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Abstract: This paper deals with the numerical solutions and convergence analysis for general
singular Lane–Emden type models of fractional order, with appropriate constraint initial conditions.
A modified reproducing kernel discretization technique is used for dealing with the fractional
Atangana–Baleanu–Caputo operator. In this tendency, novel operational algorithms are built and
discussed for covering such singular models in spite of the operator optimality used. Several numerical
applications using the well-known fractional Lane–Emden type models are examined, to expound the
feasibility and suitability of the approach. From a numerical viewpoint, the obtained results indicate
that the method is intelligent and has several features stability for dealing with many fractional
models emerging in physics and mathematics, using the new presented derivative.

Keywords: Atangana–Baleanu–Caputo fractional derivative; fractional Lane–Emden type models;
reproducing kernel discretization method

1. Prolegomena and Presentation

Fractional calculus is dealing with investigations and applications of derivatives and integrations
of arbitrary order that provide an attractive mechanism for explaining the memory and hereditary
effort of complex systems [1–5]. Fractional calculus theory dates back to Leibniz in the sixteenth
century, and after that, many forms of fractional operators have been introduced in the classical theory.
Among them are the Riemann–Liouville, Caputo–Liouville, Atangana–Baleanu–Caputo, and Riesz
operator approaches [6–18]. Fractional calculus attracted focus in current scientific research, due to its
nonlocal nature and its ability to handle the effects of external forces of phenomena that cannot be
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modeled in a traditional way. Recently, a new definition of fractional derivative has proposed, the ABC
fractional derivative [19–31].

At all events, it is not easy to find accurate numerical solutions to FLETM due to the complexity
that occurs inside the Mittag–Leffler function in the fractional ABC derivatives. Thereafter, software
computer programming is ordinarily used to obtain numerical solutions in acceptable accuracy.
Over this treatise, we face to utilize the RKDM to gain approximate numerical outcomes of FLETM,
utilizing the ABC fractional sense. More specifically, we consider the subsequent form [32,33].

ABC
0 ∂δl ψ(l) +

κ1

q1(l)
∂lψ(l) +

κ2

q2(l)
ψ(l) + Φ(l,ψ(l)) = T(l), (1)

subject to the CICs
ψ(0) = α and ∂lψ(0) = β. (2)

We are standing for the following: l ∈ J [0, 1]; δ ∈ (1, 2]; α, β,κ1,κ2 ∈ R with κ1 , 0 , κ2;
ψ ∈ C(J → R); q1, q2 ∈ C(J → R) while q1(0) = 0 = q2(0); Φ ∈ C(J ×R→ R); T ∈ C(J − {0} → R).
We are recording ABC

0 ∂δl ψ(l) to sign the ABC fractional derivative of ψ in l over J of order δ with

ABC
0 ∂δl ψ(l) = (1− δ)

(
1− δ+ δΓ−1(δ)

) ∫ l

0
∂2ψ(k)

∞∑
n=0

(−1)n

Γ(nδ+ 1)

(
δ

2− δ

)n
(l− k)nδdk, (3)

in which l = 0 is a base point acquaint at l ∈ J −B(J) and ψ ∈ S2(J −B(J)), whereas S2 is the
Sobolev functions’ space of order 2 on the domain J except the boundary B(J) of J erected as

S
2(J −B(J)) =

{
ψ ∈ L2(J −B(J)) : ∂lψ(l), ∂2

l ψ(l) ∈ L2(J −B(J))
}
. (4)

The FLETM is categorized as a singular differential problem and supplied as an instrument in the
formulation of the phenomena that emerge with various applications across mathematical physics
and astrophysics. It characterizes the equilibrium thickness allocation in the self-gravitating sphere of
polytrophic isothermal gas and, at the origin, contained singularity nodes. The FLETM has weight in
the domain of modeling the clusters of galaxies, stellar structure, and radiative cooling. Interested
reader can go through [32–36], to identify more details, properties, results, and applications on such
singular models.

The standard RKDM main field topics are in the modelling and simulation of sundry-dimensional
issues in applied computational physical, applied mathematics, and engineering [37–39], it has been
used in creating numerical and approximate solutions for integral and differential models in the
shape of infinite convergent series with floor extent of calculations, without any limited assumptions.
This approach adjusted has been utilized as a solver technique to deal with complexes’ nonlinear and
discontinues shapes of integral/differential problems arising in various applications area range from
engineering to physics as utilized in [40–59].

2. Concrete Structure of the RKDM

This part is dedicated to describing some adaptive necessary rules and preliminaries for the
RKDM, especially those concerning the kernel functions and independency. We take AC(J) to denote
the set of absolutely continuous functions onJ and we take L2(J) to denote the set of square-integrable
functions on J .

Assume that H is a reproducing kernel Hilbert space. From the Riesz representation theorem,
it follows that for every k ∈ J , there exists only one Hl(k) ∈ H, such that for every F ∈ H, we have

∀k ∈ J : 〈F(k), Hl(k)〉H = F(l). (5)
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Definition 1. [23] Let Π(J) be a Hilbert space with inner product and functional structures, as is given below:
Π(J) =

{
ψ(l) : ψ(l), ∂lψ(l), ∂2

l ψ(l) ∈ AC(J); ∂3
l ψ(l) ∈ L2(J);ψ(0) = ∂lψ(0) = 0

}
,

〈ψ1(l),ψ2(l)〉Π = ∂2
l ψ1(0)∂2

l ψ2(0) +
∫
J
∂3

l ψ1(l)∂3
l ψ2(l)dl,

‖ψ‖Π =
√
ψ(l),ψ(l)Π.

(6)

Definition 2. [23] Let ∆(J) be a Hilbert space with inner product and functional structures, as is given below:
∆(J) =

{
ψ(l) : ψ(l) ∈ AC(J); ∂lψ(l) ∈ L2(J)

}
,

〈ψ1(l),ψ2(l)〉∆ =
∫
J
ψ1(l)ψ2(l)dl + ∂lψ1(l)∂lψ2(l)dl,

‖ψ‖∆ =
√
ψ(l),ψ(l)∆.

(7)

Theorem 1. [23] The space Π(J) is a complete reproducing kernel with rule

Fl(k) =
1

120

 l2
(
−5k2l + k3 + 10l2(3 + k)

)
, k ≤ l,

k2
(
−5l2k + l3 + 10k2(3 + l)

)
, k > l.

(8)

Theorem 2. [23] The space ∆(J) is a complete reproducing kernel with rule

Gl(k) =
sinh(1)

2

{
cosh(l + k− 1) + cosh(l− k− 1), k ≤ l,
cosh(l + k− 1) + cosh(k− l− 1), k > l.

(9)

When applied the RKDM, one must firstly split the convex compact set J into regular sections
encoded with li. This assumes that the acquired set {li}

∞

i=1 will be dense in J . We attempt to cover J ,
as well as the numerical procedure ought to end in finite phases.

To examine the independency, suppose {θi}
m
i=1 are not all zero, such that

∑m
i=1 θiFli(k) = 0. Take

hs(k) ∈ Π(J), such that hs(ki) = δi,k, ∀i = 1, 2, . . . , m, then

0 =
〈
hs(k),

m∑
i=1

θiFli (k)
〉

Π

=
m∑

i=1
θihs(k), Fli(k)Π

=
m∑

i=1
θihs(ki)

= θi,

(10)

for i = 1, 2, . . . , m. This shows that
{
Fli(k)

}m

i=1
is linearly independent for all m ≥ 1 and, thus,

{
Fli(k)

}∞
i=1

is linearly independent in Π(J). Similarly, one can find that
{
Gli(k)

}∞
i=1

is linearly independent too.

3. Solutions Shape of FLETM

Multiplying (1) by q1(l)q2(l), we get

q(l)ABC
0 ∂δl ψ(l) + κ1q2(l)∂lψ(l) + κ2q1(l)ψ(l) + Φ(l,ψ(l)) = T(l), (11)

in which q(l) = q1(l)q2(l), Φ(l,ψ(l)) = q1(l)q2(l)Φ(l,ψ(l)), and T(l) = q1(l)q2(l)T(l).
The replacement ψ(l) :→ ψ(l) − (βl + α) converts FLETM given by (11) and (2) into homogenous

one. We are denoting the new equation by

q(l)ABC
0 ∂δl ψ(l) + κ1q2(l)∂lψ(l) + κ2q1(l)ψ(l) + Φ(l,ψ(l) − (βl + α)) = T(l), (12)
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subject to the CICs
ψ(0) = 0 and ∂lψ(0) = 0. (13)

The function T(l) appears from substituting ψ(l) − (βl + α) instead of ψ(l) in (12). In fact, after
simplification and transform the extra mathematical terms into the right hand side of (12), one can

write T(l) = q(l)ABC
0 ∂δl (βl + α) + κ1q2(l)∂l(βl + α) + κ2q1(l)(βl + α) + T(l).

Define the linear operator A : Π(J)→ ∆(J) and its mapA[ψ](l) as

A[ψ](l) = q(l)ABC
0 ∂δl ψ(l) + κ1q2(l)∂lψ(l) + κ2q1(l)ψ(l). (14)

Putting ζ(l,ψ(l), ∂lψ(l)) := T(l) − Φ(l,ψ(l) − (βl + α)), then (14) and (13) are converted into
the form {

A[ψ](l) = ζ(l,ψ(l), ∂lψ(l)),
ψ(0) = 0 and ∂lψ(0) = 0.

(15)

We arrange the system of orthogonal functions taking Si(l) = Gli(l), Λi(l) = A∗[Si](l), i =

1, 2, 3, . . ., such that {li}
∞

i=1 is dense on J . The Gram–Schmidt orthogonalization process is used to
generate the system of orthonormal functions

{
Λi(l)

}∞
i=1

on Π(J), where

Λi(l) =
i∑

j=1

εi jΛ j(l), (16)

with the orthogonalization coefficients εi j with the indexes i = 2, 3, . . ., and j = 1, 2, . . . , i − 1 are
computed in the subsequent algorithm.

Algorithm 1. Steps of the orthonormal Gram–Schmidt process:

Step 1: For i = 2, 3, . . . and j = 1, 2, . . . , i− 1, do the following:

ε11 = 1
‖Λ1‖Π

,
εii =

1√
‖Λi‖

2
Π−

∑i−1
p=1〈Λi(t),Λp(t)〉

2
Π

, i , 1,

εi j = −
1√

‖Λi‖
2
Π−

∑i−1
p=1〈Λi(t), Λp(t)〉

2
Π

i−1∑
p= j
〈Λi(t), Λp(t)〉Πεpj, i > j.

(17)

Output: The orthogonalization coefficients εi j.
Step 2: For i = 1, 2, 3, . . . set

Λi(l) =
i∑

j=1

εi jΛ j(l). (18)

Output: System of orthonormal functions
{

Λi(l)
}∞
i=1

.

Remark 1. In the third formula of (17), the calculations of εi j, i > j are obtaining recursively as follows:

• If i = 2 and j = 1, then

ε21 = −
1√

‖Λ2‖
2
Π −

∑1
p=1〈Λ1(t), Λp(t)〉

2
Π

1∑
p=1

〈Λ2(t), Λp(t)〉Πεp1, (19)

where
1∑

p=1
〈Λ2(t), Λp(t)〉Πεp1 = 〈Λ2(t), Λ1(t)〉Πε11

= 〈Λ2(t), Λ1(t)〉Π
1

‖Λ1‖Π
.

(20)
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• If i = 3 and j = 1, 2, then

ε31 = −
1√

‖Λ3‖
2
Π −

∑2
p=1〈Λ3(t), Λp(t)〉

2
Π

2∑
p=1

〈Λ3(t), Λp(t)〉Πεp1, (21)

where
2∑

p=1
〈Λ3(t), Λp(t)〉Πεp1 = 〈Λ3(t), Λ1(t)〉Πε11 + 〈Λ3(t), Λ2(t)〉Πε21

= 〈Λ3(t), Λ1(t)〉Π
1

‖Λ1‖Π
+ 〈Λ3(t), Λ2(t)〉Πε21

(22)

in which ε21 comes from (19). Similarly,

ε32 = −
1√

‖Λ3‖
2
Π −

∑2
p=1〈Λ3(t), Λp(t)〉

2
Π

2∑
p=2

〈Λ3(t), Λp(t)〉Πεp2, (23)

where
2∑

p=2
〈Λ3(t), Λp(t)〉Πεp2 = 〈Λ3(t), Λ2(t)〉Πε22

= 〈Λ3(t), Λ2(t)〉Π
1√

‖Λ2‖
2
Π−

∑1
p=1〈Λ2(t),Λp(t)〉

2
Π

.
(24)

• If i = 4 and j = 1, 2, 3 then

ε41 = −
1√

‖Λ4‖
2
Π −

∑3
p=1〈Λ4(t), Λp(t)〉

2
Π

3∑
p=1

〈Λ4(t), Λp(t)〉Πεp1, (25)

where

3∑
p=1
〈Λ4(t), Λp(t)〉Πεp1 = 〈Λ4(t), Λ1(t)〉Πε11 + 〈Λ4(t), Λ2(t)〉Πε21 + 〈Λ4(t), Λ3(t)〉Πε31

= 〈Λ4(t), Λ1(t)〉Π
1

‖Λ1‖Π
+ 〈Λ4(t), Λ2(t)〉Πε21 + 〈Λ4(t), Λ3(t)〉Πε31,

(26)

in which ε21 comes from (19) and ε31 comes from (21). Similarly,

ε42 = −
1√

‖Λ4‖
2
Π −

∑3
p=1〈Λ4(t), Λp(t)〉

2
Π

3∑
p=2

〈Λ4(t), Λp(t)〉Πεp2, (27)

where

3∑
p=2
〈Λ4(t), Λp(t)〉Πεp2 = 〈Λ4(t), Λ2(t)〉Πε22 + 〈Λ4(t), Λ3(t)〉Πε32

= 〈Λ4(t), Λ2(t)〉Π
1√

‖Λi‖
2
Π−

∑i−1
p=1〈Λi(t),Λp(t)〉

2
Π

+ 〈Λ4(t), Λ3(t)〉Πε32,
(28)

in which ε32 comes from (23). Finally,

ε43 = −
1√

‖Λ4‖
2
Π −

∑3
p=1〈Λ4(t), Λp(t)〉

2
Π

3∑
p=3

〈Λ4(t), Λp(t)〉Πεp3, (29)
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where
3∑

p=3
〈Λ4(t), Λp(t)〉Πεp3 = 〈Λ4(t), Λ3(t)〉Πε33

= 〈Λ4(t), Λ3(t)〉Π
1√

‖Λ3‖
2
Π−

∑2
p=1〈Λ3(t),Λp(t)〉

2
Π

.
(30)

Analogue for the remaining indexes i = 4, 5, . . . and j = 1, 2, . . . , i− 1.

Lemma 1. The system
{
Λi(l)

}∞
i=1 is complete on Π(J).

Proof. Λi(l) = A∗[Si](l) assures that Λi(l) ∈ Π(J). For each ψ(l) ∈ Π(J), if 〈ψ(l), Λi(l)〉Π = 0,
i = 1, 2, . . ., then

〈ψ(l), Λi(l)〉Π = 〈ψ(l),A∗[Si](l)〉Π
= 〈A[ψ](l),Si(l)〉∆
= A[ψ](li)
= 0.

(31)

From (5) we get A[ψ](li) = 〈A[ψ](l),Si(l)〉Π = 0. By the density of {li}
∞

i=1 in J , we have
A[ψ](l) = 0. The existence ofA−1 yields ψ(l) = 0. Subsequently,

{
Λi(l)

}∞
i=1 is complete on Π(J). �

Definition 3. [60] If ψ is a continuous function and
{
Λi(l)

}∞
i=1

an orthonormal functions system, then

〈ψ(l), Λi(l)〉Π, i = 1, 2, . . . are called Fourier functions of ψ with respect to the system
{
Λi(l)

}∞
i=1

and

ψ(l) =
∑
∞

i=1〈ψ(l), Λi(l)〉ΠΛi(l) is called its Fourier expansion.

Theorem 3. The subsequent are achieved:

1. Whenever n→∞ the analytic solution of (15) fulfills:

ψ(l) =
∞∑

i=1

i∑
j=1

εi jζ
(
l j,ψ

(
l j
)
, ∂lψ

(
l j
))

Λi(l). (32)

2. The n-term numerical solution of Equation (15) fulfills:

ψn(l) =
n∑

i=1

i∑
j=1

εi jζ
(
l j,ψ

(
l j
)
, ∂lψ

(
l j
))

Λi(l). (33)

Proof. Assume that εi j are orthogonalization coefficients for the orthonormal functions systems{
Λi(l)

}∞
i=1

. Then

ψ(l) =
∞∑

i=1
〈ψ(l), Λi(l)〉ΠΛi(l)

=
∞∑

i=1

〈
ψ(l),

i∑
j=1

εi jΛ j(l)
〉

Π
Λi(l)

=
∞∑

i=1

i∑
j=1

εi j〈ψ(l),A∗
[
S j

]
(l)〉ΠΛi(l)

=
∞∑

i=1

i∑
j=1

εi j〈A[ψ](l),S j(l)〉∆ Λi(l)

=
∞∑

i=1

i∑
j=1

εi j〈ζ(l,ψ(l), ∂lψ(l)),S j(l)〉∆ Λi(l)

=
∞∑

i=1

i∑
j=1

εi jζ
(
l j,ψ

(
l j
)
, ∂lψ

(
l j
))

Λi(l).

(34)
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For the numerical computations, we truncate the series in (32) using the n-term numerical solution
of ψ(l). �

The attached steps focusing on the computational steps require using an appropriate software
package for solving (15) using RKDM, and in order to evaluate the numerical approximation ψn of ψ
in Π(J).

Algorithm 2. Steps of RKDM for numerical approximations model of FLETM in ABC derivative:

Step I: Fix l, k in J and do Phases 1 and 2:
Phase 1: Set li = 1

n i in the index i = 0, 1, . . . , n.
Phase 2: Set Λi(l) = A∗[Si](l) in the index i = 1, 2, . . . , n.

Output: the orthogonal function system Λi(l).
Step II: For the indices i = 1, 2, . . . and j = 1, 2, . . . , i− 1 do Algorithm 1.
Output: the orthogonalization coefficients εi j.
Step III: Set Λi(l) =

∑i
j=1 εi jΛ j(l) in the indices i = 1, 2, . . . , n.

Output: the orthonormal function system Λi(l).
Step IV: Set ψ0(l1) = 0 and with the indices i = 1, 2, . . . , n do Phases 1, 2, and 3:

Phase 1: Set ψi(li) = ψi−1(li).
Phase 2: Set Fi =

∑i
j=1 εi jζ

(
l j,ψ

(
l j
)
, ∂lψ

(
l j
))

.

Phase 3: Set ψn(l) =
∑i

j=1 F jΛ j(l).
Output: The n-term numerical approximation ψn(l) of ψ(l).

4. Convergence Analysis

In this part, the convergence of numerical solution and error behavior are presented.
Using convergent series representation, the following two theorems explain that FLETM described in
Equation (15) is conditionally formulated and consistent.

To achieve our goal, we assume ‖ψn−1‖
Π is bounded whenever n→∞ and {li}

∞

i=1 is dense on J .
Then the error En = ‖ψ−ψn

‖
2
Π is decreasing for sufficiently large n, since we have

E
n
−E

n−1 = ‖
∞∑

i=n+1
〈ψ(l), Λi(l)〉A Λi(l)‖

2
Π − ‖

∞∑
i=n
〈µ(l), Λi(l)〉A Λi(l)‖

2
Π

=
∞∑

i=n+1
〈ψ(l), Λi(l)〉

2
Π −

∞∑
i=n
〈ψ(l), Λi(l)〉

2
Π

< 0.

(35)

The convergence of
∑
∞

i=1〈ψ(l), Λi(l)〉ΠΛi(l) yields En
→ 0 whenever n→∞ as long as ψ(l) and

ψn(l) are extracted from (32) and (33).

Lemma 2. For ψ ∈ Π(J), it holds
∣∣∣ψ(l)∣∣∣ ≤ 3.5‖ψ‖Π,

∣∣∣∂lψ(l)
∣∣∣ ≤ 3‖ψ‖Π, and

∣∣∣∂2
l ψ(l)

∣∣∣ ≤ 2‖ψ‖Π.

Proof. The proof is straightforward from ∂2
l ψ(l) − ∂

2
l ψ(0) =

∫ l
0 ∂

2
pψ(p)dp, Holder’s inequality, and (6).

�

If ‖ψn−1
−ψ‖Π → 0 and ln → k whenever n→∞ then

ζ
(
ln,ψn−1(ln), ∂lψ

n−1(ln)
)
→ ζ(k,ψ(k), ∂lψ(k)) . This can be seen directly from Lemma 2 and

the fact that ζ(l,ψ(l), ∂lψ(l)) ∈ C(J ×R×R,R). We denote Fi =
∑i

j=1 εi jζ
(
l j,ψ

(
l j
)
, ∂lψ

(
l j
))

.
This allows us to rewrite ψn(l) as

ψn(l) =
n∑

i=1

FiΛi(l). (36)
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Theorem 4. From (36), it holds that ψn(l)→ ψ(l) whenever n→∞ .

Proof. Clearly, ψn+1(l) = ψn(l) +Fn+1Λn+1(l). From the orthogonality of
{
Λi(l)

}∞
i=1

, we get

‖ψn+1
‖

2
Π = ‖ψn

‖
2
Π +F 2

n+1
= ‖ψn−1

‖
2
Π +F 2

n +F 2
n+1

= . . .

= ‖ψ0
‖

2
Π +

n+1∑
i=1
F

2
i .

(37)

This implies ‖ψn+1
‖Π ≥ ‖ψn

‖Π and there exists γ in R such that
∑
∞

i=1 F
2

i = γ, which means that{
F

2
i

}∞
i=1
∈ l2. In order to have

ψm(l) −ψm−1(l)⊥ψm−1(l) −ψm−2(l)⊥ . . .⊥ψn+1(l) −ψn(l), (38)

it is sufficient to have for m > n that

‖ψm
−ψn

‖
2
Π = ‖ψm

−ψm−1 +ψm−1
− . . .+ψn+1

−ψn
‖

2
Π

= ‖ψm
−ψm−1

‖
2
Π + ‖ψm−1

−ψm−2
‖

2
Π + . . .+ ‖ψn+1

−ψn
‖

2
Π,

(39)

whereas, ‖ψm
− ψm−1

‖
2
Π = F

2
m. As n, m→∞ one has ‖ψm

−ψn
‖

2
Π =

∑m
l=n+1 F

2
i → 0 . By the

completeness, ∃ψn(l) ∈ Π(J) such that ψn(l)→ ψ(l) as n→∞ . �

Theorem 5. One has ψ(l) =
∑
∞

i=1 FiΛi(l) whenever n→∞ in (36).

Proof. Taking the lim
n→∞

on both sides of (36), one get ψ(l) =
∑
∞

i=1 FiΛi(l). Thus

A[ψ](lk) =
∞∑

i=1
Fi〈A

[
Λi

]
(l),Sk(l)〉∆

=
∞∑

i=1
Fi〈 Λi(l),A∗[Sk](l)〉Π

=
∞∑

i=1
Fi〈Λi(l), Λk(l)〉Π,

(40)

and
l∑

k′=1
εkk′A[ψ](lk′) =

∞∑
i=1
Fi〈Λi(l),

l∑
k′=1

εkk′Λk′(l)〉Π

=
∞∑

i=1
Fi〈Λi(t), Λk′(l)〉Π

= Fl.

(41)

If l = 1, thenA[ψ](l1) = ζ
(
l1,ψ0(l1), ∂lψ

0(l1)
)

and if l = 2, thenA[ψ](l2) = ζ
(
l2,ψ1(l2), ∂lψ

1(l2)
)
.

Generally, we haveA[ψ](ln) = ζ
(
ln,ψn−1(ln), ∂lψ

n−1(ln)
)
. By the density condition, ∀k ∈ J ; ∃

{
lnq

}∞
q=1

such that lnq → k whenever q→∞ orA[ψ]
(
lnq

)
= ζ

(
lnq ,ψnq−1

(
lnq

)
, ∂lψ

nq−1
(
lnq

))
. Letting j→∞ one

can getA[ψ](k) = ζ(k,ψ(k), ∂lψ(k)). Since Λi(l) ∈ Π(J), then ψ(l) satisfies (15). �

5. Model Experiments and Computational Results

In this important portion; in order to solve FLETM in (1) and (2) numerically using the
RKDM, three models are presented in certain specific form. In the examples, we demonstrate
the performance and efficiency of the proposed approach in term of tables and figures, with some
scientific explanations’ comments.
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5.1. Certain Examples

In the subsequent FLETM, the readers should note that ψ(0) and ∂lψ(0) are known and may not
be homogeneous. The forcing term T(l) can be obtain by substituting ψ(l) through the given model.

Example 1. Consider the following FLETM in ABC sense:

ABC
0 ∂δl ψ(l) +

1
l
∂lψ(l) +

1
l
ψ(l) + ln(ψ(l)) = T(l), (42)

subject to the CICs
ψ(0) = 1 and ∂lψ(0) = δ, (43)

where the analytic solution is given by
ψ(l) = eδl. (44)

Example 2. Consider the following FLETM in ABC sense:

ABC
0 ∂δl ψ(l) +

1
sin(l)

∂lψ(l) −ψ(l) + sin(ψ(l)) = T(l), (45)

subject to the CICs
ψ(0) = 0 and ∂lψ(0) = 0, (46)

where the analytic solution is given by
ψ(l) = l2δ − l3. (47)

Example 3. Consider the following FLETM in ABC sense:

ABC
0 ∂δl ψ(l) +

1
l2
∂lψ(l) −

1
l4
ψ(l) + 3

√
ψ(l) = T(l), (48)

subject to the CICs
ψ(0) = 0 and ∂lψ(0) = δ, (49)

where the analytic solution is given by
ψ(l) = δl− l2. (50)

Recall that l ∈ [0, 1]; δ ∈ (1, 2]; ψ ∈ C(J → R); and T ∈ C(J − {0} → R), while ABC
0 ∂δl ψ(l) denotes

the ABC fractional derivative of ψ in l over J of order δ.

5.2. Results and Discussions

Take into consideration Algorithms 1 and 2, following the RKDM, using li = i
n , i = 0, 1, . . . , n = 50

the numerical validations for different values of grid points li ∈ J will be exhibited. For this purpose,
Tables 1–3 tabulates the evolution of the absolute errors Ab as

Ab
[
ψ50

]
(li) =

∣∣∣ψ(li) −ψ50(li)
∣∣∣, (51)

for Examples 1, 2, and 3, simultaneously.
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Table 1. Numerical results of Example 1 using RKDM.

δ=2 δ=1.75 δ=1.5 δ=1.25

li Ab[ψ50](li) Ab[ψ50](li) Ab[ψ50](li) Ab[ψ50](li)

0 0 0 0 0
0.1 5.58923× 10−7 2.39589× 10−6 9.76028× 10−6 1.26481× 10−5

0.2 7.29487× 10−7 8.43183× 10−6 5.53946× 10−5 4.51370× 10−4

0.3 5.10731× 10−7 9.31378× 10−6 6.44253× 10−5 8.45264× 10−4

0.4 4.86899× 10−7 4.02242× 10−6 5.96694× 10−5 6.39510× 10−4

0.5 3.73586× 10−7 6.44048× 10−6 9.76767× 10−5 8.49810× 10−4

0.6 5.96425× 10−7 9.83946× 10−6 3.13543× 10−5 7.18295× 10−4

0.7 8.30602× 10−7 8.11052× 10−6 1.78901× 10−5 2.28708× 10−4

0.8 3.09230× 10−7 3.03588× 10−6 8.12647× 10−5 5.51276× 10−4

0.9 7.82026× 10−6 2.81165× 10−6 5.67583× 10−5 6.57153× 10−4

1.0 6.27080× 10−6 3.20502× 10−5 2.14565× 10−4 3.76831× 10−4

Table 2. Numerical results of Example 2 using RKDM.

δ=2 δ=1.75 δ=1.5 δ=1.25

li Ab[ψ50](li) Ab[ψ50](li) Ab[ψ50](li) Ab[ψ50](li)

0 0 0 0 0
0.1 1.66034× 10−7 3.79764× 10−6 8.68106× 10−5 7.78427× 10−4

0.2 2.58021× 10−7 6.04130×10−6 6.66813× 10−5 4.83384× 10−4

0.3 2.47746× 10−7 2.43097× 10−6 5.42359× 10−5 4.13100× 10−4

0.4 6.83007× 10−8 7.36473× 10−6 1.28745× 10−5 9.26837× 10−4

0.5 1.54628× 10−7 7.49228× 10−6 7.24921× 10−5 2.34712× 10−4

0.6 4.61756× 10−7 9.86819× 10−6 3.86754× 10−5 7.72225× 10−4

0.7 8.34165× 10−8 6.41801× 10−6 2.32842× 10−5 2.55304× 10−4

0.8 9.75666× 10−8 6.05864× 10−6 6.41085× 10−5 5.48677× 10−4

0.9 1.96125× 10−7 1.54146× 10−6 5.49951× 10−5 6.03551× 10−4

1.0 2.45293× 10−7 9.86166× 10−6 2.78153× 10−5 9.96146× 10−4

Table 3. Numerical results of Example 3 using RKDM.

δ=2 δ=1.75 δ=1.5 δ=1.25

li Ab[ψ50](li) Ab[ψ50](li) Ab[ψ50](li) Ab[ψ50](li)

0 0 0 0 0
0.1 8.72538× 10−7 8.35309× 10−6 4.24210× 10−5 9.37424× 10−4

0.2 7.62576× 10−7 5.90241× 10−6 1.89126× 10−5 4.86929× 10−4

0.3 4.31937× 10−7 7.87242× 10−6 9.13479× 10−5 2.67124× 10−4

0.4 4.71124× 10−7 3.19969× 10−6 7.50933× 10−5 7.64597× 10−4

0.5 3.51107× 10−6 6.03111× 10−6 4.86751× 10−5 7.01821× 10−4

0.6 8.69821× 10−6 6.45966× 10−5 2.98386× 10−5 8.42708× 10−4

0.7 2.50806× 10−6 2.80152× 10−5 7.89215× 10−5 4.27468× 10−4

0.8 1.25974× 10−6 3.66312× 10−5 4.03998× 10−5 8.68758× 10−4

0.9 2.14535× 10−6 5.01585× 10−5 1.76836× 10−4 8.38715× 10−4

1.0 2.93206× 10−6 1.57354× 10−5 2.81862× 10−4 9.03151× 10−4

From the tables, we observe that the RKDM numerical outcomes are unanimous with analytic
solutions during in the area of interest. Additional iterations will lead to more refined solutions along
the memory and heritage characteristics of δ. The ABC fractional derivative orders have powerful
belongings on the model shapes, which head for lead to remarkable behaviors in the incident of a
considerable departure from the value of δ = 2.

The 3D surfaces plot of the RKDM numerical solutions for Examples 1, 2, and 3 are drawn in
Figure 1a–c simultaneously, for different values of grid points li ∈ J when δ ∈ (1, 2]. It appears that all
figures almost look identical in their behaviors, and in good agreement with each other, particularly
when comparing the case of δ = 2. Moreover, the RKDM numerical solutions are very close at the CICs.
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(b) Example 2; and (c) Example 3.

6. Conclusions and Outline

The attractive RKDM has been successfully employed to construct and predict the
numerical/analytic solutions for FLETM under the ABC fractional sense. Convergence and consistency
were discussed, which turns out that the proposed scheme has decreasing absolute error in the Π(J)

space. Three FLETM models have been given to test applicability and straightforwardness of the
presented approach. The gained numerical data reveal that the numerical solutions are conformable
with each other at the selected parameters and nods. Finally, one can see that the RKDM is a methodical
and convenient scheme to address various fractional differential/integral problems across applied
sciences and engineering area.

In the near future, we intend to conduct more research as a continuation of this work. One of
these research studies is related to the applications of the RKDM to solve numerically the Lane–Emden
type models that contain functions with singularities or weak regularity, subject to CICs or constraint
boundary conditions.
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