Next Article in Journal
A Parametric Kind of the Degenerate Fubini Numbers and Polynomials
Next Article in Special Issue
On Some New Multivalued Results in the Metric Spaces of Perov’s Type
Previous Article in Journal
The Super-Diffusive Singular Perturbation Problem
Previous Article in Special Issue
A Result on a Pata-Ćirić Type Contraction at a Point
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Coupled Fixed Point Theorems Employing CLR-Property on V -Fuzzy Metric Spaces

by
Vishal Gupta
1,†,
Wasfi Shatanawi
2,3,4,*,† and
Ashima Kanwar
5,†
1
Department of Mathematics, Maharishi Markandeshwar, Deemed to be University, Mullana-133207, Haryana, India
2
Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
3
China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
4
Department of M-Commerce and Multimedia Applications, Asia University, Taichung 41354, Taiwann
5
Department of Mathematics, Sant Baba Bhag Singh University, District-Jalandhar, Punjab 144030, India
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2020, 8(3), 404; https://doi.org/10.3390/math8030404
Submission received: 19 February 2020 / Revised: 5 March 2020 / Accepted: 8 March 2020 / Published: 12 March 2020

Abstract

:
The introduction of the common limit range property on V -fuzzy metric spaces is the foremost aim of this paper. Furthermore, significant results for coupled maps are proven by employing this property on V -fuzzy metric spaces. More precisely, we introduce the notion of C L R Ω -property for the mappings Θ : M × M M and Ω : M M . We utilize our new notion to present and prove our new fixed point results.

1. Introduction and Preliminaries

Mustafa and Sims [1] brought the though of the notion of G-metric spaces as a generalization of metric spaces. Moreover, Sedghi et al. [2] introduced the concept of S-metric spaces as one of the generalizations of the metric spaces. Abbas et al. [3] extended the notion of S-metric spaces to A-metric spaces by extending the definition to n-tuple.
In 1965, Zadeh [4] initially introduced the concept of fuzzy sets. After that, several influential mathematicians considered the notion of fuzzy sets to introduce many exciting notions in the field of mathematics, such as fuzzy differential equations, fuzzy logic and fuzzy metric spaces. A fuzzy metric space is well known to be an important generalization of the metric space. In 1975, Kramosil and Michalek [5] employed the notion of fuzzy sets to introduce the notion of fuzzy metric spaces. George and Veeramani [6] modified the concept of fuzzy metric spaces in the senseof Kramosil and Michalek [5].
Sun and Yang [7] coined the idea of G -fuzzy metric spaces. Aamri and D. El Moutawakil [8] generalized the concept of non compatibility by defining E.A. property for self mappings. Sintunavarat and Kumam [9] gave the definition of the common limit in the range property on fuzzy metric spaces.
After the exhaustive review of the previous literature, Gupta and Kanwar [10] introduced the notion of V -fuzzy metric spaces.
Definition 1
([10]). Let M be a non-empty set and V be a fuzzy set on M n × ( 0 , ) . Let * be a continuous t-norm. A 3-tuple ( M , V , ) is said to be a VFM -space if for all t , s > 0 , the following conditions hold:
i 
V ( β , β , β , · · · , β , η , t ) > 0 for all β , η M with β η ,
ii 
V ( β 1 , β 1 , β 1 , · · · , β 1 , β 2 , t ) V ( β 1 , β 2 , β 3 , · · · , β n , t ) for all β 1 , β 2 , β 3 , · · · , β n M with β 2 β 3 · · · β n ,
iii 
V ( β 1 , β 2 , β 3 , · · · , β n , t ) = 1 if and only if β 1 = β 2 = β 3 = · · · = β n ,
iv 
V ( β 1 , β 2 , β 3 , · · · , β n , t ) = V ( p ( β 1 , β 2 , β 3 , · · · , β n ) , t ) , where p is a permutation function,
v 
V ( β 1 , β 2 , β 3 , · · · , β n , t + s ) V ( β 1 , β 2 , β 3 , · · · , β n 1 , a , t ) V ( a , a , a , · · · , a , β n , s ) ,
vi 
lim t V ( β 1 , β 2 , β 3 , · · · , β n , t ) = 1 ,
vii 
V ( β 1 , β 2 , β 3 , · · · , β n , · ) : ( 0 , ) [ 0 , 1 ] is continuous.
Lemma 1
([10]). Let ( M , V , ) be a VFM -space such that
V ( β 1 , β 2 , β 3 , · · · , β n , k t ) V ( β 1 , β 2 , β 3 , · · · , β n , t ) , with k ( 0 , 1 ) . Then β 1 = β 2 = β 3 = · · · = β n .
Definition 2
([10]). Let ( M , V , ) be a VFM -space. A sequence β r is said to be a Cauchy sequence if V ( β r , β r , β r , · · · , β r , β q , t ) 1 as r , q for all t > 0 ; that is, for each ϵ > 0 , there exists n 0 N such that for all r , q n 0 , we have V ( β r , β r , β r , · · · , β r , β q , t ) > 1 ϵ .
Definition 3
([10]). The VFM -space ( M , V , ) is called complete if every Cauchy sequence in M is convergent.
Definition 4.
The mappings Θ : M × M M and Ω : M M are said to compatible on V -fuzzy metric spaces if
lim r + V ( Ω Θ ( β r , η r ) , Ω Θ ( β r , η r ) , · · · , Ω Θ ( β r , η r ) , Θ ( Ω β r , Ω η r ) , t ) = 1
and
lim r + V ( Ω Θ ( η r , β r ) , Ω Θ ( η r , β r ) , · · · , Ω Θ ( η r , β r ) , Θ ( Ω η r , Ω β r ) , t ) = 1 ,
whenever β r and η r are sequences in M such that lim r + Ω ( β r ) = lim r + Θ ( β r , η r ) = β
and lim r + Ω ( η r ) = lim r + Θ ( η r , β r ) = η for all β , η M , t > 0 .
In order to study some more significant fixed point results on fuzzy metric spaces, one can see the research papers [11,12,13,14,15,16,17,18].
Bhaskar and Lakshmikantham [19] initiated the study of the coupled fixed point and mixed monotone property on the notion of metric spaces. For more theorems on coupled fixed point, see [20,21].
Motivated by different concepts introduced by many eminent mathematicians in [22,23,24,25,26,27], we investigate and give the concept of C L R Ω -property on V -fuzzy metric spaces. Further, we study some fixed point theorems for the pair of mappings by using C L R Ω -property. More precisely, under some conditions based on C L R Ω -property on V - fuzzy metric spaces, we prove a fixed point for the mapping Ω : M M and a coupled fixed point for the mapping Θ : M × M M of the form ( u , u ) M × M .

2. Results

We start with the definition of C L R Ω -property:
Definition 5.
Let ( M , V , ) be a VFM -space. The mappings Θ : M × M M and Ω : M M satisfy C L R Ω -property if there exist β r and η r in M such that
lim r + V ( Θ ( β r , η r ) , Θ ( β r , η r ) , , Θ ( β r , η r ) , Ω ( ) , t ) = 1 = lim r + V ( Ω ( β r ) , Ω ( β r ) , , Ω ( β r ) , Ω ( ) , t )
and
lim r + V ( Θ ( η r , β r ) , Θ ( η r , β r ) , , Θ ( η r , β r ) , Ω ( ) , t ) = 1 = lim r V ( Ω ( η r ) , Ω ( η r ) , , Ω ( η r ) , Ω ( ) , t )
for some , M .
In the rest of this paper, we call v M a common fixed point for the mappings Ω : M M and Θ : M × M M if Θ ( v , v ) = Ω ( v ) = v .
Theorem 1.
Let Θ : M × M M and Ω : M M be weakly compatible mappings on a VFM -space ( M , V , ) . Suppose the pair ( Θ , Ω ) holds C L R Ω -property. Moreover, assume that for all β , η , c , d M , k ( 0 , 1 ) and t > 0 , we have
V ( Θ ( β , η ) , Θ ( β , η ) , , Θ ( β , η ) , Θ ( c , d ) , k t ) m i n V ( Ω ( β ) , Ω ( β ) , Ω ( β ) , Ω ( c ) , t ) , V ( Ω ( β ) , Ω ( β ) , Ω ( β ) , Θ ( β , η ) , t ) , V ( Ω ( c ) , Ω ( c ) , Ω ( c ) , Θ ( c , d ) , t ) .
Then Θ and Ω have a unique common fixed point in M .
Proof. 
The C L R Ω -property for the ( Θ , Ω ) implies that
lim r + V ( Θ ( β r , η r ) , Θ ( β r , η r ) , , Θ ( β r , η r ) , Ω ( ) , t ) = 1 = lim r + V ( Ω ( β r ) , Ω ( β r ) , , Ω ( β r ) , Ω ( ) , t )
and
lim r + V ( Θ ( η r , β r ) , Θ ( η r , β r ) , , Θ ( η r , β r ) , Ω ( ) , t ) = 1 = lim r V ( Ω ( η r ) , Ω ( η r ) , , Ω ( η r ) , Ω ( ) , t )
for sequences β r , η r in M and some , M .
By using (1) and (2), we get
V ( Θ ( β r , η r ) , Θ ( β r , η r ) , , Θ ( β r , η r ) , Θ ( , ) , k t ) m i n V ( Ω ( β r ) , Ω ( β r ) , Ω ( β r ) , Ω ( ) , t ) , V ( Ω ( β r ) , Ω ( β r ) , Ω ( β r ) , Θ ( β r , η r ) , t ) , V ( Ω ( ) , Ω ( ) , Ω ( ) , Θ ( , ) , t ) .
Letting r + , we get
V ( Ω ( ) , Ω ( ) , Ω , Θ ( , ) , k t ) m i n V ( Ω ( ) , Ω ( ) , Ω ( ) , Ω ( ) , t ) , V ( Ω ( ) , Ω ( ) , Ω ( ) , Ω ( ) , t ) , V ( Ω ( ) , Ω ( ) , Ω ( ) , Θ ( , ) , t ) .
So
Ω ( ) = Θ ( , ) .
From (1) and (3), one can have
V ( Θ ( η r , β r ) , Θ ( η r , β r ) , , Θ ( η r , β r ) , Θ ( , ) , k t ) m i n V ( Ω ( η r ) , Ω ( η r ) , Ω ( η r ) , Ω ( ) , t ) , V ( Ω ( η r ) , Ω ( η r ) , Ω ( η r ) , Θ ( η r , β r ) , t ) , V ( Ω ( ) , Ω ( ) , Ω ( ) , Θ ( , ) , t ) .
Letting r + , we obtain
V ( Ω ( ) , Ω ( ) , Ω ( ) , Θ ( , ) , k t ) m i n V ( Ω ( ) , Ω ( ) , Ω ( ) , Ω ( ) , t ) , V ( Ω ( ) , Ω ( ) , Ω ( ) , Ω ( ) , t ) , V ( Ω ( ) , Ω ( ) , Ω ( ) , Θ ( , ) , t ) , .
Hence,
Ω ( ) = Θ ( , ) .
From (3) and (4), we have Ω ( ) = Θ ( , ) and Ω ( ) = Θ ( , ) .
Suppose that
Ω ( ) = Θ ( , ) = σ 1 , Ω ( ) = Θ ( , ) = σ 2 .
The weakly compatible notion for the pair ( Θ , Ω ) implies that
V ( Ω Θ ( , ) , Ω Θ ( , ) , , Ω Θ ( , ) , Θ ( Ω ( ) , Ω ( ) ) , t ) = 1
and
V ( Ω Θ ( , ) , Ω Θ ( , ) , , Ω Θ ( , ) , Θ ( Ω ( ) , Ω ( ) ) , t ) = 1 .
This gives
Ω ( σ 1 ) = Θ ( σ 1 , σ 2 ) , Ω σ 2 = Θ ( σ 2 , σ 1 ) .
From (1), one can get
V ( Θ ( σ 1 , σ 2 ) , Θ ( σ 1 , σ 2 ) , , Θ ( σ 1 , σ 2 ) , Θ ( , ) , k t ) m i n V ( Ω ( σ 1 ) , Ω ( σ 1 ) , Ω ( σ 1 ) , Ω ( ) , t ) , V ( Ω ( σ 1 ) , Ω ( σ 1 ) , Ω ( σ 1 ) , Θ ( σ 1 , σ 2 ) , t ) , V ( Ω ( ) , Ω ( ) , Ω ( ) , Θ ( , ) , t ) , .
From (5) and (6), one can have
Ω ( σ 1 ) = σ 1 = Θ ( σ 1 , σ 2 ) , Ω ( σ 2 ) = σ 2 = Θ ( σ 2 , σ 1 ) .
Let us suppose that σ 1 σ 2 .
By using (1) and (7), we get
V ( σ 1 , σ 1 , , σ 2 , k t ) = V ( Θ ( σ 1 , σ 2 ) , Θ ( σ 1 , σ 2 ) , , Θ ( σ 1 , σ 2 ) , Θ ( σ 2 , σ 1 ) , k t ) m i n V ( Ω ( σ 1 ) , Ω ( σ 1 ) , Ω ( σ 1 ) , Ω ( σ 2 ) , t ) , V ( Ω ( σ 1 ) , Ω ( σ 1 ) , Ω ( σ 1 ) , Θ ( σ 1 , σ 2 ) , t ) , V ( Ω ( σ 2 ) , Ω ( σ 2 ) , Ω ( σ 2 ) , Θ ( σ 2 , σ 1 ) , t ) , .
This shows that σ 1 = σ 2 and hence, Ω ( σ 1 ) = σ 1 = Θ ( σ 1 , σ 2 ) .
To prove the uniqueness, suppose that υ and λ are such that υ λ , Ω ( υ ) = υ = Θ ( υ , υ ) and Ω ( λ ) = λ = Θ ( λ , λ ) . Then condition (1) implies that
V ( υ , υ , , υ , λ , k t ) = V ( Θ ( υ , υ ) , Θ ( υ , υ ) , , Θ ( υ , υ ) , Θ ( λ , λ ) , k t ) m i n V ( Ω ( υ ) , Ω ( υ ) , Ω ( υ ) , Ω ( λ ) , t ) , V ( Ω ( υ ) , Ω ( υ ) , Ω ( υ ) , Θ ( υ , υ , t ) , V ( Ω ( λ ) , Ω ( λ ) , Ω ( λ ) , Θ ( λ , λ ) , t ) = m i n V ( υ , υ , υ , λ , t ) , V ( υ , υ , υ , υ ) , V ( λ , λ , λ , λ ) .
Hence, we get υ = λ and we conclude the uniqueness of the fixed point.  □
Example 1.
Let ( M , V , ) be a VFM -space with M = [ 1 , 1 ] , where
V ( α 1 , α 2 , α 3 , · · · , α n , t ) = t t + ( α 1 α 2 + α 2 α 3 + + α n 1 α n ) .
Suppose Θ : M × M M and Ω : M M be mappings defined as Θ ( β , η ) = β + η and Ω ( β ) = β for all β , η M . Now consider the sequences β r = 1 r and η r = 1 r . One can have
lim r + Θ ( β r , η r ) = lim r + Ω ( β r ) = 0 = Ω ( 0 )
and
lim r + Θ ( η r , β r ) = lim r + Ω ( η r ) = 0 = Ω ( 0 ) .
This implies that the pair ( Θ , Ω ) holds C L R Ω -property. In addition, the pair ( Θ , Ω ) is weakly compatible. All the conditions of Theorem 1 are satisfied. Thus, the two mappings Θ and Ω have β = 0 as a unique common fixed point in M .
Theorem 2.
Let Θ : M × M M and Ω : M M be weakly compatible mappings on a VFM -space ( M , V , ) . Suppose the pair ( Θ , Ω ) holds the property ( E . A ) . Moreover, assume that the range of Ω is a closed subspace of M . Assume that for all β , η , c , d M , k ( 0 , 1 ) and t > 0 , we have
V ( Θ ( β , η ) , Θ ( β , η ) , , Θ ( β , η ) , Θ ( c , d ) , k t ) m i n V ( Ω ( β ) , Ω ( β ) , Ω ( β ) , Ω ( c ) , t ) , V ( Ω ( β ) , Ω ( β ) , Ω ( β ) , Θ ( β , η ) , t ) , V ( Ω ( c ) , Ω ( c ) , Ω ( c ) , Θ ( c , d ) , t ) .
Then, Θ and Ω have a unique common fixed point in M .
Proof. 
The property ( E . A ) for ( Θ , Ω ) implies that there exist β r and η r in M such that
lim r + V ( Θ ( β r , η r ) , Θ ( β r , η r ) , , Θ ( β r , η r ) , Ω ( ) , t ) = 1 = lim r + V ( Ω ( β r ) , Ω ( β r ) , , Ω ( β r ) , Ω ( ) , t )
and
lim r + V ( Θ ( η r , β r ) , Θ ( η r , β r ) , , Θ ( η r , β r ) , Ω ( ) , t ) = 1 = lim r V ( Ω ( η r ) , Ω ( η r ) , , Ω ( η r ) , Ω ( ) , t )
hold for all , M .
Moreover, the property of closed subspace of M implies that there exists α , β M such that Ω ( α ) = , Ω ( β ) = . One can get that ( Θ , Ω ) holds C L R Ω -property. The result follows from the previous theorem. □
Theorem 3.
Let Θ , ψ : M × M M and Ω , Φ : M M be mappings on a VFM -space ( M , V , ) . Suppose that ( Θ , Ω ) and ( ψ , Φ ) are weakly compatible as well as share C L R Ω -property. Moreover, assume the following conditions:
i. For all β , η , c , d M , k ( 0 , 1 ) and t > 0 , we have
V ( Θ ( β , η ) , Θ ( β , η ) , , Θ ( β , η ) , ψ ( c , d ) , k t ) m i n V ( Ω ( β ) , Ω ( β ) , , Ω ( β ) , Φ ( c ) , t ) , V ( Ω ( β ) , Ω ( β ) , , Ω ( β ) , Θ ( β , η ) , t ) , V ( Φ ( c ) , Φ ( c ) , , Φ ( c ) , ψ ( c , d ) , t ) , V ( Ω ( β ) , Ω ( β ) , , Ω ( β ) , ψ ( c , d ) , t ) , V ( Φ ( c ) , Φ ( c ) , , Φ ( c ) , Θ ( β , η ) , t ) ,
ii. Θ ( M × M ) Φ ( M ) (or ψ ( M × M ) Ω ( ) ) .
Then, Θ , Ω , ψ and Φ have a unique common fixed point in M .
Proof. 
The C L R Ω -property for the pairs ( Θ , Ω ) and ( ψ , Φ ) implies that there exist β r , η r , c r and d r in M such that
lim r + Θ ( β r , η r ) = lim r Ω ( β r ) = lim r + ψ ( c r , d r ) = lim r + Φ ( c r ) = Ω ( )
and
lim r + Θ ( η r , β r ) = lim r + Ω ( η r ) = lim r + ψ ( d r , c r ) = lim r + Φ ( d r ) = Ω ( ) ,
hold for all , M .
By using (i), one can have
V ( Θ ( , ) , Θ ( , ) , , Θ ( , ) , ψ ( c r , d r ) , k t ) m i n V ( Ω ( ) , Ω ( ) , , Ω ( ) , Φ ( c r ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , Θ ( , ) , t ) , V ( Φ ( c r ) , Φ ( c r ) , , Φ ( c r ) , ψ ( c r , d r ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , ψ ( c r , d r ) , t ) , V ( Φ ( c r ) , Φ ( c r ) , , Φ ( c r ) , Θ ( , ) , t ) .
By using (8) and letting r , we have
V ( Θ ( , ) , Θ ( , ) , , Θ ( , ) , Ω ( ) , k t ) m i n V ( Ω ( ) , Ω ( ) , , Ω ( ) , Ω ( ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , Θ ( , ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , Ω ( ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , Ω ( ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , Θ ( , ) , t ) .
Thus, we have
Ω ( ) = Θ ( , ) .
From (i), we have
V ( Θ ( , ) , Θ ( , ) , , Θ ( , ) , ψ ( d r , c r ) , k t ) m i n V ( Ω ( ) , Ω ( ) , , Ω ( ) , Φ ( d r ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , Θ ( , ) , t ) , V ( Φ ( d r ) , Φ ( d r ) , , Φ ( d r ) , ψ ( d r , c r ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , ψ ( d r , c r ) , t ) , V ( Φ ( d r ) , Φ ( d r ) , , Φ ( d r ) , Θ ( , ) , t ) .
As r and using (8), one can obtain
Ω ( ) = Θ ( , ) .
Since Θ ( M × M ) Φ ( M ) , there exists α , β M such that
Φ ( α ) = Θ ( , ) and Φ ( β ) = Θ ( , ) .
By using (i), (9), (10) and (11), we get
V ( Φ ( α ) , Φ ( α ) , , Φ ( α ) , ψ ( α , β ) ) = V ( Θ ( , ) , Θ ( , ) , , Θ ( , ) , ψ ( α , β ) , k t ) m i n V ( Ω ( ) , Ω ( ) , , Ω ( ) , Φ ( α ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , Θ ( , ) , t ) , V ( Φ ( α ) , Φ ( α ) , , Φ ( α ) , ψ ( α , β ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , ψ ( α , β ) , t ) , V ( Φ ( α ) , Φ ( α ) , , Φ ( α ) , Θ ( , ) , t ) .
This implies that Φ ( α ) = ψ ( α , β ) . Similarly, one can show that
Φ ( β ) = ψ ( β , α ) .
Now consider that
Φ ( α ) = ψ ( α , β ) = Θ ( , ) = Ω ( ) = σ 1 and Φ ( β ) = ψ ( β , α ) = Θ ( , ) = Ω ( ) = σ 2 .
The notion of weakly compatible for mappings ( Θ , Ω ) and ( ψ , Φ ) gives
Θ ( σ 1 , σ 2 ) = Θ ( Ω ( ) , Ω ( ) ) = Ω ( Θ ( , ) ) = Ω ( σ 1 ) , Θ ( σ 2 , σ 1 ) = Θ ( Ω ( ) , Ω ( ) ) = Ω ( Θ ( , ) ) = Ω ( σ 2 )
and
ψ ( σ 1 , σ 2 ) = ψ ( Φ ( α ) , Φ ( β ) ) = Φ ( ψ ( α , β ) ) = Φ ( σ 1 ) , ψ ( σ 2 , σ 1 ) = ψ ( Φ ( β ) , Φ ( α ) ) = Φ ( ψ ( β , α ) ) = Φ ( σ 2 ) .
Finally, we assert that Θ ( σ 1 , σ 2 ) = σ 1 , Θ ( σ 2 , σ 1 ) = σ 2 .
Using (i), we have
V ( Θ ( σ 1 , σ 2 ) , Θ ( σ 1 , σ 2 ) , , Θ ( σ 1 , σ 2 ) , σ 1 , k t ) = V ( Θ ( σ 1 , σ 2 ) , Θ ( σ 1 , σ 2 ) , , Θ ( σ 1 , σ 2 ) , ψ ( α , β ) , k t ) m i n V ( Ω ( σ 1 ) , Ω ( σ 1 ) , , Ω ( σ 1 ) , Φ ( α ) , t ) , V ( Ω ( σ 1 ) , Ω ( σ 1 ) , , Ω ( σ 1 ) , Θ ( σ 1 , σ 2 ) , t ) , V ( Φ ( α ) , Φ ( α ) , , Φ ( α ) , ψ ( α , β ) , t ) , V ( Ω ( σ 1 ) , Ω ( σ 1 ) , , Ω ( σ 1 ) , ψ ( α , β ) , t ) , V ( Φ ( α ) , Φ ( α ) , , Φ ( α ) , Θ ( σ 1 , σ 2 ) , t ) .
By considering (13)–(15), we obtain Θ ( σ 1 , σ 2 ) = Ω ( σ 1 ) .
In the same way, we get
Θ ( σ 1 , σ 2 ) = Ω ( σ 1 ) = σ 1 , Θ ( σ 2 , σ 1 ) = Ω ( σ 2 ) = σ 2 .
Again using (i) and (12)–(16), one can get
V ( σ 1 , σ 1 , , σ 1 , ψ ( σ 1 , σ 2 ) , k t ) = V ( Θ ( , ) , Θ ( , ) , , Θ ( , ) , ψ ( σ 1 , σ 2 ) , k t ) m i n V ( Ω ( ) , Ω ( ) , , Ω ( ) , Φ ( σ 1 ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , Θ ( , ) , t ) , V ( Φ ( σ 1 ) , Φ ( σ 1 ) , , Φ ( σ 1 ) , ψ ( σ 1 , σ 2 ) , t ) , V ( Ω ( ) , Ω ( ) , , Ω ( ) , ψ ( σ 1 , σ 2 ) , t ) , V ( Φ ( σ 1 ) , Φ ( σ 1 ) , , Φ ( σ 1 ) , Θ ( , ) , t ) .
This implies that
Φ ( σ 1 ) = σ 1 = ψ ( σ 1 , σ 2 ) , Φ ( σ 2 ) = σ 2 = ψ ( σ 2 , σ 1 ) .
Assume σ 1 σ 2 .
By using (i) and (15)–(17), we have
V ( σ 1 , σ 1 , , σ 1 , σ 2 , k t ) = V ( Θ ( σ 1 , σ 2 ) , Θ ( σ 1 , σ 2 ) , , Θ ( σ 1 , σ 2 ) , ψ ( σ 1 , σ 2 ) , k t ) m i n V ( Ω ( σ 1 ) , Ω ( σ 1 ) , , Ω ( σ 1 ) , Φ ( σ 2 ) , t ) , V ( Ω ( σ 1 ) , Ω ( σ 1 ) , , Ω ( σ 1 ) , Θ ( σ 1 , σ 2 ) , t ) , V ( Φ ( σ 2 ) , Φ ( σ 2 ) , , Φ ( σ 2 ) , ψ ( σ 2 , σ 1 ) , t ) , V ( Ω ( σ 1 ) , Ω ( σ 1 ) , , Ω ( σ 1 ) , ψ ( σ 2 , σ 1 ) , t ) , V ( Φ ( σ 2 ) , Φ ( σ 2 ) , , Φ ( σ 2 ) , Θ ( σ 1 , σ 2 ) , t ) ,
this implies σ 1 = σ 2 ; a contradiction. Therefore Θ , Ω , ψ and Φ have a unique common fixed point in M .  □
Example 2.
Let ( M , V , ) be a VFM -space with M = [ 2 , 2 ] , where
V ( α 1 , α 2 , α 3 , · · · , α n , t ) = t t + ( α 1 α 2 + α 2 α 3 + + α n 1 α n ) .
Suppose Θ , ψ : M × M M and Ω , Φ : M M be mappings defined as
Θ ( β , η ) = β + η 2 , Ω ( β ) = β , ψ ( β , η ) = β η + 1 , Φ ( β ) = 1 .
Consider the sequences β r = 1 + 1 r , η r = 1 1 r , c r = 1 r and d r = 1 r . Note that
lim r + Θ ( β r , η r ) = lim r + Ω ( β r ) = lim r + ψ ( c r , d r ) = lim r + Φ ( c r ) = 1 = Ω ( 1 )
and
lim r + Θ ( η r , β r ) = lim r + Ω ( η r ) = lim r + ψ ( d r , c r ) = lim r + Φ ( d r ) = 1 = Ω ( 1 ) .
This implies that pairs ( Θ , Ω ) and ( ψ , Φ ) hold C L R Ω -property. In addition, pairs ( Θ , Ω ) and ( ψ , Φ ) are weakly compatible. All the conditions of Theorem 3 are satisfied. Thus, the mappings Θ , ψ , Ω and Φ have β = 1 as a unique common fixed point in M .

Author Contributions

Formal analysis, W.S.; Investigation, V.G., W.S. and A.K.; Methodology, V.G., W.S. and A.K.; Supervision, V.G. and W.S.; Writing—original draft, V.G. and A.K.; Writing—review & editing, W.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors thanks all reviewers for their useful remarks which made our paper complete and significant.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Mustafa, M.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
  2. Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces. Mat. Vesn. 2012, 64, 258–266. [Google Scholar]
  3. Abbas, M.; Ali, B.; Suleiman, Y.I. Generalized coupled common fixed point results in partially ordered A-metric spaces. Fixed Point Theory Appl. 2015, 64. [Google Scholar] [CrossRef] [Green Version]
  4. Zadeh, A. Fuzzy Sets. Inform. Control 1965, 8, 338–353. [Google Scholar]
  5. Kramosil, I.; Michalek, J. Fuzzy metric and statistical metric spaces. Kybernetica 1975, 11, 336–344. [Google Scholar]
  6. George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
  7. Sun, G.; Yang, K. Generalized fuzzy metric spaces with properties. Res. J. Appl. Sci. 2010, 2, 673–678. [Google Scholar]
  8. Aamri, M.; Moutawakil, D. Some new common fixed point theorems under strict Contractive conditions. J. Math. Anal. Appl. 2002, 270, 181–188. [Google Scholar] [CrossRef] [Green Version]
  9. Sintunavarat, W.; Kumam, P. Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces. J. Appl. Math. 2011, 2011, 637958. [Google Scholar] [CrossRef] [Green Version]
  10. Gupta, V.; Kanwar, A. V-fuzzy metric space and related fixed point theorems. Fixed Point Theory Appl. 2016, 2016:51, 1–17. [Google Scholar] [CrossRef] [Green Version]
  11. Gupta, V.; Kanwar, A. Fixed point theorem in fuzzy metric spaces satisfying E.A. property. Indian J. Sci. Technol. 2012, 5, 3767–3769. [Google Scholar]
  12. Hu, X. Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces. Fixed Point Theory Appl. 2011, 2011, 363716. [Google Scholar] [CrossRef] [Green Version]
  13. Hu, X.; Luo, Q. Coupled coincidence point theorems for contractions in generalized fuzzy metric spaces. Fixed Point Theory Appl. 2012, 2012:196, 1–17. [Google Scholar] [CrossRef] [Green Version]
  14. Mishra, S.N.; Sharma, N.; Singh, S.L. Common fixed points of maps on fuzzy metric spaces. Internat. J. Math. Math. Sci. 1994, 17, 253–258. [Google Scholar] [CrossRef]
  15. Ćirić, L.; Abbas, M.; Damjanovic, B.; Saadati, R. Common fuzzy fixed point theorems in ordered metric spaces. Math. Comput. Model. 2011, 53, 1737–1741. [Google Scholar] [CrossRef]
  16. Gupta, V.; Shatanawi, W.; Verma, M. Existence of fixed points for Jψ−fuzzy contractions in fuzzy metric spaces endowed with graph. J. Anal. 2018. [Google Scholar] [CrossRef]
  17. Gupta, V.; Shatanawi, W.; Mani, N. Fixed point theorems for (Ψ,β)−Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations. J. Fixed Point Theory Appl. 2017, 19, 1251–1267. [Google Scholar] [CrossRef]
  18. Chauhan, S.; Shatanawi, W.; Kumar, S.; Radennović, S. Existence and Uniqueness of Fixed Points in Modified Intuitionistic Fuzzy Metric Spaces. J. Nonlinear Sci. Appl. 2014, 7, 28–41. [Google Scholar] [CrossRef]
  19. Bhaskar, T.G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
  20. Choudhurya, B.S.; Kundu, A. A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. Theory Methods Appl. 2010, 73, 2524–2531. [Google Scholar] [CrossRef]
  21. Lakshmikantham, V.; Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric space. Nonlinear Anal. TMA. 2009, 70, 434–4349. [Google Scholar] [CrossRef]
  22. Imdad, M.; Pant, B.D.; Chauhan, S. Fixed point theorems in Menger spaces using the (CLRST ) property and applications. J. Nonlinear Anal. Optim. 2012, 3, 225–237. [Google Scholar]
  23. Jain, M.; Tas, K.; Kumar, S.; Gupta, N. Coupled fixed point theorems for a pair of weakly compatible maps along with CLRg property in fuzzy metric spaces. J. Appl. Math. 2012, 2012, 961210. [Google Scholar] [CrossRef]
  24. Shatanawi, W.; Gupta, V.; Kanwar, A. New results on modified intuitionistic generalized fuzzy metric spaces by employing E.A property and common E.A property for coupled maps. J. Intell. Fuzzy Syst. 2020, 38, 3003–3010. [Google Scholar] [CrossRef]
  25. Rakić, D.; Došenović, T.; Mitrović, Z.D.; de la Sen, M.; Radenović, S. Some fixed point theorems of Ćirić type in fuzzy metric spaces. Mathematics 2020, 8, 297. [Google Scholar] [CrossRef] [Green Version]
  26. Došenović, T.; Rakić, D.; Carić, B.; Radenović, S. Multivalued generalizations of fixed point results in fuzzy metric spaces. Nonlinear Anal. Model. Control 2016, 21, 211–222. [Google Scholar] [CrossRef]
  27. Shen, Y.; Qui, D.; Chen, W. Fixed point theorems in fuzzy metric spaces. Appl. Math. Let. 2012, 25, 138–141. [Google Scholar] [CrossRef] [Green Version]

Share and Cite

MDPI and ACS Style

Gupta, V.; Shatanawi, W.; Kanwar, A. Coupled Fixed Point Theorems Employing CLR-Property on V -Fuzzy Metric Spaces. Mathematics 2020, 8, 404. https://doi.org/10.3390/math8030404

AMA Style

Gupta V, Shatanawi W, Kanwar A. Coupled Fixed Point Theorems Employing CLR-Property on V -Fuzzy Metric Spaces. Mathematics. 2020; 8(3):404. https://doi.org/10.3390/math8030404

Chicago/Turabian Style

Gupta, Vishal, Wasfi Shatanawi, and Ashima Kanwar. 2020. "Coupled Fixed Point Theorems Employing CLR-Property on V -Fuzzy Metric Spaces" Mathematics 8, no. 3: 404. https://doi.org/10.3390/math8030404

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop