Coupled Fixed Point Theorems Employing CLR-Property on
V
-Fuzzy Metric Spaces
Abstract
:1. Introduction and Preliminaries
- i
- for all with ,
- ii
- for all with ,
- iii
- if and only if ,
- iv
- , where p is a permutation function,
- v
- vi
- ,
- vii
- is continuous.
2. Results
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mustafa, M.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
- Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces. Mat. Vesn. 2012, 64, 258–266. [Google Scholar]
- Abbas, M.; Ali, B.; Suleiman, Y.I. Generalized coupled common fixed point results in partially ordered A-metric spaces. Fixed Point Theory Appl. 2015, 64. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, A. Fuzzy Sets. Inform. Control 1965, 8, 338–353. [Google Scholar]
- Kramosil, I.; Michalek, J. Fuzzy metric and statistical metric spaces. Kybernetica 1975, 11, 336–344. [Google Scholar]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Yang, K. Generalized fuzzy metric spaces with properties. Res. J. Appl. Sci. 2010, 2, 673–678. [Google Scholar]
- Aamri, M.; Moutawakil, D. Some new common fixed point theorems under strict Contractive conditions. J. Math. Anal. Appl. 2002, 270, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Sintunavarat, W.; Kumam, P. Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces. J. Appl. Math. 2011, 2011, 637958. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Kanwar, A. V-fuzzy metric space and related fixed point theorems. Fixed Point Theory Appl. 2016, 2016:51, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Kanwar, A. Fixed point theorem in fuzzy metric spaces satisfying E.A. property. Indian J. Sci. Technol. 2012, 5, 3767–3769. [Google Scholar]
- Hu, X. Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces. Fixed Point Theory Appl. 2011, 2011, 363716. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Luo, Q. Coupled coincidence point theorems for contractions in generalized fuzzy metric spaces. Fixed Point Theory Appl. 2012, 2012:196, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.N.; Sharma, N.; Singh, S.L. Common fixed points of maps on fuzzy metric spaces. Internat. J. Math. Math. Sci. 1994, 17, 253–258. [Google Scholar] [CrossRef]
- Ćirić, L.; Abbas, M.; Damjanovic, B.; Saadati, R. Common fuzzy fixed point theorems in ordered metric spaces. Math. Comput. Model. 2011, 53, 1737–1741. [Google Scholar] [CrossRef]
- Gupta, V.; Shatanawi, W.; Verma, M. Existence of fixed points for J−ψ−fuzzy contractions in fuzzy metric spaces endowed with graph. J. Anal. 2018. [Google Scholar] [CrossRef]
- Gupta, V.; Shatanawi, W.; Mani, N. Fixed point theorems for (Ψ,β)−Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations. J. Fixed Point Theory Appl. 2017, 19, 1251–1267. [Google Scholar] [CrossRef]
- Chauhan, S.; Shatanawi, W.; Kumar, S.; Radennović, S. Existence and Uniqueness of Fixed Points in Modified Intuitionistic Fuzzy Metric Spaces. J. Nonlinear Sci. Appl. 2014, 7, 28–41. [Google Scholar] [CrossRef]
- Bhaskar, T.G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
- Choudhurya, B.S.; Kundu, A. A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. Theory Methods Appl. 2010, 73, 2524–2531. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric space. Nonlinear Anal. TMA. 2009, 70, 434–4349. [Google Scholar] [CrossRef]
- Imdad, M.; Pant, B.D.; Chauhan, S. Fixed point theorems in Menger spaces using the (CLRST ) property and applications. J. Nonlinear Anal. Optim. 2012, 3, 225–237. [Google Scholar]
- Jain, M.; Tas, K.; Kumar, S.; Gupta, N. Coupled fixed point theorems for a pair of weakly compatible maps along with CLRg property in fuzzy metric spaces. J. Appl. Math. 2012, 2012, 961210. [Google Scholar] [CrossRef]
- Shatanawi, W.; Gupta, V.; Kanwar, A. New results on modified intuitionistic generalized fuzzy metric spaces by employing E.A property and common E.A property for coupled maps. J. Intell. Fuzzy Syst. 2020, 38, 3003–3010. [Google Scholar] [CrossRef]
- Rakić, D.; Došenović, T.; Mitrović, Z.D.; de la Sen, M.; Radenović, S. Some fixed point theorems of Ćirić type in fuzzy metric spaces. Mathematics 2020, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Došenović, T.; Rakić, D.; Carić, B.; Radenović, S. Multivalued generalizations of fixed point results in fuzzy metric spaces. Nonlinear Anal. Model. Control 2016, 21, 211–222. [Google Scholar] [CrossRef]
- Shen, Y.; Qui, D.; Chen, W. Fixed point theorems in fuzzy metric spaces. Appl. Math. Let. 2012, 25, 138–141. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, V.; Shatanawi, W.; Kanwar, A.
Coupled Fixed Point Theorems Employing CLR-Property on
Gupta V, Shatanawi W, Kanwar A.
Coupled Fixed Point Theorems Employing CLR-Property on
Gupta, Vishal, Wasfi Shatanawi, and Ashima Kanwar.
2020. "Coupled Fixed Point Theorems Employing CLR-Property on
Gupta, V., Shatanawi, W., & Kanwar, A.
(2020). Coupled Fixed Point Theorems Employing CLR-Property on