Some Multisecret-Sharing Schemes over Finite Fields
Abstract
:1. Introduction
2. Preliminaries
2.1. Blakley Threshold Secret Sharing Scheme
2.2. Ramp Secret Sharing Scheme
3. Multisecret-Sharing Schemes over Finite Fields
3.1. Notation
3.2. Scheme Description
- Let the vector space be both the secret space and the participants set.
- Let any vector of be the secret.
- (1)
- The access structure consists of sets of m elements.
- (2)
- No subset of size less than m can be used in recovering the secret.
3.3. Statistics on Coalitions
3.4. Security Analysis
3.5. Information Theoretic Efficiency
3.6. Comparison with Other Schemes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [Google Scholar] [CrossRef]
- Blakley, G.R. Safeguarding Cryptographic Keys. In Proceedings of the 1979 International Workshop on Managing Requirements Knowledge (MARK), New York, NY, USA, 4–7 June 1979; Volume 48, pp. 313–317. [Google Scholar]
- Fuyou, M.; Yan, X.; Xingfu, W.; Badawy, M. Randomized component and its application to (t,m,n)-group oriented secret sharing. IEEE Trans. Inf. Forensics Secur. 2015, 10, 889–899. [Google Scholar] [CrossRef]
- Horn, L.; Lin, C. Strong (n,t,n) verifiable secret sharing scheme. Inf. Sci. 2010, 180, 3059–3064. [Google Scholar] [CrossRef]
- Horn, L.; Hsu, C.; Zhang, M.; He, T.; Zhang, M. Realizing secret sharing with general access structure. Inf. Sci. 2016, 367, 209–220. [Google Scholar] [CrossRef]
- Pang, L.J.; Wong, Y.-M. A New (t,n)-multisecret sharing scheme based on Shamir’s secret sharing. Appl. Math 2005, 167, 840–848. [Google Scholar]
- Yang, C.-C.; Chang, T.-Y.; Hwang, M.-S. A New (t,n)-multisecret-sharing scheme. Appl. Math. Comput. 2004, 151, 483–490. [Google Scholar]
- Al Ebri, N.; Yeun, C.Y. Study on Secret Sharing Schemes (SSS) and Their Applications. In Proceedings of the 6th International Conference on Internet Technology and Secured Transactions, Abu Dhabi, UAE, 11–14 December 2011; pp. 40–45. [Google Scholar]
- Bozkurt, I.N.; Kaya, K.; Selçuk, A.A.; Güloğlu, A.M. Threshold Cryptography Based on Blakley Secret Sharing. In Proceedings of the of Information Security and Cryptology 2008, Ankara, Turkey, 25–27 December 2008. [Google Scholar]
- Çalkavur, S.; Solé, P. Multisecret-sharing schemes and bounded distance decoding of linear codes. Int. J. Comput. Math. 2017, 94, 107–114. [Google Scholar] [CrossRef]
- He, J.; Dawson, E. Multistage secret sharing based on one-way function. Electron. Lett. 1994, 30, 1591–1592. [Google Scholar] [CrossRef]
- Karnin, E.D.; Greene, J.W.; Hellman, M.E. On secret sharing systems. IEEE Trans. Inf. Theory 1983, 29, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-X.; Cheng, C.-T.; Pang, L.-J. A New (t,n)-Threshold Multisecret Sharing Scheme. In International Conference on Computational and Information Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3802, pp. 421–426. [Google Scholar]
- Bai, L. A Reliable (k,n)-Image Secret Sharing Scheme. In Proceedings of the 2006 2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing, Indianapolis, IN, USA, 29 September–1 October 2006; pp. 1–6. [Google Scholar]
- Ding, C.; Laihonen, T.; Renvall, A. Linear multisecret-sharing schemes and error correcting codes. J. Comput. Sci. 1997, 3, 1023–1036. [Google Scholar]
- Alahmadi, A.; Altassan, A.; AlKenani, A.; Çalkavur, S.; Shoaib, H.; Solé, P. A Multisecret-Sharing Scheme Based on LCD Codes. Mathematics 2020, 8, 272. [Google Scholar] [CrossRef] [Green Version]
- Croman, K.; Decker, C.; Eyal, I.; Gencer, A.E.; Juels, A.; Kosba, A.; Miller, A.; Saxena, P.; Shi, E.; Sirer, E.G.; et al. On scaling decentralized blockchains. In em International Conference on Financial Cryptography and Data Security; Springer: Berlin/Heidelberg, Germany, 2016; pp. 106–125. [Google Scholar]
- Raman, R.K.; Varshney, L.R. Distributed Storage Meets Secret Sharing on the Blockchain. ITA 2018. Available online: http://ita.ucsd.edu/workshop/18/files/paper/paper_1714.pdf (accessed on 13 March 2019).
- Krawczyk, H. Secret sharing made short. In Cryptology — CRYPTO ’93; ser. Lecture Notes in Computer Science; Stinson, D.R., Ed.; Springer: Berlin, Germany, 1994; Volume 773, pp. 136–146. [Google Scholar]
- Rabin, M.O. Efficient dispersal of information for security, load balancing, and fault tolerance. J. ACM 1989, 36, 335–348. [Google Scholar] [CrossRef]
- Herzberg, A.; Jarecki, S.; Krawczyk, H.; Yung, M. Proactive secret sharing or: How to cope with perpetual leakage. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Maram, S.K.D.; Zhang, F.; Wang, L.; Low, A.; Zhang, Y.; Juels, A.; Song, D. CHURP: Dynamic-Committee Proactive Secret Sharing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2369–2386. [Google Scholar]
- Bartolucci, S.; Bernat, P.; Joseph, D. SHARVOT: Secret SHARe-based VOTing on the blockchain. Available online: https://arxiv.org/pdf/1803.04861.pdf (accessed on 13 March 2019).
- He, S.; Wu, Q.; Lu, X.; Liang, Z.; Li, D.; Feng, H.; Zheng, H.; Li, Y. A Social-Network-Based Cryptocurrency Wallet-Management Scheme. IEEE Access 2018, 6, 7654–7663. [Google Scholar] [CrossRef]
- Taylor, D.E. The Geometry of the Classical Groups; Sigma Series in Pure Mathematics; Heldermann Verlag: Berlin, Germany, 1992; Volume 9. [Google Scholar]
- Jackson, W.A.; Martin, K.M. A Combinatorial Interpretation of Ramp Schemes. Aust. J. Comb. 1996, 14, 51–60. [Google Scholar]
- Padro, C. Robust vector space secret sharing schemes. Inf. Process. Lett. 1998, 68, 107–111. [Google Scholar] [CrossRef]
- Massey, J.L. Minimal codewords and secret sharing. In Proceedings of the 6th Joint Swedish-Russian Workshop on Information Theory, Mölle, Sweden, 22–27 August 1993; pp. 276–279. [Google Scholar]
- Çalkavur, S.; Solé, P. Vector space multisecret-sharing scheme based on Blakley’s method. Chin. J. Electron. 2020, submitted. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çalkavur, S.; Solé, P. Some Multisecret-Sharing Schemes over Finite Fields. Mathematics 2020, 8, 654. https://doi.org/10.3390/math8050654
Çalkavur S, Solé P. Some Multisecret-Sharing Schemes over Finite Fields. Mathematics. 2020; 8(5):654. https://doi.org/10.3390/math8050654
Chicago/Turabian StyleÇalkavur, Selda, and Patrick Solé. 2020. "Some Multisecret-Sharing Schemes over Finite Fields" Mathematics 8, no. 5: 654. https://doi.org/10.3390/math8050654
APA StyleÇalkavur, S., & Solé, P. (2020). Some Multisecret-Sharing Schemes over Finite Fields. Mathematics, 8(5), 654. https://doi.org/10.3390/math8050654