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Abstract: The purpose of this article is to present a new generalized almost (s, q)−Jaggi
F−contraction-type and a generalized almost (s, q)−Jaggi F−Suzuki contraction-type and some
results in related fixed point on it in the context of b−metric-like spaces are discussed. Also, we
support our theoretical results with non-trivial examples. Finally, applications to find a solution
for the electric circuit equation and second-order differential equations are presented and an strong
example is given here to support the first application.
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1. Introduction

Mathematical models can take many forms, including dynamical systems, statistical models,
differential equations and game theoretic models and real world problems. In various branches of
mathematics, The existence of solution for these matters has been checked, for example, differential
equations, integral equations, functional analysis, etc. Fixed point technique is one of these methods
to find the solution of these problems. So this technique has many applications not only is limited to
mathematics but also occurs in various sciences, such that, economics, biology, chemistry, computer
science, physics, etc. More clearly, for example, In economics, this technique is applied to find the
solution of the equilibrium problem in game theory.

Problems in the nonlinear analysis are solved by a popular tool called Banach contraction
principle. This principle appeared in Banach’s thesis [1], where it was used in proving the existence
and uniqueness of solution of integral equations, it stated as: A nonlinear self mapping Γ on a metric
space (Ω, d) is called a Banach contraction if there exists δ ∈ [0, 1) such that

d(Γκ, Γµ) ≤ δd(κ, µ), ∀κ, µ ∈ Ω. (1)

Notice that the contractive condition (1) is satisfied for all κ, µ ∈ Ω which forces the mapping
Γ to be continuous, while it is not applicable in case of discontinuity. In view of the applicability
of contraction principle this is the major draw-back of this principle. Many authors attempted to
overcome this drawback (see, for example [2–4]).

In 1989, one of the interesting generalizations of this basic principle was given by Bakhtin [5]
(and also Czerwik [6], 1993) by introducing the concept of b−metric spaces. For fixed point results in
b−metric spaces. See [7–14].
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In 2010, the concept of a b−metric-like initiated by Alghamdi et al. [9] as an extension of a
b−metric. They studied some related fixed point consequences concerning with this space. Recently,
many contributions on fixed points results via certain contractive conditions in mentioned spaces are
made (for example, see [15–20]).

In 2012, a new contraction called F− contraction-type is presented by Wardowski [21], where
F : R+ → R. By this style, recent fixed point results and strong examples to obtain a different type of
contractions are discussed.

Definition 1 ([21]). A mapping Γ : Ω −→ Ω defined on a metric space (Ω, d), is called an F−contraction if
there is F ∈ Σ and τ > 0 such that

d(Γκ, Γµ) > 0 implies τ + F(d(Γκ, Γµ)) ≤ F(d(κ, µ)), ∀κ, µ ∈ Ω, (2)

where Σ is the set of functions F : (0,+∞)→ R satisfying the following assumptions:
(=1) F is strictly increasing, i.e., for all a, b ∈ R+ such that a < b, F(a) < F(b);
(=2) For every sequence {an}n∈N of positive numbers, limn→∞ an = 0 iff limn→∞ F(an) = −∞;
(=3) There exists µ ∈ (0, 1) such that lima→0+ aµ F(a) = 0.

The following functions Fa : (0,+∞) −→ R for a ∈ {1, 2, 3, 4}, are the elements of Σ. Furthermore,
substituting these functions in (2), Wardowski obtained the following contractions:

(1) F1(θ) = ln(θ), d(Γκ,Γµ)
d(κ,µ) ≤ e−τ ,

(2) F2(θ) = ln(θ) + θ, d(Γκ,Γµ)
d(κ,µ) ≤ e−τ+d(κ,µ)−d(Γκ,Γµ),

(3) F3(θ) =
−1√

θ
, d(Γκ,Γµ)

d(κ,µ) ≤
1(

1+τ
√

d(κ,µ)
)2

(4) F4(θ) = ln(θ2 + θ), d(Γκ,Γµ)(1+d(Γκ,Γµ))
d(κ,µ)(1+d(κ,µ)) ≤ e−τ .

for all κ, µ ∈ Ω with θ > 0 and Γκ 6= Γµ.

Remark 1. It follows from (2) that

d(Γκ, Γµ) < d(κ, µ), for all κ, µ ∈ Ω,

this means that Γ is contractive with Γκ 6= Γµ. Hence, if the mapping is F−contraction, then it continuous.

Remark 2 ([22]). For p > 1 and θ > 0, the function F(θ) = −1
p√θ

belong to Σ.

In a different way to generalize the Banach contraction principle, Wardowski [21] established the
following theorem:

Theorem 1 ([21]). Suppose that (Ω, d) is a complete metric space and Γ is a self-mapping on it satisfying the
condition (2). Then there exists a unique fixed point κ∗ of Γ. As well as, the sequence {Γnκ◦}n∈N is convergent
to κ∗, for any κ◦ ∈ Ω.

The Wardowski-contraction is extended by many authors such as Abbas et al. [23] to give certain
fixed point results, Batra et al. [24,25], to generalize it on graphs and alter distances, and Cosentino
and Vetro [26] to introduce some fixed point consequences for Hardy-Rogers-type self-mappings in
ordered and complete metric spaces.
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In 2014, some fixed point consequences proved via the notion of an F−Suzuki contraction by Piri
and Kumam [27]. This concept is stated as follows:

Definition 2 ([27]). Let (Ω, d) be a complete metric space and a mapping Γ : Ω → Ω is called F−Suzuki
contraction if there exists F ∈ Σ, and τ > 0 such that

1
2

d(κ, Γκ) < d(κ, µ)⇒ τ + F(d(Γκ, Γµ)) ≤ F(d(κ, µ)), ∀κ, µ ∈ Ω,

with Γκ 6= Γµ.

In 1975, Jaggi [28] defined the concept of a generalized Banach contraction principle as follows:

Definition 3. Let (Ω, d) be a complete metric space. A continuous self-mapping Γ on a set Ω is called Jaggi
contraction-type if

d(Γκ, Γµ) ≤ α
d(κ, Γκ).d(µ, Γµ)

d(κ, µ)
+ βd(κ, µ),

for all κ, µ ∈ Ω, κ 6= µ and for some α, β ∈ [0, 1) with α + β < 1.

Recently, the same author [29], extended his above result on b−metric-like spaces as follows:

Definition 4. Let (Ω, v) be a b−metric-like space with parameter s ≥ 1. A nonlinear self-mapping Γ on a set
Ω is called (s, q)−Jaggi contraction type if it satisfies the following condition

sqv(Γκ, Γµ) ≤ α
v(κ, Γκ).v(µ, Γµ)

v(κ, µ)
+ βv(κ, µ),

for all κ, µ ∈ Ω, whenever v(κ, µ) 6= 0, where α, β ∈ [0, 1) with α + β < 1 and for some q ≥ 1.

In addition, Berinde [30] introduced the notion of almost contraction by generalized the
Zamfirescu fixed point theorem, his result incorporated as follows:

Definition 5. Let Γ be a nonlinear self-mapping on a complete metric space (Ω, d). Then it called Ciric almost
contraction, if there exists δ ∈ [0, 1) and ∃L ≥ 0 such that

d(Γκ, Γµ) ≤ δd(κ, µ) + Ld(µ, Γκ), (3)

for all κ, µ ∈ Ω, κ 6= µ.

After that, the same author [31] extended the contraction (3) and obtained some related fixed
point results on complete metric spaces as follows:

Theorem 2. Let (Ω, d) be a complete metric space and a self-mapping Γ on the set Ω be a Ciric almost
contraction, if there exist α ∈ [0, 1) and ∃L ≥ 0 such that

d(Γκ, Γµ) ≤ αM(κ, µ) + Ld(µ, Γκ) for all κ, µ ∈ Ω,

where M(κ, µ) = max{d(κ, µ), d(κ, Γκ), d(µ, Γµ), d(κ, Γµ), d(µ, Γκ)}. Then,
i. there is a non-empty fixed point of the mapping Γ, i.e., Fix(Γ) 6= ∅;
ii. for any κ◦ = κ ∈ Ω, n ≥ 0 the Picard iteration κn+1 = Γκn converges to κ∗ ∈ Fix(Γ);
iii. The following estimate holds

d(κn, κ∗) ≤ αn

(1− α)2 d(κ, Γκ),
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for all n ≥ 1.

Inspired by Definitions 1, 4 and 5, we introduce a new generalized (s, q)−Jaggi
F−contraction-type on the context of b−metric-like spaces as the following:

Definition 6. Let Γ be a self-mapping on a b−metric-like space (Ω, v) with parameter s ≥ 1. Then the
mapping Γ is said to be generalized (s, q)−Jaggi F contraction-type if there is F ∈ Σ and τ > 0 such that

v(Γκ, Γµ) > 0⇒ τ + F (sqv(Γκ, Γµ)) ≤ F
(

α
v(κ, Γκ).v(µ, Γµ)

v(κ, µ)
+ βv(κ, µ) + γv(µ, Γκ)

)
, (4)

for all κ, µ ∈ Ω and α, β, γ ≥ 0 with α + β + 2γs < 1, and for some q > 1.

To support our definition, we state the following example:

Example 1. Let Ω = [0,+∞) and v(κ, µ) = κ2 + µ2 + |κ − µ|2 ∀κ, µ ∈ Ω. It’s obvious that v is a b−metric
like on Ω, with coefficient s = 2. Define a nonlinear self-mapping Γ : Ω → Ω by Γκ = 1

16 ln(1 + κ
2 ), for all

κ ∈ Ω, and the function F(θ) = ln(θ). Consider the constants q = 2, τ = ln(2), α = γ = 0 and β = 1
4 . So

α + β + 2sγ = 1
4 < 1. Since t ≥ ln(1 + t) for each t ∈ [0, ∞), for all κ, µ ∈ Ω, we have

τ + F(sqv(Γκ, Γµ)) = τ + F(s2v(Γκ, Γµ)) = τ + F
(

s2
(

T2κ + T2µ− |Tκ − Tµ|2
))

= ln(2) + F

4

( ln(1 + κ
2 )

16

)2

+

(
ln(1 + µ

2 )

16

)2

+

∣∣∣∣∣ ln(1 + κ
2 )

16
−

ln(1 + µ
2 )

16

∣∣∣∣∣
2


≤ ln(2) + F
(

1
16

(
κ2

4
+

µ2

4
+
∣∣∣κ
4
− µ

4

∣∣∣2))
= ln(2) + ln

(
1
16

(
κ2

4
+

µ2

4
+
∣∣∣κ
4
− µ

4

∣∣∣2))
≤ ln

(
1
4

(
κ2 + µ2 + |κ − µ|2

))
= F

(
α

v(κ, Γκ).v(µ, Γµ)

v(κ, µ)
+ βv(κ, µ) + γv(µ, Γκ)

)
.

Therefore the mapping Γ is a generalized almost (s, q)−Jaggi F−contraction-type.

In this article, we present some related fixed point results for a generalized almost (s, q)−Jaggi
F-contraction-type and generalized almost (s, q)−Jaggi F−Suzuki contraction-type on b−metric-like
spaces. Also, we give some examples to illustrate these main results. Moreover, applications to find
solutions of electric circuit equations and second-order differential equations are discussed and we
justify the first application with an example.

2. Preliminaries and Known Results

In the context of this paper, we will use the following notations: N,R, R+ and Q denotes the set
of positive integers, real numbers, nonnegative real numbers and rational numbers, respectively. We
begin this part with backgrounds about metric-like and b−metric-like spaces.

Definition 7 ([9]). Let Ω be a nonempty set. A mapping ω : Ω×Ω→ R+ is said to be dislocated (metric-like)
if the following three conditions hold for all κ, µ, τ ∈ Ω :
(ω1) ω(κ, µ) = 0⇒ κ = µ;
(ω2) ω(κ, µ) = ω(µ, κ);
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(ω3) ω(κ, τ) ≤ ω(κ, µ) + ω(µ, τ).
In this case, the pair (Ω, ω) is called a dislocated (metric-like) space.

Definition 8 ([32]). A b−dislocated on a nonempty set Ω is a function v : Ω×Ω → R+ such that for all
κ, µ, τ ∈ Ω and a constant s ≥ 1, the following three conditions are satisfied:
(v1) v(κ, µ) = 0⇒ κ = µ;
(v2) v(κ, µ) = v(µ, κ);
(v3) v(κ, τ) ≤ s[v(κ, µ) + v(µ, τ)].

In this case, the pair (Ω, v) is called a b−dislocated (metric-like) space (with constant s).

It should be noted that the class of b−metric-like spaces is larger than the class of metric-like
spaces, since a b−metric-like is a metric-like with s = 1.

For new examples in metric-like and b−metric-like spaces (see [33,34]).
A b−metric-like on Ω satisfies all of the conditions of a metric except that v(κ, µ) may be positive

for κ ∈ Ω, so each b−metric-like v on Ω generates a topology <v on Ω whose base is the family of
open v−balls

<v(κ, ε) = {µ ∈ Ω : |v(κ, µ)−v(κ, κ)| < ε

s
},

for all κ ∈ Ω, s ≥ 1 and ε > 0.
According to a topology <v, we can present the following results:

Definition 9. Let (Ω, v) be a b−metric-like space and χ be a subset of Ω. We say that χ is a v−open subset
of Ω, if for all κ ∈ Ω there exists ε > 0 such that <v(κ, ε) ⊆ χ. Also σ ⊆ Ω is a v−closed subset of Ω if Ω\χ
is a v−open subset in Ω.

Lemma 1. Let (Ω, v) be a b−metric-like space and σ be a v−closed subset of Ω. Let {κn} be a sequence in σ

such that limn→∞ κn = κ. Then κ ∈ σ.

Proof. Let κ /∈ σ by Definition 9, (Ω\σ) is a v−open set. Then there exists ε > 0 such that <v(κ, ε) ⊆
Ω\σ. On the other hand, we have limn→∞ |v(κn, κ)−v(κ, κ)| = 0 since limn→∞ κn = κ. Hence, there
exists ι◦ ∈ N such that

|v(κn, κ)−v(κ, κ)| < ε

s
,

for all ι ≥ ι◦. So, we conclude that {κn} ⊆ <v(κ, ε) ⊆ Ω\σ for all ι ≥ ι◦. This is a contradiction since
{κn} ⊆ σ for all ι◦ ∈ N.

In a b−metric-like space (Ω, v), if κ, µ ∈ Ω and v(κ, µ) = 0, then κ = µ, but the converse is not
true in general.

Example 2. Let Ω = {0, 1, 2, 3, 4} and let

v(κ, µ) =

{
5, κ = µ = 0,
1
5 , otherwise.

Then (Ω, v) is a b−metric-like space with the constant s = 5.

Definition 10. Let {κn} be a sequence on a b−metric-like space (Ω, v) with a coefficient s. Then
1. If limm,n→∞ v(κn, κ) = v(κ, κ), then the sequence {κn} is said to be convergent to κ. {κn} is said to
be a Cauchy sequence if limm,n→∞ v(κm, κn) exists and is finite. The pair (Ω, v) is said to be a complete
b−metric-like space if for every Cauchy sequence {κn} in Ω, there exists a κ ∈ Ω, such that
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lim
m,n→∞

v(κm, κn) = v(κ, κ) = lim
n→∞

v(κn, κ).

2. {κn} in Ω is called a 0−v−Cauchy sequence if limm,n→∞ v(κm, κn) = 0. The space (Ω, v) is said to be
0−v−complete if every 0−v−Cauchy sequence in Ω converges with respect to <v to a point κ ∈ Ω such
that v(κ, κ) = 0.
3. A nonlinear mapping Γ is continuous on the set Ω, if the following limits

lim
n→∞

v(κn, κ), lim
n→∞

v(Γκn, Γκ).

Existing and equal.

The following example elucidates every v−complete b−metric-like space is 0−v−complete but
the converse is not true.

Example 3. Let Ω = [0, 1) ∩Q and v : Ω×Ω→ [0,+∞) be a function defined by

v(κ, µ) =

{
2κ if κ = µ,

(max{κ, µ})2 otherwise.

∀κ, µ ∈ Ω. Then (Ω, v) is a b−metric like spaces with a coefficient s = 2. Also, if we take a Cauchy sequence
{κn} =

(
1
n

)
n∈N

, then limm,n→∞ v(κm, κn) = 0. So {κn} is a 0 − v−Cauchy sequence converges to a

point 0 ∈ Ω. Therefore the pair (Ω, v) is a 0 − v−complete b−metric-like space, while, if we consider
{κn} =

( n
n+1
)

n∈N
, then limm,n→∞ v(κm, κn) exists and is finite but converges to a point 2 /∈ Ω, so, the pair

(Ω, v) is not a v−complete b−metric-like space.

Remark 3. In a b−metric-like space the limit of a sequence need not be unique and a convergent sequence need
not be a Cauchy sequence.

To show this remark, we gave the following example:

Example 4. Let Ω = [0,+∞). Define a function v : [0,+∞) × [0,+∞) → [0,+∞) by v(κ, µ) =

(max{κ, µ})2. Then (Ω, v) is a b−metric-like space with a coefficient s = 2. Suppose that

{κn} =
{

0 when n is odd
1 when n is even

.

For κ ∈ Ω, limn→∞ v(κn, κ) = limn→∞ (max{κn, κ})2 = κ2 = v(κ, κ). Therefore, it is a convergent
sequence and κn → κ. Now if we take κ = 0, therefore,
if n is an odd number, we have limn→∞ v(κn, κ) = limn→∞ (max{0, 0})2 = 0,
if n is an even number, we get limn→∞ v(κn, κ) = limn→∞ (max{1, 0})2 = 1.
That is, the sequence has not limit although it has two subsequences (for odd n and for even n) both having a
limit with both limits being distinct.

3. New Fixed Point Results

This section is devoted to present some new fixed point results for a generalized almost
(s, q)−Jaggi F−contraction-type and almost (s, q)−Jaggi F−Suzuki-type contraction on the context of
b−metric-like spaces.

We begin with the first main result.
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Theorem 3. Let (Ω, v) be a 0− v−complete b−metric-like space with a coefficient s ≥ 1 and Γ be a self
mapping satisfying a generalized almost (s, q)−Jaggi F−contraction-type (4). Then, Γ has a unique fixed point
whenever F or Γ is continuous.

Proof. Let κ◦ be an arbitrary point of Ω. Define a sequence {κn}n∈N by κn+1 = Γκn. If Γκ◦ = κ◦, then
the proof is finished. Again, if there exists i◦ ∈ {1, 2, ..} the right hand side of (4) is 0 for κ = κi◦−1 and
µ = κi◦ so the proof is stopped. So, without loss of generality we may assume that κn+1 6= κn for all
n ≥ 1 and vn = v(κn+1, κn). Then vn > 0. On the other hand, Γ is a generalized almost (s, q)−Jaggi
F−contraction-type, hence we get

τ + F(vn) ≤ τ + F(sqvn) = τ + F(sqv(κn+1, κn))

= τ + F(sqv(Γκn, Γκn−1))

≤ F
(

α
v(κn, Γκn).v(κn−1, Γκn−1)

v(κn, κn−1)
+ βv(κn, κn−1) + γv(κn−1, Γκn)

)
= F (αv(κn, κn+1) + βv(κn, κn−1) + γv(κn−1, κn+1)) . (5)

By condition (v3), we have

v(κn−1, κn+1) ≤ s[v(κn−1, κn) + v(κn, κn+1)]. (6)

Applying (6) in (5), one can write

τ + F(vn) ≤ F (αv(κn, κn+1) + βv(κn, κn−1) + γsv(κn−1, κn) + γsv(κn, κn+1)) .

Since F is strictly increasing, then

vn < αvn + βvn−1 + γsvn−1 + γsvn,

this leads to
(1− α− γs)vn < (β + γs)vn−1 for all n ≥ 1.

Since α + β + 2γs < 1, we deduce that 1− α− γs > 0, and thus

vn <
β + γs

1− α− γs
vn−1 < vn−1.

Consequently,
τ + F(vn) ≤ F(vn−1).

By the same method, we can prove that

F(vn) ≤ F(vn−1)− τ

≤ F(vn−2)− 2τ

.

.

≤ F(v◦)− nτ for all n ≥ 1. (7)

Passing the limit as n→ ∞ in (7), we can get

lim
n→∞

F(vn) = −∞.

So, by (=2), we obtain
lim

n→∞
vn = 0. (8)
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Apply (=3), there exists λ ∈ (0, 1) such that

lim
n→∞

vλ
n F(vn) = 0. (9)

By (7), for all n ≥ 1, yields

vλ
n (F(vn)− F(v◦)) ≤ −nτvλ

n ≤ 0. (10)

Considering (8), (9) and passing n→ ∞ in (10), we get

lim
n→∞

nvλ
n = 0. (11)

By (11), there exists n1 ∈ N such that nvλ
n ≤ 1 for all n ≥ n1, or

vn ≤
1

n
1
λ

∀n ≥ n1. (12)

Now, we shall prove that {κn} is 0− v−Cauchy sequence, let m, n ∈ N such that m > n ≥ n1.
By (12) and the assumption (v3), we have

v(κn, κm) ≤ sv(κn, κn+1) + sv(κn+1, κm)

≤ sv(κn, κn+1) + s2v(κn+1, κn+2) + s2v(κn+2, κm)

.

.

≤ sv(κn, κn+1) + s2v(κn+1, κn+2) + s3v(κn+2, κn+3) + ...

+sm−n−1v(κm−2, κm−1) + sm−nv(κm−1, κm)

=
m−1

∑
i=n

si−n+1vi

≤
∞

∑
i=n

si−n+1
(

1

i
1
λ

)
.

Since the series
∞
∑

i=n

1

i
1
λ

is converges, as i→ ∞ and since multiply a scalar number in a convergent

series gives a convergent series, so, v(κn, κm) → 0. Therefore {κn} is 0− v− Cauchy sequence in
(Ω, v). Since Ω is 0− v−complete b−metric-like space, there exists κ∗ ∈ Ω such that κn → κ∗ or
equivalently,

lim
n,m→∞

v(κn, κm) = lim
n→∞

v(κn, κ∗) = v(κ∗, κ∗) = 0. (13)

If Γ is v continuous, it follows from (12) that

lim
n→∞

v(Γκn, Γκ∗) = lim
n→∞

v(κn+1, Γκ∗) = v(κ∗, Γκ∗) = 0.

this implies that
κ∗ = Γκ∗.

Furthermore, suppose that F is continuous, we prove that κ∗ is a fixed point of Γ by contrary,
suppose κ∗ 6= Γκ∗, so there exist an n◦ ∈ N and a subsequence {κni} of {κn} such that v(κni+1, Γκ∗) > 0
for all ni ≥ n◦ (otherwise, there exists n1 ∈ N such that κn = Γκ∗ ∀n ≥ n1, which implies that κn → κ∗.
That is a contradiction, with κ∗ 6= Γκ∗). Since v(κni+1, Γκ∗) > 0 ∀ni ≥ n◦, then by (4), we have
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τ + F(sqv(κni+1, Γκ∗))

= τ + F(sqv(Γκni , Γκ∗))

≤ F
(

α
v(κni , Γκni ).v(κ∗, Γκ∗)

v(κni , κ∗)
+ βv(κni , κ∗) + γv(κ∗, Γκni )

)
= F

(
α

v(κni , κni+1).v(κ∗, Γκ∗)

v(κni , κ∗)
+ βv(κni , κ∗) + γv(κ∗, κni+1)

)
. (14)

Letting n→ ∞ in (14) and since F is continuous, we can get

τ + F(sqv(κ∗, Γκ∗)) ≤ F (αv(κ∗, Γκ∗))

< F(v(κ∗, Γκ∗)),

the above inequality say that sq < 1 for some q > 1. This a contradiction. Hence κ∗ = Γκ∗.

For uniqueness. Suppose that κ∗1 and κ∗2 are two distinct fixed points of a mapping Γ, hence
F(v(Γκ∗1 , Γκ∗2)) = v(κ∗1 , κ∗2) > 0, which implies by (4) that

F(sqv(κ∗1 , κ∗2)) = F(sqv(Γκ∗1 , Γκ∗2))

< τ + F(sqv(Γκ∗1 , Γκ∗2))

≤ F
(

α
v(κ∗1 , Γκ∗1).v(κ∗2 , Γκ∗2)

v(κ∗1 , κ∗2)
+ βv(κ∗1 , κ∗2) + γv(κ∗2 , Γκ∗1)

)
= F((β + γ)v(κ∗1 , κ∗2))

< F(v(κ∗1 , κ∗2)),

a contradiction again. Hence, the fixed point is unique. The proof is finished.

Remark 4. In the real, we can obtain some classical results of our new contraction (4) if we take the following
considerations on a complete metric space (Ω, d).

• Put α = γ = 0 and β = 1, we have Wardowski contraction [21].
• Take α = γ = 0, β ∈ [0, 1), F(θ) = ln(θ) with θ > 0, we get Banach contraction [1].
• Consider γ = 0 and F(θ) = ln(θ) with θ > 0, we have Jaggi-contraction [29].
• Let γ = 0, F(θ) = ln(θ) with θ > 0, we have Jaggi-contraction [28].
• Set α = 0, β ∈ [0, 1), γ ≥ 0, F(θ) = ln(θ) with θ > 0, we get Ciric almost contraction [30].

Now, we present the following example to discuss the validity results of Theorem 3.

Example 5. Let Ω = [0, 1) ∩Q and v : Ω×Ω→ R+be a function defined by

v(κ, µ) =


2 3
√

κ, if κ = µ

(
max{2 3

√
κ, 2 3
√

µ}
)2 otherwise

for all κ, µ ∈ Ω. Suppose that {κn} ∈ Ω. If limn→∞ v(κn, κ) = (κ, κ) = 0, then limn→∞ v(κn, µ) = (κ, µ)

for all µ ∈ Ω. By the condition (v3), we can write

v(κn, κm) ≤ 2(v(κn, κ) + v(κ, κm)). (15)

Passing limit as n, m→ ∞ in (15), we obtain limn,m→∞ v(κn, κm) = 0. Thus (Ω, v) is 0−ω−complete
b−metric-like space with a coefficient s = 2. Note, here (Ω, v) is not a complete b− metric like space. Indeed,
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consider the sequence {κn} = 1
n for n ∈ N in Ω. then limn→∞ κn = 0. Let limn→∞ v(κn, κ) = v(0, κ) for all

κ ∈ Ω.
If κ = 0, then v(0, κ) = 0. So limn,m→∞ v(κn, κm) = v(0, κ) = v(κn, κ).
If κ 6= 0, then v(0, κ) = 2 3

√
κ. So limn,m→∞ v(κn, κm) 6= v(0, κ) = v(κn, κ).

Therefore, (Ω, v) is a 0− v−complete b−metric-like space, which is not a v−complete b−metric-like
space. Define a nonlinear mapping Γ by Γκ = κ

512 . Take F(θ) = ln(θ) + θ, q = 3 and τ = ln(2). We shall
prove that Γ satisfy the condition (4) with α = γ = 0 and β = 1

4 . So α + β + 2γs = 1
4 < 1. Then for κ < µ,

v(Γκ, Γµ) = v(
κ

512
,

µ

512
) =

(
2 3
√

µ

8

)2

=

(
3
√

µ
)2

16
> 0,

by simple calculations, we can get

v(κ, Γκ) = v(κ, κ
512 ) = 4

(
3
√

κ
)2 , v(µ, Γµ) = v(µ, µ

512 ) = 4
(

3
√

µ
)2 ,

v(κ, µ) = 4
(

3
√

µ
)2 , v(µ, Γκ) = v(µ, κ

512 ) = 4
(

3
√

µ
)2 ,

and

α
v(κ, Γκ).v(µ, Γµ)

v(κ, µ)
+ βv(κ, µ) + γv(µ, Γκ)

=
(

α× 4
(

3
√

κ
)2
)
+
(

β× 4 ( 3
√

µ)2
)
+
(

γ× 4 ( 3
√

µ)2
)
= ( 3
√

µ)2 .

Hence

τ + F(sq(v(Γκ, Γµ)) = ln(2) + F(8×
(

3
√

µ
)2

16
)

= ln(2) + F

((
3
√

µ
)2

2

)

≤ ln(2) + ln

((
3
√

µ
)2

2

)
+

(
3
√

µ
)2

2

≤ ln
(
( 3
√

µ)2
)
+ ( 3
√

µ)2

= F
(
( 3
√

µ)2
)

= F(α
v(κ, Γκ)×v(µ, Γµ)

v(κ, µ)
+ βv(κ, µ) + γv(µ, Γκ)).

By the same manner, for κ = µ 6= 0, one gets that

τ + F(sq(v(Γκ, Γµ)) = ln(2) + F(8×
(

3
√

κ
)2

16
)

= ln(2) + F

((
3
√

κ
)2

2

)

≤ ln(2) + ln

((
3
√

κ
)2

2

)
+

(
3
√

κ
)2

2

≤ ln
((

3
√

κ
)2
)
+
(

3
√

κ
)2

= F
((

3
√

κ
)2
)

= F(α
v(κ, Γκ).v(µ, Γµ)

v(κ, µ)
+ βv(κ, µ) + γv(µ, Γκ)).



Mathematics 2020, 8, 63 11 of 21

So, all required hypotheses of Theorem 3 are verified and the point 0 ∈ Ω is a unique fixed point of Γ.

The second result of this section is to introduce the notion of a generalized almost (s, q)−Jaggi
F−Suzuki contraction-type in the context of b−metric-like spaces and study some related fixed point
results in this direction.

Definition 11. Let Γ be a self-mapping on a b−metric-like space (Ω, v) with parameter s ≥ 1. Then the
mapping Γ is said to be a generalized almost (s, q)−Jaggi F−Suzuki contraction-type if there exists F ∈ Σ and
τ ∈ (0,+∞) such that

1
2s v(κ, Γκ) < v(κ, µ)⇒ τ + F (sqv(Γκ, Γµ)) ≤ F

(
α

v(κ,Γκ).v(µ,Γµ)
v(κ,µ) + βv(κ, µ) + γv(µ, Γκ)

)
, (16)

for all κ, µ ∈ Ω and α, β, γ ≥ 0 with α + β + 2γs < 1, for some q > 1 and satisfying v(Γκ, Γµ) > 0.

Theorem 4. Let (Ω, v) be a 0− v−complete b−metric-like space with a coefficient s ≥ 1 and Γ be a self
mapping satisfying a generalized almost (s, q)−Jaggi-type F−Suzuki contraction (16).Then, Γ has a unique
fixed point whenever F or Γ is continuous.

Proof. Let κ◦ ∈ Ω and {κn}∞
n=1 defined by κn+1 = Γκn = Γn+1κ◦. If there exists n ∈ N such that

v(κn, Γκn) = 0, thus the proof is completed. So, suppose that 0 < v(κn, Γκn) = v(κn, κn+1) = vn,
therefore for all n ∈ N

1
2s

v(κn, Γκn) < v(κn, Γκn),

yields

τ + F
(

v(Γκn, Γ2κn)
)
≤ τ + F

(
sqv(Γκn, Γ2κn)

)
= τ + F (sqv(Γκn, Γ(Γκn)))

≤ F
(

α
v(κn, Γκn).v(Γκn, Γ2κn)

v(κn, Γκn)
+ βv(κn, Γκn) + γv(Γκn, Γκn)

)
= F

(
αv(Γκn, Γ2κn) + βv(κn, Γκn) + γv(Γκn, Γκn)

)
≤ F

(
αv(Γκn, Γ2κn) + βv(κn, Γκn) + 2sγv(κn, Γκn)

)
.

Since F is strictly increasing, then

v(Γκn, Γ2κn) < αv(Γκn, Γ2κn) + βv(κn, Γκn) + 2sγv(κn, Γκn). (17)

Since 1− α > 0, and α + β + 2γs < 1 then we can write

v(Γκn, Γ2κn) <

(
β + 2sγ

1− α

)
v(κn, Γκn) < v(κn, Γκn). (18)

Consequently,
τ + F(v(Γκn, Γ2κn)) ≤ F(v(κn, Γκn)),

or,
F(v(Γκn, Γ2κn)) ≤ F(v(κn, Γκn))− τ,

By the same method, we can deduce that
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F(vn) = F(v(κn, Γκn)) = F(v(Γκn−1, Γ2κn−1))

≤ F(v(κn−1, Γκn−1))− τ

≤ F(v(κn−2, Γκn−2))− 2τ

.

.

≤ F(v(κ◦, Γκ◦))− nτ for all n ≥ 1.

By the same manner of Theorem 3, we deduce that {κn} is 0− v−Cauchy sequence in (Ω, v).
Since Ω is 0− v−complete b−metric-like space, there exists κ∗ ∈ Ω such that κn → κ∗ or equivalently,

lim
n,m→∞

v(κn, κm) = lim
n→∞

v(κn, κ∗) = v(κ∗, κ∗) = 0. (19)

Now, we shall prove that

1
2s

v(κn, Γκn) < v(κn, κ∗) or
1
2s

v(Γκn, Γ2κn) < v(Γκn, κ∗). (20)

Assuming the opposite, that there is m ∈ N such that

1
2s

v(κm, Γκm) ≥ v(κm, κ∗) or
1
2s

v(Γκm, Γ2κm) ≥ v(Γκm, κ∗). (21)

Hence
2sv(κm, κ∗) ≤ v(κm, Γκm) ≤ s[v(κm, κ∗) + v(κ∗, Γκm)],

which leads to
sv(κm, κ∗) ≤ sv(κ∗, Γκm),

or
v(κm, κ∗) ≤ v(κ∗, Γκm), (22)

From (21) and (22), we have

v(κm, κ∗) ≤ v(κ∗, Γκm) ≤
1
2s

v(Γκm, Γ2κm).

Since 1
2s v(κm, Γκm) < v(κm, Γκm) and using (16), we can get

τ + F
(

v(Γκm, Γ2κm)
)
≤ τ + F

(
sqv(Γκm, Γ2κm)

)
≤ F

(
α

v(κm, Γκm)

v(κm, Γκm)
+ βv(κm, Γκm) + γv(Γκm, Γκm)

)
= F

(
αv(Γκm, Γ2κm) + βv(κm, Γκm) + γv(Γκm, Γκm)

)
≤ F

(
αv(Γκm, Γ2κm) + βv(κm, Γκm) + 2sγv(κm, Γκm)

)
.

Replace n with m in the inequalities (17) and (18) and apply the same above steps, we can write

v(Γκm, Γ2κm) < v(κm, Γκm).
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It follows from (21) and (22), that

v(Γκm, Γ2κm) < v(κm, Γκm)

≤ s[v(κm, κ∗) + v(κ∗, Γκm)]

≤ s[v(κ∗, Γκm) +
1
2s

v(Γκm, Γ2κm)]

≤ s[
1
2s

v(Γκm, Γ2κm) +
1
2s

v(Γκm, Γ2κm)]

= v(Γκm, Γ2κm).

A contradiction, so (20) holds for all n ∈ N, this leads to

τ + F
(

2s2v(Γκn, Γκ∗)
)
≤ τ + F (2sqv(Γκn, Γκ∗))

≤ F
(

α
v(κn, Γκn).v(κ∗, Γκ∗)

v(κn, κ∗)
+ βv(κn, κ∗) + γv(κ∗, Γκn)

)
< F

(
α

2sv(κn, κ∗).v(κ∗, Γκ∗)

v(κn, κ∗)
+ βv(κn, κ∗) + γv(κ∗, Γκn)

)
= F (2sαv(κ∗, Γκ∗) + βv(κn, κ∗) + γv(κ∗, Γκn))

≤ F

(
2s2αv(κ∗, κn) + 2s3αv(κn, Γκn) + 2s3αv(Γκn, Γκ∗)

+βv(κn, κ∗) + γsv(κ∗, κn) + γsv(κn, Γκn)

)
,

a gain, since v(κn, Γκn) < 2sv(κn, κ∗), τ > 0 and F is strictly increasing, this yields,

2s2v(Γκn, Γκ∗) < (2s2α + 4s4α + β + γs + 2s2γ)v(κn, κ∗) + 2s3αv(Γκn, Γκ∗),

or,
(1− 2αs)v(Γκn, Γκ∗) < (α + 2s2α + β + 2γ)v(κn, κ∗),

Thus,

τ + F((1− 2αs)v(Γκn, Γκ∗)) ≤ F((α + 2s2α + β + 2γ)v(κn, κ∗))

= F(α + 2s2α + β + 2γ)v(Γκn+1, κ∗)). (23)

Passing the limit as n→ ∞ in (23), using (=2) and (19) we can get

lim
n→∞

v(Γκn, Γκ∗) = 0.

Therefore, v(κ∗, Γκ∗) = limn→∞ v(κn, Γκ∗) = limn→∞ v(Γκn+1, Γκ∗) = 0.
Similarly, by (20) for all n ∈ N, one can write

τ + F
(

2s2v(Γ2κn, Γκ∗)
)
≤ τ + F

(
2sqv(Γ2κn, Γκ∗)

)
≤ F

(
α

v(Γκn, Γ2κn).v(κ∗, Γκ∗)

v(Γκn, κ∗)
+ βv(Γκn, κ∗) + γv(κ∗, Γ2κn)

)
< F

(
α

2sv(Γκn, κ∗).v(κ∗, Γκ∗)

v(Γκn, κ∗)
+ βv(Γκn, κ∗) + γv(κ∗, Γ2κn)

)
= F

(
2sαv(κ∗, Γκ∗) + βv(Γκn, κ∗) + γv(κ∗, Γ2κn)

)
≤ F

(
2s2αv(κ∗, Γκn) + 2s3αv(Γκn, Γ2κn) + 2s3αv(Γ2κn, Γκ∗)

+βv(Γκn, κ∗) + γsv(κ∗, Γκn) + γsv(Γκn, Γ2κn)

)
,
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since v(Γκn, Γ2κn) < 2sv(Γκn, κ∗), τ > 0 and F is strictly increasing, this leads to

2s2v(Γ2κn, Γκ∗) < (2s2α + 4s4α + β + γs + 2γs2)v(κ∗, Γκn) + 2s3αv(Γ2κn, Γκ∗),

or,
(1− 2αs)v(Γ2κn, Γκ∗) < (α + 2s2α + β + 2γ)v(κ∗, Γκn).

Thus,

τ + F((1− 2αs)v(Γ2κn, Γκ∗)) ≤ F((α + 2s2α + β + 2γ)v(κ∗, Γκn))

= F(α + 2s2α + β + 2γ)v(κn+1, κ∗)). (24)

Taking the limit as n→ ∞ in (24), using (=2) and (19) we can get

lim
n→∞

v(Γ2κn, Γκ∗) = 0.

Therefore, v(κ∗, Γκ∗) = limn→∞ v(κn+2, Γκ∗) = limn→∞ v(Γ2κn, Γκ∗) = 0. Hence, κ∗ = Γκ∗.
The uniqueness follows immediately from the proof of Theorem 3, and this completes

the proof.

Example 6. By taking all assumptions of Example 5, if κ < µ, we have

1
2s

v(κ, Γκ) =
1
4
× 4

(
3
√

κ
)2

=
(

3
√

κ
)2

< 4 ( 3
√

µ)2 = v(κ, µ),

also, if κ = µ 6= 0, we deduce that

1
2s

v(κ, Γκ) =
1
4
× 4

(
3
√

κ
)2

=
(

3
√

κ
)2

< 4
(

3
√

κ
)2

= v(κ, µ).

Therefore all required hypotheses of Theorem 4 are satisfied and a mapping Γ has a unique fixed point
0 ∈ Ω.

4. Solution of Electric Circuit Equation

Fixed point theory is involved in physical applications especially the solution of the the electric
circuit equation, which was presented in [35,36]. The authors applied their theorems obtained to
solve this equation under F−contraction mapping. In this part, we present the solution of electric
circuit equation, which is in the form of second-order differential equation. It contains a resistor R, an
electromotive force E, a capacitor C, an inductor L and a voltage V in series as Figure 1.

If the rate of change of charge q with respect to time t denoted by the current I, i.e., I = dq
dt . We

get the following relations:
• V = IR;
• V = q

C ;
• V = L dI

dt .
The sum of these voltage drops is equal to the supplied voltage (law of Kirchhoff voltage), i.e.,

IR +
q
C
+ L

dI
dt

= V(t),

or

L
d2q
dt2 + R

dq
dt

+
q
C

= V(t), q(0) = 0, q′(0) = 0, (25)
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where C = 4L
R2 and τ = R

2L , this case is said to be the resonance solution in a Physics context. Then, the
Green function associated with (25) is given by

Λ(t, $) =

{
−$e−τ($−t) if 0 ≤ $ ≤ t ≤ 1
−te−τ($−t) if 0 ≤ t ≤ $ ≤ 1

.

Using Green function, problem (25) is equivalent to the following nonlinear integral equation

κ(t) =
t∫

0

Λ(t, $)χ($, κ($))d$, (26)

where t ∈ [0, 1].
Let Ω = C([0, 1]) be the set of all continuous functions defined on [0, 1], endowed with

v(κ, µ) = (‖κ‖∞ + ‖µ‖∞)m for all κ, µ ∈ Ω,

where ‖κ‖∞ = supt∈[0,1]{|κ(t)| e−2tτm} and m > 1. It is clear that (Ω, v) is a complete b−metric-like
space with parameter s = 2m−1.

Figure 1. Electric circuit.

Now, we state and prove the main theorem of this section.

Theorem 5. Let Γ be a nonlinear self mapping on Ω of a b−metric-like space (Ω, v), such that the following
conditions hold
(i) Λ : [0, 1]× [0, 1]→ [0, ∞) is a continuous function;
(ii) χ : [0, 1]×R→ R, where χ($, .) is monotone nondecreasing mapping for all $ ∈ [0, 1];
(iii) there exists a constant τ ∈ R+ such that for all (t, $) ∈ [0, 1]2 and κ, µ ∈ R+,

|χ(t, κ) + χ(t, µ)| ≤ τ2
(

e−τ

s2

) 1
m

B
1
m (κ, µ),

where

B(κ, µ) = α
v(κ, Γκ).v(µ, Γµ)

v(κ, µ)
+ βv(κ, µ) + γv(µ, Γκ),

for all, t ∈ [0, 1] and α, β, γ ≥ 0 such that α + β + 2γs < 1. Then the Equation (25) has a unique solution.
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Proof. Define a nonlinear self-mapping Γ : Ω→ Ω by

Γκ(t) =
t∫

0

Λ(t, $)χ($, κ($))d$.

It is clear that if κ∗ is a fixed point of the mapping Γ, then it a solution of the problem (26). Suppose
that κ, µ ∈ Ω, we can get v(Γκ(t), Γµ(t)) > 0,

s2 (|Γκ(t)|+ |Γµ(t)|)m

= s2

∣∣∣∣∣∣
t∫

0

Λ(t, $)χ($, κ($))d$

∣∣∣∣∣∣+
∣∣∣∣∣∣

t∫
0

Λ(t, $)χ($, µ($))d$

∣∣∣∣∣∣
m

≤ s2

 t∫
0

|Λ(t, $)χ($, κ($))| d$ +

t∫
0

|Λ(t, $)χ($, µ($))d$|

m

= s2

 t∫
0

Λ(t, $) (|χ($, κ($))|+ |χ($, µ($))|) d$

m

≤ s2

 t∫
0

Λ(t, $)τ2
(

e−τ

s2

) 1
m

B
1
m (κ, µ)d$

m

= s2

 t∫
0

Λ(t, $)τ2e2τ$e−2τ$

(
e−τ

s2

) 1
m

B
1
m (κ, µ)d$

m

≤ e−τ ‖B(κ, µ)‖∞

τ2
t∫

0

e2τ$Λ(t, $)d$

m

≤ e−τ ‖B(κ, µ)‖∞

(
e2τt [1− 2τt + τte−τt − e−τt])m

,

so we have

s2 (|Γκ(t)|+ |Γµ(t)|)m .e−2tτm ≤ e−τ ‖B(κ, µ)‖∞
[
1− 2τt + τte−τt − e−τt]m ,

which leads to,

s2 (‖Γκ(t)‖∞ + ‖Γµ(t)‖∞)m ≤ e−τ ‖B(κ, µ)‖∞
[
1− 2τt + τte−τt − e−τt]m ,

since 1− 2τt + τte−τt − e−τt ≤ 1, we obtain that

s2v(Γκ(t), Γµ(t)) ≤ e−τ ‖B(κ, µ)‖∞ .

Taking F(θ) = ln(θ), for all θ > 0, which is F ∈ Σ, we obtain

ln(s2v(Γκ(t), Γµ(t))) ≤ ln(e−τ ‖B(κ, µ)‖∞),

or
τ + ln(s2v(Γκ(t), Γµ(t))) ≤ ln(‖B(κ, µ)‖∞).
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Equivalently

τ + F(sqv(Γκ(ρ), Γµ(ρ))) ≤ F(α
v(κ, Γκ).v(µ, Γµ)

v(κ, µ)
+ βv(κ, µ) + γv(µ, Γκ)).

By Theorem 3 and taking the coefficient q = 2, we deduce that Γ has a fixed point, which is a
solution of the differential equation arising in the electric circuit equation. This finished the proof.

The following example satisfy all required hypotheses of Theorem 5.

Example 7. Consider the following nonlinear integral equation

κ(t) =
τ2e−4tτ

50s3

1∫
0

$3κ($)d$, $ ∈ [0, 1]. (27)

Then it has a solution in Ω.

Proof. Let Γ : Ω→ Ω be defined by Γκ(t) = τ2e−4tτ

50s3

1∫
0

$3κ($)d$. By specifying Λ(t, $) = $3

5 , χ(t, κ) =

τ2e−4tτκ($)
10s3 in Theorem 5, it follows that:

(i) the function Λ(t, $) is continuous on [0, 1]× [0, 1],
(ii) χ($, κ($)) is monotone increasing on [0, 1]×R for all $ ∈ [0, 1],
(iii) By taking m = 2 and τ = ln(4), hence s = 2, so, for all (t, $) ∈ [0, 1]× [0, 1] and κ, µ ∈ R+, we
obtain that

|χ(t, κ) + χ(t, µ)| =
τ2e−4tτ

10s3 |κ($) + µ($)| ≤ τ2e−4tτ

20s2 (|κ($)|+ |µ($)|)

≤ τ2e−4tτ

4s2 (|κ($)|+ |µ($)|)2

=
(τ

s

)2
(

1
eln 4.22 )

1
2

(
[|κ($)|+ |µ($)|] e−4tτ

)2

=
(τ

s

)2
(

1
eτ .s2 )

1
m

(
[|κ($)|+ |µ($)|] e−2tτm

)m

=
(τ

s

)2
(

1
eτ .s2 )

1
m (‖κ($)‖∞ + ‖µ($)‖∞)m

=
(τ

s

)2
(

1
eτ .s2 )

1
m v(κ, µ)

≤ τ2
(

e−τ

s2

) 1
m

B
1
m (κ, µ).

Finally

sup
t,$∈[0,1]

1∫
0

Λ(t, $)d$ = sup
t∈[0,1]

1∫
0

$3

5
d$ ≤ sup

ρ∈[0,1]

1
20

=
1
20

< 1.

Therefore, all conditions of Theorem 5 are satisfied, therefore a mapping Γ has a fixed point in Ω,
which is a solution to the problem (27).
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5. Solution of Second-Order Differential Equations

In this part, we shall apply the previous theoretical results of Theorem 3 to study the existence
and uniqueness of solutions for the following second-order differential equation:{

κ′′(t) = −χ(t, κ(t)), t ∈ [0, 1]
κ(0) = κ(1) = 0

, (28)

where χ : [0, 1]× [0, 1]→ R is a continuous functions.
The problem (28) is equivalent to the following integral equation:

κ(t) =
1∫

0

Λ(t, $)χ(t, κ($))d$, ∀t ∈ [0, 1] (29)

where Λ is the Green function defined by

Λ(ρ, $) =

{
t(1− $) if 0 ≤ t ≤ $ ≤ 1
$(1− t) if 0 ≤ $ ≤ t ≤ 1

,

and χ be a function as in Theorem 5. Hence if κ ∈ C2([0, 1],R), then κ is a solution of (28) if and only if
κ is a solution of (29).

Let Ω = C([0, 1],R) be the set of all continuous functions defined on [0, 1], endowed with the
same distance of the above section. Then (Ω, v) is a complete b−metric-like space with parameter
s = 2m−1.

Now, we introduce the main theorem of this part.

Theorem 6. Let Γ be a nonlinear self mapping on Ω of a b−metric-like space (Ω, v), such that there exists
monotone nondecreasing mapping χ : [0, 1]×R→ R such that

|χ($, κ) + χ($, µ)| ≤
(

7βe−τ

s2

) 1
m

(|κ|+ |µ|) ,

for all $ ∈ [0, 1], κ, µ ∈ R, 0 ≤ β < 1
8 and for m > 1.

Then the problem (28) has a unique solution κ ∈ C([0, 1],R), provided that the conditions (i) and (ii) of
Theorem 5 are satisfied.

Proof. Let us define a nonlinear self-mapping Γ on a set Ω by

Γκ(t) =
1∫

0

Λ(t, $)χ(t, κ($))d$,

for all t ∈ [0, 1] and κ ∈ Ω. The solution of the problem (28) is equivalent to find a fixed point κ of Γ on
Ω. Suppose that κ, µ ∈ Ω, we have v(Γκ, Γµ) > 0,
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s2 (|Γκ(t)|+ |Γµ(t)|)m = s2

∣∣∣∣∣∣
1∫

0

Λ(t, $)χ(t, κ($))d$

∣∣∣∣∣∣+
∣∣∣∣∣∣

1∫
0

Λ(t, $)χ(t, µ($))d$

∣∣∣∣∣∣
m

≤ s2

 1∫
0

|Λ(t, $)χ(t, κ($))| d$ +

∣∣∣∣∣∣
1∫

0

|Λ(t, $)χ(t, µ($))| d$

∣∣∣∣∣∣
m

= s2

 1∫
0

Λ(t, $) |χ(t, κ($)) + χ(t, µ($))| d$

m

≤ s2

 1∫
0

Λ(t, $)

(
7βe−τ

s2

) 1
m

(|κ|+ |µ|)d$

m

= 7βe−τ

 1∫
0

Λ(t, $)e2tτe−2tτ (|κ|+ |µ|) d$

m

≤ 7βe−τ (‖κ‖∞ + ‖µ‖∞)m e2tτm

 1∫
0

Λ(t, $)d$

m

=
7

7m βe−τe2tτm (‖κ‖∞ + ‖µ‖∞)m

≤ βe−τe2tτm (‖κ‖∞ + ‖µ‖∞)m .

For instance above, for all t ∈ [0, 1], we can get
1∫

0
Λ(t, $)d$ = 1

2 (1− t) and thus, we choose

sup$∈[0,1]

1∫
0

Λ(t, $)d$ = 1
7 . Hence

s2 (Γκ(t) + |Γµ(t)|)m .e−2tτm ≤ e−τ β (‖κ‖∞ + ‖µ‖∞)m ,

or
s2 (‖Γκ‖∞ + ‖Γµ‖∞)m ≤ e−τ β (‖κ‖∞ + ‖µ‖∞)m , (30)

Let α = γ = 0, hence α + β + 2sγ < 1
8 . It follows from (30) that

s2v(Γκ, Γµ) ≤
(
e−τ
)
[βv(κ, µ)]. (31)

Taking the function F(θ) = ln(θ) in (31), such that F ∈ Σ, we can obtain

τ + F(s2v(Γκ, Γµ)) ≤ F(βv(κ, µ))

= F(α
v(κ, Γκ).v(µ, Γµ)

v(κ, µ)
+ βv(κ, µ) + γv(µ, Γκ)).

Hence all requirements of Theorem 3 are holds by taking the coefficient q = 2, therefore Γ has a
fixed point κ ∈ Ω, that is, (28) has a unique solution κ ∈ C2([0, 1],R).

6. Question

It was proved in [22] that if F(θ) = −1
p√θ

, where p > 1 and θ > 0, then F ∈ Σ. The question that
arises here, what are the properties of the contraction mapping under this function?



Mathematics 2020, 8, 63 20 of 21

7. Conclusions

The paper generalizes known contraction conditions and the obtained fixed point results,
generalized several results known before such as Banach contraction [1], Jaggi-contraction [28], [29],
and Ciric almost contraction [30]. Furthermore, as it has been observed in studies, fixed point results
in b−metric-like spaces can be derived from the results of ordinary and b−metric spaces under some
suitable conditions. We have applied our results to get the existence of a solution for electric circuit
equation and second-order differential equation.
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