Fractional Partial Differential Equations Associated with Lêvy Stable Process
Abstract
:1. Introduction
2. Fractional Diffusion Model and Option Pricing
3. The Model
3.1. Lvy Process
3.2. Lvy Stable Processes
4. Main Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Merton, R. Continuous-Time Finance, 1st ed.; Blackwell: Oxford, UK, 1990. [Google Scholar]
- Bertoin, J. Lêvy Processes; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Sato, K.I. Lêvy Processes and Infinitely Divisible Distributions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Schoutens, W. Lêvy Processes in Finance: Pricing Financial Derivativese, 1st ed.; Wiley Series in Probability and Statistics; Wiley: Chichester, UK, 2003. [Google Scholar]
- Shokrollahi, F.; Kılıçman, A.; Ibrahim, N.A. Greeks and Partial Differential Equations for some Pricing Currency Option Models. Malaysian J. Math. Sci. 2015, 9, 417–442. [Google Scholar]
- Cont, R.; Voltchkova, E. Finite difference methods for option pricing in jump diffusion and exponential Lêvy models. SIAM J. Numer. Anal. 2005, 43, 1596–1626. [Google Scholar] [CrossRef]
- Lewis, A.L. A Simple Option Formula for General Jump-Diffusion and Other Exponential Lêvy Processes; Working paper; Envision Financial Systems and Option City: Newport Beach, CA, USA, 2001. [Google Scholar]
- Carr, P.; Madan, D. Option valuation using the fast Fourier transform. J. Comput. Financ. 1999, 2, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Cartea, A.; del-Castillo-Negrete, D. Fractional Diffusion Models of Option Prices in Markets with Jumps. Phys. A Stat. Mech. Its Appl. 2006, 374, 749–763. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Xu, X.; Zhu, S.P. Analytical pricing European-style option under the modified Black-Scholes equation with a partial-fractional derivative. Q. Appl. Math. 2014, 72, 597–611. [Google Scholar] [CrossRef]
- Demirci, E.; Ozalp, N. A method for solving differential equations of fractional order. J. Comput. Appl. Math. 2012, 236, 2754–2762. [Google Scholar] [CrossRef] [Green Version]
- Jumarie, G. Derivation and solutions of some farctional Black-Scholes equations in space and time. J. Comput. Math. Appl. 2010, 59, 1142–1164. [Google Scholar] [CrossRef] [Green Version]
- Du, M. Analytically Pricing European Options under the CGMY Model; University of Wollongong Thesis Collection 1954–2016; University of Wollongong: Dubai, United Arab Emirates.
- De Olivera, F.; Mordecki, E. Computing Greeks for Lêvy Models: The Fourier Transform Approach. arXiv 2014, arXiv:1407.1343v1. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljedhi, R.A.; Kılıçman, A. Fractional Partial Differential Equations Associated with Lêvy Stable Process. Mathematics 2020, 8, 508. https://doi.org/10.3390/math8040508
Aljedhi RA, Kılıçman A. Fractional Partial Differential Equations Associated with Lêvy Stable Process. Mathematics. 2020; 8(4):508. https://doi.org/10.3390/math8040508
Chicago/Turabian StyleAljedhi, Reem Abdullah, and Adem Kılıçman. 2020. "Fractional Partial Differential Equations Associated with Lêvy Stable Process" Mathematics 8, no. 4: 508. https://doi.org/10.3390/math8040508
APA StyleAljedhi, R. A., & Kılıçman, A. (2020). Fractional Partial Differential Equations Associated with Lêvy Stable Process. Mathematics, 8(4), 508. https://doi.org/10.3390/math8040508