On Some Recent Results Concerning F-Suzuki-Contractions in b-Metric Spaces
Abstract
:1. Introduction and Preliminaries
- (b1)
- if and only if
- (b2)
- (b3)
- (a)
- A convergent sequence possesses a unique limit;
- (b)
- Each convergent sequence is Cauchy;
- (c)
- A b-metric is not necessarily continuous;
- (d)
- A b-metric does not induce in general a topology on
- (e)
- The b-metric space is b-complete if every b-Cauchy sequence in X is convergent in
- (F1)
- for all such that , that is, (F is strictly increasing);
- (F2)
- for each sequence of positive numbers, if and only if
- (F3)
- there exists such that
2. Main Results
Author Contributions
Funding
Conflicts of Interest
References
- Alsulami, H.H.; Karapinar, E.; Piri, H. Fixed points of generalized F-Suzuki type contraction in complete b-metric spaces. Discret. Dyn. Nat. Soc. 2015, 2015, 969726. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Bota, M.F.; Karapinar, E.; Mitrović, S. A fixed point theorem for set-valued quasicontractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.-S.; Imdad, M.; Radenović, S.; Vujaković, J. On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. Arab J. Math. Sci. 2016, 22, 151–164. [Google Scholar]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Aydi, H.; Alsamir, H. Fixed point results for multi-valued contractions in b-metric spaces and an application. Mathematics 2018, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Felhi, A.; Karapinar, E.; Sahmim, S. A Nadler-type fixed point theorem in dislocated spaces and applications. Miscolc Math. Notes 2018, 19, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double controlled metric type spaces and some fixed point results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef] [Green Version]
- Fabiano, N.; Došenović, T.; Rakić, D.; Radenović, S. Some new results on (s,q)- Dass-Gupta-Jaggi type contractive mappings in b-metric-like spaces. Filomat 2020, in press. [Google Scholar]
- Alamgir, N.; Kiran, Q.; Isik, H.; Aydi, H. Fixed point results via a Hausdorff controlled type metric. Adv. Differ. 2020, 2020, 24. [Google Scholar] [CrossRef] [Green Version]
- Geraghty, M. On contractive mappings. Proc. Am. Math. Soc. 1973, 40, 604–608. [Google Scholar] [CrossRef]
- Hammad, H.A.; De la Sen, M. Fixed-point results for a generalized almost (s,q)-Jaggi F-contraction-type on b-metric-like spaces. Mathematics 2020, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Lakzian, H.; Mitrović, Z.D.; Radenović, S. Best proximity points of MF-cyclic contractions with property UC. Numer. Funct. Anal. Optim. 2020. [Google Scholar] [CrossRef]
- Harandi, A.A. Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012, 2012, 204. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, Q.; Shahzad, A.; Shoab, A.; Ansari, A.H.; Radenović, S. Common fixed point results for α-ψ-contractive mappings via (F,h) pair of upper class functions. J. Math. Anal. 2019, 10, 1–10. [Google Scholar]
- Mitrović, Z.D.; Radenović, S. The Banach and Reich contractions in bv(s)-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 3087–3095. [Google Scholar] [CrossRef]
- Radenović, S. Classical fixed point results in 0-complete partial metric spaces via cyclic-type extension. Bull. Allahabad Math. Soc. 2016, 31, 39–55. [Google Scholar]
- De la Sen, M.; Nikolić, N.; Došenović, T.; Pavlović, M.; Radenović, S. Some results on (s-q)-graphic contraction mappings in b-metric-like spaces. Mathematics 2019, 7, 1190. [Google Scholar] [CrossRef] [Green Version]
- Parvaneh, V.; Haddadi, M.R.; Aydi, H. On Best Proximity Point Results for Some Type of Mappings. J. Funct. Spaces 2020, 2020, 6298138. [Google Scholar] [CrossRef]
- Shukla, S.; Radenović, S.; Rajić, V.Ć. Some common fixed point theorems in 0-σ-complete metric-like spaces. Vietnam J. Math. 2013, 41, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Vujaković, J.; Aydi, H.; Radenović, S. Some remarks and new results in ordered partial b-metric spaces. Mathematics 2019, 7, 334. [Google Scholar] [CrossRef] [Green Version]
- Younis, M.; Singh, D.; Radenović, M.; Imdad, M. Convergence theorems via generalized contractions and its applications. Filomat 2020, in press. [Google Scholar]
- Afshari, H.; Aydi, H.; Karapınar, E. On generalized α-ψ-Geraghty contractions on b-metric spaces. Georgian Math. J. 2020, 27, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Chen, C.; Wang, H. Common fixed point theorems for (T,g)F-contraction in b-metric-like spaces. J. Inequal. Appl. 2018, 2018, 222. [Google Scholar] [CrossRef] [PubMed]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Ćirić, L.J. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Beograd, Serbia, 2003. [Google Scholar]
- Kirk, W.A.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Karapinar, E.; O’Regan, D.; Roldan-Lopez-de-Hierro, A.F. Fixed Point Theory in Metric Type Spaces; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Ameer, E.; Aydi, H.; Arshad, M.; De la Sen, M. Hybrid Ćirić type graphic (Υ, Λ)-contraction mappings with applications to electric circuit and fractional fifferential equations. Symmetry 2020, 12, 467. [Google Scholar] [CrossRef] [Green Version]
- Aleksić, S.; Kadelburg, Z.; Mitrović, Z.D.; Radenović, S. A new survey: Cone metric spaces. J. Int. Math. Virtual Inst. 2019, 9, 93–121. [Google Scholar]
- Frechet, M. Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 1906, 22, 1–74. [Google Scholar] [CrossRef] [Green Version]
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst. 1989, 3, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Shukla, S. Partial b-metric spaces and fixed point theorems. Mediterr. J. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
- Matthews, S.G. Partial metric topology, general topology and its applications. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- Aleksić, S.; Mitrović, Z.D.; Radenović, S. Picard sequences in b-metric spaces. Fixed Point Theory 2020, 21, 35–46. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256. [Google Scholar] [CrossRef]
- Mitrović, Z.D. A note on the result of Suzuki, Miculescku and Mihail. J. Fixed Point Theory Appl. 2019, 21. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Wardowski, D.; Dung, N.V. Fixed points of F-weak contractions on complete metric spaces. Demonstr. Math. 2014, 1, 146–155. [Google Scholar] [CrossRef]
- Collaco, P.; Silva, J.C. A complete comparison of 25 contraction conditions. Nonlinear Anal. TMA 1997, 30, 471–476. [Google Scholar] [CrossRef]
- Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
- Dung, N.V.; Hang, V.I. A fixed point theorem for generalized F-contraction on complete metric spaces. Vietnam J. Math. 2015, 43, 743–753. [Google Scholar] [CrossRef]
- Piri, H.; Kumam, P. Fixed point theorems for generalized F-Suzuki-contraction mappings in complete b-metric spaces. Fixed Point Theory Appl. 2016, 2016, 90. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilić, E.; Dolićanin-Đekić, D.; Mitrović, Z.D.; Pučić, D.; Aydi, H. On Some Recent Results Concerning F-Suzuki-Contractions in b-Metric Spaces. Mathematics 2020, 8, 940. https://doi.org/10.3390/math8060940
Gilić E, Dolićanin-Đekić D, Mitrović ZD, Pučić D, Aydi H. On Some Recent Results Concerning F-Suzuki-Contractions in b-Metric Spaces. Mathematics. 2020; 8(6):940. https://doi.org/10.3390/math8060940
Chicago/Turabian StyleGilić, Ersin, Diana Dolićanin-Đekić, Zoran D. Mitrović, Dženis Pučić, and Hassen Aydi. 2020. "On Some Recent Results Concerning F-Suzuki-Contractions in b-Metric Spaces" Mathematics 8, no. 6: 940. https://doi.org/10.3390/math8060940
APA StyleGilić, E., Dolićanin-Đekić, D., Mitrović, Z. D., Pučić, D., & Aydi, H. (2020). On Some Recent Results Concerning F-Suzuki-Contractions in b-Metric Spaces. Mathematics, 8(6), 940. https://doi.org/10.3390/math8060940