ui

= (p− 1)(p− 2)
n∑

i=2

m∑
j=0

Ni,p−2(u)N j,q(v)eu
ij

(A8)

Wvv = (q− 1)(q− 2)
n∑

i=0

m∑
j=2

Ni,p(u)N j,q−2(v)
dv

ij−dv
ij−1

v j+q−2−v j

= (q− 1)(q− 2)
n∑

i=0

m∑
j=2

Ni,p(u)N j,q−2(v)ev
ij

(A9)

http://www.mdpi.com/2227-7390/8/8/1382/s1
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Wuv = (p− 1)(q− 1)
n∑

i=1

m∑
j=1

Ni,p−1(u)N j,q−1(v)
ωi j−ωi−1 j−ωi j−1+ωi−1 j−1

(ui+p−1−ui)(v j+q−1−v j)

= (p− 1)(q− 1)
n∑

i=1

m∑
j=1

Ni,p−1(u)N j,q−1(v)duv
ij

(A10)

W =
n∑

i=1

m∑
j=0

Ni,p−1(u)N j,q(v)
(u− ui)ωi j +

(
ui+p−1 − u

)
ωi−1 j

ui+p−1 − ui
=

n∑
i=1

m∑
j=0

Ni,p−1(u)N j,q(v)ω
u
ij (A11)

W =
n∑

i=0

m∑
j=1

Ni,p(u)N j,q−1(v)

(
v− v j

)
ωi j +

(
v j+q−1 − v

)
ωi j−1

v j+q−1 − v j
=

n∑
i=0

m∑
j=1

Ni,p(u)N j,q−1(v)ω
v
ij (A12)

W =
n∑

i=2

m∑
j=0

Ni,p−2(u)N j,q(v)
(u − ui)ω

u
ij + (ui+p−2 − u)ωu

i−1 j
ui+p−2 − ui

=
n∑

i=2

m∑
j=0

Ni,p−2(u)N j,q(v)ω̃u
ij

(A13)

W =
n∑

i=0

m∑
j=2

Ni,p(u)N j,q−2(v)
(v − v j)ωv

ij + (v j+q−2 − v)ωv
ij−1

v j+q−2 − v j

=
n∑

i=0

m∑
j=2

Ni,p(u)N j,q−2(v)ω̃v
ij

(A14)

Wu = (p− 1)
n∑

i=2

m∑
j=0

Ni,p−2(u)N j,q(v)
(u − ui)du

ij + (ui+p−2 − u)du
i−1 j

ui+p−2 − ui

= (p− 1)
n∑

i=2

m∑
j=0

Ni,p−2(u)N j,q(v)d
u
ij

(A15)

Wv = (q− 1)
n∑

i=0

m∑
j=2

Ni,p(u)N j,q−2(v)
(v − v j)dv

ij + (v j+q−2 − v)dv
ij−1

v j+q−2 − v j

= (q− 1)
n∑

i=0

m∑
j=2

Ni,p(u)N j,q−2(v)d
v
ij

(A16)

Appendix B

Appendix B provides some cases of NURBS surfaces. The control point is represented as
R = (x·ω, y·ω, z·ω,ω). It should be noted that the X, Y, and Z coordinate values are the products of the
original coordinate values and the weight factors.

surface 1
knot vectors

U = V = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1}

control points

R =



(1100, 0, 1152.16, 1), (1346.039, 0, 1179.584, 0.9), (1759.944, 0, 1183.001, 0.85), (2106.247, 0, 1170.398, 0.9), (2423.92, 0, 1125.107, 1)
(1100, −110, 1152.16, 1), (1346.042, −107.497, 1179.584, 0.9), (1759.944, −106.267, 1183.004, 0.85), (2106.256, −105.456, 1170.398, 0.9), (2423.93, −105.717, 1125.106, 1)
(1103.501, −261.46, 1149.032, 1), (1346.958, −255.018, 1174.579, 0.9), (1757.105, −251.123, 1179.499, 0.85), (2105.748, −248.074, 1166.389, 0.9), (2423.757, −247.157, 1121.237, 1)
(1112.49, −381.271, 1143.468, 1), (1352.778, −374.12, 1167.984, 0.9), (1759.297, −370.788, 1176.456, 0.85), (2107.294, −368.714, 1159.028, 0.9), (2423.544, −369.86, 1114.724, 1)
(1124.09, −477.71, 1133.9, 1), (1355.83, −468.671, 1158.768, 0.9), (1762.75, −459.989, 1167.514, 0.85), (2109.434, −455.245, 1147.262, 0.9), (2423.214, −454.897 1106.062, 1)


surface 2
knot vectors

U = V = {0, 0, 0, 0.5, 1, 1, 1}
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control points

R =


(7.8, 16.9, 13.65, 0.65), (23.76, 7.92, 8.64, 0.72), (4.15, 24.07, 14.94, 0.83), (34.78, 7.52, 11.28, 0.94)
(0.82, 11.48, 5.74, 0.82), (4.76, 4.08, 6.12, 0.68), (2.96, 14.06, 7.4, 0.74), (28.21, 20.02, 11.83, 0.91)
(1.38, 1.38, 4.83, 0.69), (18.24, 15.96, 6.84, 0.76), (33.3, 20.7, 18, 0.9), (20.16, 8.4, 1.68, 0.84)
(23.76, 22, 7.92, 0.88), (2.84, 6.39, 2.13, 0.71), (10.14, 10.92, 8.58, 0.78), (13.86, 18.48, 7.26, 0.66)


surface 3
knot vectors

U = V = {0, 0, 0, 1, 1, 1}

control points

R =


(680, 0.0, 0.0, 85), (144, 216, 360, 72), (486, 162, 324, 81)
(264, 352, 88, 88), (525, 75, 225, 75), (498, 332, 83, 83)
(675, 300, 225, 75), (336, 168, 168, 84), (390, 234, 468, 78)


surface 4
knot vectors

U = V = {0, 0, 0, 0, 1, 1, 1, 1}

control points

R =


(936, 2028, 1638, 78), (396, 132, 144, 12), (235, 1363, 846, 47), (1628, 352, 528, 44)
(96, 1344, 672, 96), (294, 252, 378, 42), (220, 1045, 550, 55), (372, 264, 156, 12)
(66, 66, 231, 33), (408, 357, 153, 17), (2442, 1518, 1320, 66), (2088, 870, 174, 87)
(594, 550, 198, 22), (68, 153, 51, 17), (546, 588, 462, 0.78)42, (1827, 2436, 957, 87)


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