A Result on a Pata-Ćirić Type Contraction at a Point
Abstract
:1. Introduction and Preliminaries
2. Main Results
(,) | |||||
0 | 1 | 2 | 3 | 1 | |
1 | 0 | 1 | 2 | 2 | |
2 | 1 | 0 | 1 | 3 | |
3 | 2 | 1 | 0 | 4 | |
1 | 2 | 3 | 4 | 0 |
3. Application
- ;
- is strongly continuous in , for any fixed ;
- , for
- there exist a continuous functionsuch thatfor everyand a nonnegative constant Υwith, such that
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bryant, V.W. A remark on a fixed point theorem for iterated mappings. Am. Math. Mon. 1968, 75, 399–400. [Google Scholar] [CrossRef]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Sehgal, V.M. A fixed point theorem for mappings with a contractive iterate. Proc. Am. Math. Soc. 1969, 23, 631–634. [Google Scholar] [CrossRef]
- Guseman, L.F., Jr. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 1970, 26, 615–618. [Google Scholar] [CrossRef]
- Ćirić, L. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Beograd, Serbia, 2003. [Google Scholar]
- Ćirić, L. Generalized contractions andfixed-point theorems. Publ. Inst. Math. 1971, 12, 19–26. [Google Scholar]
- Pata, V. A fixed point theorem in metric spaces. J. Fixed Point Theory Appl. 2011, 10, 299–305. [Google Scholar] [CrossRef]
- Karapınar, E.; Fulga, A.; Rakočević, V. A discussion on a Pata type contraction via iterate at a point. Filomat. in press.
- Alqahtani, B.; Fulga, A.; Karapınar, E. Fixed Point Results on Δ-Symmetric Quasi-Metric Space via Simulation Function with an Application to Ulam Stability. Mathematics 2018, 6, 208. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, B.; Fulga, A.; Karapinar, E. A fixed point result with a contractive iterate at a point. Mathematics 2019, 7, 606. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, B.; Fulga, A.; Karapinar, E.; Kumari, P.S. Sehgal Type Contractions on Dislocated Spaces. Mathematics 2019, 7, 153. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Fulga, A.; Alghamdi, M. A Common Fixed Point Theorem For Iterative Contraction of Sehgal Type. Symmetry 2019, 11, 470. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapınar, E.; Fulga, A.; Rakočević, V. A Result on a Pata-Ćirić Type Contraction at a Point. Mathematics 2020, 8, 393. https://doi.org/10.3390/math8030393
Karapınar E, Fulga A, Rakočević V. A Result on a Pata-Ćirić Type Contraction at a Point. Mathematics. 2020; 8(3):393. https://doi.org/10.3390/math8030393
Chicago/Turabian StyleKarapınar, Erdal, Andreea Fulga, and Vladimir Rakočević. 2020. "A Result on a Pata-Ćirić Type Contraction at a Point" Mathematics 8, no. 3: 393. https://doi.org/10.3390/math8030393
APA StyleKarapınar, E., Fulga, A., & Rakočević, V. (2020). A Result on a Pata-Ćirić Type Contraction at a Point. Mathematics, 8(3), 393. https://doi.org/10.3390/math8030393