Next Article in Journal
The Constrained Median: A Way to Incorporate Side Information in the Assessment of Food Samples
Previous Article in Journal
Coupled Fixed Point Theorems Employing CLR-Property on V -Fuzzy Metric Spaces
Previous Article in Special Issue
On 2-Variables Konhauser Matrix Polynomials and Their Fractional Integrals
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Parametric Kind of the Degenerate Fubini Numbers and Polynomials

by
Sunil Kumar Sharma
1,*,
Waseem A. Khan
2 and
Cheon Seoung Ryoo
3
1
College of Computer and Information Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
2
Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O Box 1664, Al Khobar 31952, Saudi Arabia
3
Department of Mathematics, Hannam University, Daejeon 34430, Korea
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(3), 405; https://doi.org/10.3390/math8030405
Submission received: 26 February 2020 / Revised: 6 March 2020 / Accepted: 7 March 2020 / Published: 12 March 2020
(This article belongs to the Special Issue Polynomials: Theory and Applications)

Abstract

:
In this article, we introduce the parametric kinds of degenerate type Fubini polynomials and numbers. We derive recurrence relations, identities and summation formulas of these polynomials with the aid of generating functions and trigonometric functions. Further, we show that the parametric kind of the degenerate type Fubini polynomials are represented in terms of the Stirling numbers.

1. Introduction

In the last decade, many mathematicians, namely, Kargin [1], Duran and Acikgoz [2], Kim et al. [3,4], Kilar and Simsek [5], Su and He [6] have been studied in the area of the Fubini polynomials and numbers, degenerate Fubini polynomials and numbers. The range of Appell polynomials sequences is one of the important classes of polynomial sequences. The Appell polynomials are very frequently used in various problems in pure and applied mathematics related to functional equations in differential equations, approximation theories, interpolation problems, summation methods, quadrature rules, and their multidimensional extensions (see [7,8]). The sequence of Appell polynomials A j ( w ) can be signified by means either following equivalent conditions
d d w A j ( w ) = j A j 1 ( w ) , A 0 ( w ) 0 , w = η + i ξ C , j N 0 ,
and satisfying the generating function
A ( z ) e w z = A 0 ( w ) + A 1 ( w ) z 1 ! + A 2 ( w ) z 2 2 ! + + A n ( w ) z n n ! + = j = 0 A j ( w ) z j j ! ,
where A ( w ) is an entirely real power series with Taylor expansion given by
A ( w ) = A 0 ( w ) + A 1 ( w ) z 1 ! + A 2 ( w ) z 2 2 ! + + A j ( w ) z j j ! + , A 0 0 .
The well known degenerate exponential function [9] is defined by
e μ η ( z ) = ( 1 + μ z ) η μ , e μ ( z ) = e μ 1 ( z ) , ( μ R ) .
Since
lim μ 0 ( 1 + μ z ) η μ = e η z .
In [10,11], Carlitz introduced the degenerate Bernoulli polynomials which are defined by
z ( 1 + μ z ) 1 μ 1 ( 1 + μ z ) η μ = j = 0 β j ( η ; μ ) z j j ! , ( μ C ) ,
so that
β j ( η ; μ ) = w = 0 j j w β w ( μ ) η μ j w .
When η = 0 , β j ( μ ) = β j ( 0 ; μ ) are called the degenerate Bernoulli numbers, (see [12,13,14,15]).
From Equation (4), we get
j = 0 lim μ 0 β j ( η ; μ ) z j j ! = lim μ 0 z ( 1 + μ z ) 1 μ 1 ( 1 + μ z ) η μ = z e z 1 e η z = j = 0 B j ( η ) z j j ! ,
where B j ( η ) are called the Bernoulli polynomials, (see [9,16]).
The Stirling numbers of the first kind [3,14,17]) are defined by
η j = i = 0 j S 1 ( j , i ) ( η ) i , ( j 0 ) ,
where ( η ) 0 = 1 , ( η ) j = η ( η 1 ) ( η j + 1 ) , ( j 1 ) . Alternatively, the Stirling numbers of the second kind are defined by following generating function (see [4,5])
( e z 1 ) j j ! = i = j S 2 ( j , i ) z j j ! .
The degenerate Stirling numbers of the second kind [17] are defined by means of the following generating function
1 i ! ( 1 + μ z ) 1 μ 1 i = j = i S 2 , μ ( j , i ) z j j ! .
It is clear that
lim μ 0 S 2 , μ ( j , i ) = S 2 ( j , i ) .
The generating function of 2-variable degenerate Fubini polynomials [3] are defined by
1 1 ξ ( ( 1 + μ z ) 1 μ 1 ) ( 1 + μ z ) η μ = j = 0 F j , μ ( η ; ξ ) z j j ! ,
so that
F j , μ ( η ; ξ ) = i = 0 j j i F i , μ ( ξ ) ( η ) j i , μ .
When η = 0 , F j , μ ( 0 ; ξ ) = F j , μ ( ξ ) , F j , μ ( 0 ; 1 ) = F j , μ are called the degenerate Fubini polynomials and degenerate Fubini numbers.
Note that
lim μ 0 j = 0 F j , μ ( η ; ξ ) z j j ! = lim μ 0 1 1 ξ ( ( 1 + μ z ) 1 μ 1 ) ( 1 + μ z ) η μ = 1 1 ξ ( e z 1 ) e η z = j = 0 F j ( η ; ξ ) z j j ! ,
where F j ( η ; ξ ) are called the 2-variable Fubini polynomials, (see, [1,18]).
The two trigonometric functions e η z cos ξ z and e η z sin ξ z are defined as follows (see [19,20]):
e η z cos ξ z = k = 0 C k ( η , ξ ) z k k ! ,
and
e η z sin ξ z = k = 0 S k ( η , ξ ) z k k ! ,
where
C k ( η , ξ ) = j = 0 [ k 2 ] k 2 j ( 1 ) j η k 2 j ξ 2 j ,
and
S k ( η , ξ ) = j = 0 [ k 1 2 ] k 2 j + 1 ( 1 ) j η k 2 j 1 ξ 2 j + 1 .
Recently, Kim et al. [16] introduced the degenerate cosine-polynomials and degenerate sine-polynomials are respectively, as follows
e μ η ( z ) cos λ ξ ( z ) = j = 0 C j , μ ( η , ξ ) z j j ! ,
and
e μ η ( z ) sin μ ξ ( z ) = j = 0 S j , μ ( η , ξ ) z j j ! ,
where
C j , μ ( η , ξ ) = k = 0 [ j 2 ] i = 2 k j j i μ i 2 k ( 1 ) k ξ 2 k S 1 ( i , 2 k ) ( η ) j i , μ ,
and
S j , μ ( η , ξ ) = k = 0 [ j 1 2 ] i = 2 k + 1 j j i μ i 2 k 1 ( 1 ) k ξ 2 k + 1 S 1 ( i , 2 k + 1 ) ( η ) j i , μ .
This paper is organized as follows: In Section 2, we introduce degenerate complex Fubini polynomials with degenerate cosine-Fubini and degenerate sine-Fubini polynomials and present some properties and their relations. In Section 3, we derive partial differentiation, recurrence relations and summation formulas, Stirling numbers of the second kind of degenerate type Fubini numbers and polynomials by using a generating function, respectively.

2. A Parametric Kind of the Degenerate Fubini Polynomials

In this section, we study the parametric kind of degenerate Fubini polynomials by employing the real and imaginary parts separately and introduce the degenerate Fubini polynomials in terms of degenerate complex polynomials.
The well known degenerate Euler’s formula is defined as follows (see [16])
e μ ( η + i ξ ) z = e μ η z e μ i ξ z = e μ η z ( cos μ ξ z + i sin μ ξ z ) ,
where
cos μ z = e μ i ( z ) + e μ i ( z ) 2 , sin μ z = e μ i ( z ) e μ i ( z ) 2 i .
Note that
lim μ 0 e μ i = e i z , lim μ 0 cos μ z = cos z , lim μ 0 sin μ z = sin z .
Using (8), we find
1 1 ρ ( e μ ( z ) 1 ) e μ η + i ξ ( z ) = j = 0 F j , μ ( η + i ξ ; ρ ) z j j ! ,
and
1 1 ρ ( e μ ( z ) 1 ) e μ η i ξ ( z ) = j = 0 F j , μ ( η + i ξ ; ρ ) z j j ! .
From Equations (22) and (23), we obtain
1 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) cos μ ( ξ z ) = j = 0 F j , μ ( η + i ξ ; ρ ) + F j , μ ( η i ξ ; ρ ) 2 z j j ! ,
and
1 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) sin μ ( ξ z ) = j = 0 F j , μ ( η + i ξ ; ρ ) F j , μ ( η i ξ ; ρ ) 2 i z j j ! .
Definition 1.
For a non negative integer n, let us define the degenerate cosine-Fubini polynomials F j , μ ( c ) ( η , ξ ; ρ ) and the degenerate sine-Fubini polynomials F j , μ ( s ) ( η , ξ ; ρ ) by the generating functions, respectively, as follows
1 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) cos μ ( ξ z ) = j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! ,
and
1 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) sin μ ( ξ z ) = j = 0 F j , μ ( s ) ( η , ξ ; ρ ) z j j ! .
It is noted that
F j , μ ( c ) ( 0 , 0 ; 1 ) = F j , μ , F j , μ ( s ) ( 0 , 0 ; 1 ) = 0 , ( j 0 ) .
The first few of them are:
F 0 , μ ( c ) ( η , ξ ; ρ ) = 1 , F 1 , μ ( c ) ( η , ξ ; ρ ) = η + ρ , F 2 , μ ( c ) ( η , ξ ; ρ ) = μ η + η 2 ξ 2 + ρ μ ρ + 2 η ρ + 2 ρ 2 , F 3 , μ ( c ) ( η , ξ ; ρ ) = 2 μ 2 η 3 μ η 2 + η 3 3 η ξ 2 + 3 μ ξ 3 + ρ 3 μ ρ + 2 μ 2 ρ + 3 η ρ 6 μ η ρ + 3 η 2 ρ 3 ξ 2 ρ + 6 ρ 2 6 μ ρ 2 + 6 η ρ 2 + 6 ρ 3 ,
and
F 0 , μ ( s ) ( η , ξ ; ρ ) = 0 , F 1 , μ ( s ) ( η , ξ ; ρ ) = ξ , F 2 , μ ( s ) ( η , ξ ; ρ ) = 2 η ξ μ ξ 2 + 2 ξ ρ , F 3 , μ ( s ) ( η , ξ ; ρ ) = 3 μ η ξ + 3 η 2 ξ 3 μ η ξ 2 ξ 3 + 2 μ 2 ξ 3 + 3 ξ ρ 3 μ ξ ρ + 6 η ξ ρ 3 μ ξ 2 ρ + 6 ξ ρ 2 .
Note that lim μ 0 F j , μ ( c ) ( η , ξ ; ρ ) = F j ( c ) ( η , ξ ; ρ ) , lim μ 0 F j , μ ( s ) ( η , ξ ; ρ ) = F j ( s ) ( η , ξ ; ρ ) , ( j 0 ) , where F j ( c ) ( η , ξ ; ρ ) and F j ( s ) ( η , ξ ; ρ ) are the new type of Fubini polynomials.
From Equations (24)–(27), we determine
F j , μ ( c ) ( η , ξ ; ρ ) = F j , μ ( η + i ξ ; ρ ) + F j , μ ( η i ξ ; ρ ) 2 ,
and
F j , μ ( s ) ( η , ξ ; ρ ) = F j , μ ( η + i ξ ; ρ ) F j , μ ( η i ξ ; ρ ) 2 i .
Theorem 1.
The following result holds true
F j , μ ( η + i ξ ; ρ ) = r = 0 j j r ( i ξ ) j r , μ F r , μ ( η ; ρ ) = r = 0 j j r ( η + i ξ ) j r , μ F r , μ ( ρ ) ,
and
F j , μ ( η i ξ ; ρ ) = r = 0 j j r ( 1 ) j r ( i ξ ) j r , μ F r , μ ( η ; ρ ) = r = 0 j j r ( 1 ) j r ( i ξ η ) j r , μ F r , μ ( ρ ) ,
where ( η ) 0 , μ = 1 , ( η ) j , μ = η ( η + μ ) ( η + μ ( j 1 ) ) , ( j 1 ) .
Proof. 
From Equation (26), we derive
j = 0 F j , μ ( η + i ξ ; ρ ) z j j ! = 1 1 ρ ( e μ ( z ) 1 ) e μ η ( z ) e μ i ξ ( z ) = r = 0 F r , μ ( η ; ρ ) z r r ! j = 0 ( i ξ ) j , μ z j j ! = j = 0 r = 0 j j r ( i ξ ) j r , μ F r , μ ( η ; ρ ) z j j ! .
Similarly, we find
j = 0 F j , μ ( η + i ξ ; ρ ) z j j ! = r = 0 F r , μ ( ρ ) z r r ! j = 0 ( η + i ξ ) j , μ z j j ! = j = 0 r = 0 j j r ( η + i ξ ) j r , μ F r , μ ( η ; ρ ) z j j ! ,
which implies the asserted result (30). The proof of (31) is similar. □
Theorem 2.
The following result holds true
F j , μ ( c ) ( η , ξ ; ρ ) = r = 0 j j r F r , μ ( c ) ρ ) C j r , μ ( η , ξ ) = q = 0 [ j 2 ] r = 2 q j j r μ r 2 q ( 1 ) q ξ 2 q S ( 1 ) ( r , 2 q ) F j r , μ ( η ; ρ ) ,
and
F j , μ ( s ) ( η , ξ ; ρ ) = r = 0 j j r F r , μ ( s ) ( ρ ) S j r , μ ( η , ξ ) = q = 0 [ j 1 2 ] r = 2 q + 1 j j r μ r 2 q 1 ( 1 ) q ξ 2 q + 1 S ( 1 ) ( r , 2 q + 1 ) F j r , μ ( η ; ρ ) .
Proof. 
From Equations (26) and (16), we find
j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! = 1 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) cos μ ( ξ z ) = r = 0 F r , μ ( c ) ( ρ ) z r r ! j = 0 C j , μ ( η , ξ ) z j j ! = j = 0 r = 0 j j r F r , μ ( c ) ( ρ ) C j r , μ ( η , ξ ) z j j ! .
On the other hand, we find
1 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) cos μ ( ξ z ) = j = 0 F j , μ ( c ) ( η ; ρ ) z j j ! r = 0 q = 0 [ l 2 ] μ r 2 q ( 1 ) q ξ 2 q S ( 1 ) ( r , q ) z r r ! = j = 0 r = 0 j q = 0 [ r 2 ] j r μ r 2 q ( 1 ) q ξ 2 q S ( 1 ) ( r , 2 q ) F j r , μ ( c ) ( η ; ρ ) z j j ! = j = 0 q = 0 [ j 2 ] r = 2 q n j r μ r 2 q ( 1 ) q ξ 2 q S ( 1 ) ( r , 2 q ) F j r , μ ( η ; ρ ) z j j ! .
Therefore, by Equations (34) and (35), we obtain (32). The proof of (33) is similar. □
Theorem 3.
The following relation holds true
C j , μ ( η , ξ ) = F j , μ ( c ) ( η , ξ ; ρ ) ρ r = 0 j j r ( 1 ) r , μ F j r , μ ( c ) ( η , ξ ; ρ ) + ρ F j , μ ( c ) ( η , ξ ; ρ ) ,
and
S j , μ ( η , ξ ) = F j , μ ( s ) ( η , ξ ; ρ ) ρ r = 0 j j r ( 1 ) r , μ F j r , μ ( s ) ( η , ξ ; ρ ) + ρ F j , μ ( s ) ( η , ξ ; ρ ) .
Proof. 
In view of (16) and (26), we have
e μ ( η z ) cos μ ( ξ z ) = 1 ρ ( e μ ( z ) 1 ) j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j !
j = 0 C j , μ ( η , ξ ) z j j ! = j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! ρ j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! r = 0 ( 1 ) r , μ z r r !
+ ρ j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j !
= j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! ρ j = 0 r = 0 j j r ( 1 ) r , μ F j r , μ ( c ) ( η , ξ ; ρ ) z j j !
+ ρ j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! .
On comparing the coefficients of both sides, we get (36). The proof of (37) is similar. □

3. Main Results

In this section, we derive partial differentiation, recurrence relations, explicit and implicit summation formulae and Stirling numbers of the second kind by using the summation technique series method. We start by the following theorem.
Theorem 4.
For every j N , the following equations for partial derivatives hold true:
η F j , μ ( c ) ( η , ξ ; ρ ) = j F j 1 , μ ( c ) ( η , ξ ; ρ ) ,
ξ F j , μ ( c ) ( η , ξ ; ρ ) = j F j 1 , μ ( s ) ( η , ξ ; ρ ) ,
η F j , μ ( s ) ( η , ξ ; ρ ) = j F j 1 , μ ( s ) ( η , ξ ; ρ ) ,
ξ F j , μ ( s ) ( η , ξ ; ρ ) = j F j 1 , μ ( c ) ( η , ξ ; ρ ) .
Proof. 
Using Equation (26), we see
j = 1 η F j , μ ( c ) ( η , ξ ; ρ ) z j j ! = η e μ ( η z ) cos μ ( ξ z ) 1 ρ ( e μ ( z ) 1 ) = j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j + 1 j !
= j = 0 F j 1 , μ ( c ) ( η , ξ ; ρ ) z j ( j 1 ) ! = j = 1 n F j 1 , μ ( c ) ( η , ξ ; ρ ) z j j ! ,
proving (38). Other (39), (40) and (41) can be similarly derived. □
Theorem 5.
For j 0 , the following formula holds true:
1 1 ρ r = 0 j j r F r , μ ρ 1 ρ C j r , μ ( η , ξ ) = r = 0 j j r q = 0 z q ( q ) r , μ C j r , μ ( η , ξ ) ,
and
1 1 ρ r = 0 j j r F r , μ ρ 1 ρ S j r , μ ( η , ξ ) = r = 0 j j r q = 0 z q ( q ) r , μ S j r , μ ( η , ξ ) .
Proof. 
We begin with the definition (26) and write
j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! = 1 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) cos μ ( ξ z ) .
Let
1 1 ρ 1 1 ρ 1 ρ [ e μ ( z ) 1 ] = 1 1 ρ e μ ( z ) = q = 0 ρ q ( 1 + μ z ) q μ = r = 0 k = 0 z k ( k ) r , λ t r r !
j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! = r = 0 q = 0 ρ q ( q ) r , μ z r r ! j = 0 C j , μ ( η , ξ ) z j j ! = j = 0 r = 0 j j r q = 0 ρ q ( q ) r , μ C j r , μ ( η , ξ ) z j j ! .
Now, we observe that, by (44), we get
1 1 ρ 1 1 ρ 1 ρ ( 1 + μ z ) 1 μ 1 = 1 1 ρ j = 0 F j , μ ρ 1 ρ z j j ! .
Then, we have
j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! = 1 1 ρ r = 0 F r , μ ρ 1 ρ z r r ! j = 0 C j , μ ( η , ξ ) z j j ! = 1 1 ρ j = 0 r = 0 j j r F r , μ ρ 1 ρ C j r , μ ( η , ξ ) z j j ! .
Therefore, by Equations (45) and (46), we get (42). The proof of (43) is similar. □
Theorem 6.
For j 0 , the following formula holds true:
C j , μ ( η , ξ ) = F j , μ ( c ) ( η , ξ ; ρ ) ρ F j , μ ( c ) ( η + 1 , ξ ; ρ ) + ρ F j , μ ( c ) ( η , ξ ; ρ ) ,
and
S j , μ ( η , ξ ) = F j , μ ( s ) ( η , ξ ; ρ ) ρ F j , μ ( s ) ( η + 1 , ξ ; ρ ) + ρ F j , μ ( s ) ( η , ξ ; ρ ) .
Proof. 
We begin with the definition (26) and write
e μ ( η z ) cos μ ( ξ z ) = 1 ρ ( e μ ( z ) 1 ) 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) cos μ ( ξ z ) = e μ ( η z ) cos μ ( ξ z ) 1 ρ ( e μ ( z ) 1 ) ρ ( e μ ( z ) 1 ) 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) cos μ ( ξ z ) .
j = 0 C j , μ ( η , ξ ) z j j ! = j = 0 F j , μ ( c ) ( η , ξ ; ρ ) ρ F j , μ ( c ) ( η + 1 , ξ ; ρ ) + ρ F j , μ ( c ) ( η , ξ ; ρ ) z j j ! .
Finally, comparing the coefficients of z j j ! , we get (47). The proof of (48) is similar. □
Theorem 7.
For j 0 and ρ 1 ρ 2 , the following formula holds true:
q = 0 j j q F j q , μ ( c ) ( η 1 , ξ 1 ; ρ 1 ) F q , μ ( c ) ( η 2 , ξ 2 ; ρ 2 ) = ρ 2 F j , μ ( c ) ( η 1 + η 2 , ξ 1 + ξ 2 ; ρ 2 ) ρ 1 F n , μ ( c ) ( η 1 + η 2 , ξ 1 + ξ 2 ; ρ 1 ) ρ 2 ρ 1 ,
and
q = 0 j j q F j q , μ ( s ) ( η 1 , ξ 1 ; ρ 1 ) F q , μ ( s ) ( η 2 , ξ 2 ; ρ 2 ) = ρ 2 F j , μ ( s ) ( η 1 + η 2 , ξ 1 + ξ 2 ; ρ 2 ) ρ 1 F n , μ ( s ) ( η 1 + η 2 , ξ 1 + ξ 2 ; ρ 1 ) ρ 2 ρ 1 .
Proof. 
The products of (26) can be written as
j = 0 q = 0 F n , μ ( c ) ( η 1 , ξ 1 ; ρ 1 ) z j j ! F q , μ ( c ) ( η 2 , ξ 2 ; ρ 2 ) z q q ! = e μ ( η 1 z ) cos μ ( ξ 1 z ) e μ ( η 2 z ) cos μ ( ξ 2 z ) ( 1 ρ 1 ( e μ ( z ) 1 ) ) ( 1 ρ 2 ( e μ ( z ) 1 ) )
j = 0 q = 0 j j q F j q , μ ( c ) ( η 1 , ξ 1 ; ρ 1 ) F q , μ ( c ) ( η 2 , ξ 2 ; ρ 2 ) z j j !
= ρ 2 ρ 2 ρ 1 e μ ( ( η 1 + η 2 ) z ) cos μ ( ( ξ 1 + ξ 2 ) z ) 1 ρ 1 ( e μ ( z ) 1 ) ρ 1 ρ 2 ρ 1 e μ ( ( η 1 + η 2 ) z ) cos μ ( ( ξ 1 + ξ 2 ) z ) 1 z 2 ( e λ ( t ) 1 )
= ρ 2 F j , μ ( c ) ( η 1 + η 2 , ξ 1 + ξ 2 ; ρ 2 ) ρ 1 F j , μ ( c ) ( η 1 + η 2 , ξ 1 + ξ 2 ; ρ 1 ) ρ 2 ρ 1 z j j ! .
By equating the coefficients of z j j ! on both sides, we get (49). The proof of (50) is similar. □
Theorem 8.
For j 0 , the following formula holds true:
ρ F j , μ ( c ) ( η + 1 , ξ ; ρ ) = ( 1 + ρ ) F j , μ ( c ) ( η , ξ ; ρ ) C j , μ ( η , ξ ) ,
and
ρ F j , μ ( s ) ( η + 1 , ξ ; ρ ) = ( 1 + ρ ) F j , μ ( s ) ( η , ξ ; ρ ) S j , μ ( η , ξ ) .
Proof. 
Equation (26), we see
j = 0 F j , μ ( c ) ( η + 1 , ξ ; ρ ) F j , μ ( c ) ( η , ξ ; ρ ) z j j ! = e μ ( η z ) cos μ ( ξ z ) 1 ρ ( e μ ( z ) 1 ) ( e μ ( z ) 1 ) = 1 ρ e μ ( η z ) cos μ ( ξ z ) 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) cos μ ( ξ z ) = 1 ρ j = 0 F j , μ ( c ) ( x , y ; z ) C j , μ ( η , ξ ) z j j ! .
Comparing the coefficients of z j j ! on both sides, we obtain (51). The proof of (52) is similar. □
Corollary 1.
The following summation formula holds true
F j , μ ( c ) ( η + 1 , ξ ; ρ ) = r = 0 j j r F j r , μ ( c ) ( η , ξ ; ρ ) ( 1 ) r , μ ,
and
F j , μ ( s ) ( η + 1 , ξ ; ρ ) = r = 0 j j r F j r , μ ( s ) ( η , ξ ; ρ ) ( 1 ) r , μ .
Theorem 9.
For j 0 , then
F j , μ ( c ) ( η + α , ξ ; ρ ) = r = 0 j j r F j r , μ ( c ) ( η , ξ ; ρ ) ( α ) r , μ ,
and
F j , μ ( s ) ( η + α , ξ ; ρ ) = r = 0 j j r F j r , μ ( s ) ( η , ξ ; ρ ) ( α ) r , μ .
Proof. 
Replacing η by η + α in (26), we have
j = 0 F j , μ ( c ) ( η + α , ξ ; ρ ) z j j ! = 1 1 ρ ( e μ ( z ) 1 ) e μ ( ( η + α ) z ) cos μ ( ξ z ) = 1 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) cos μ ( ξ z ) e μ ( α z ) = j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! r = 0 ( α ) r , μ z j j ! = j = 0 r = 0 j j r F j r , μ ( c ) ( η , ξ ; ρ ) ( α ) r , μ z j j ! .
On comparing the coefficients of z in both sides, we get (53). The proof of (54) is similar. □
Theorem 10.
For j 0 , the following formula holds true:
F j , μ ( c ) ( η , ξ ; ρ ) = k = 0 j q = 0 k j k ( η ) q S μ ( 2 ) ( k , q ) F j k , μ ( c ) ( 0 , ξ ; ρ ) ,
and
F j , μ ( s ) ( η , ξ ; ρ ) = k = 0 j q = 0 k j k ( η ) q S μ ( 2 ) ( k , q ) F j k , μ ( s ) ( 0 , ξ ; ρ ) .
Proof. 
Consider (26), we find
j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! = 1 1 ρ ( e μ ( z ) 1 ) [ e μ ( z ) 1 + 1 ] η cos μ ( ξ z )
= 1 1 ρ ( e μ ( z ) 1 ) q = 0 η q ( e μ ( z ) 1 ) q cos μ ( ξ z )
= 1 1 ρ ( e μ ( z ) 1 ) cos μ ( ξ z ) q = 0 ( η ) q k = q S μ ( 2 ) ( k , q ) z k k !
= j = 0 F j , μ ( c ) ( 0 , ξ ; ρ ) z j j ! k = 0 q = 0 k ( η ) q S μ ( 2 ) ( k , q ) z k k !
= j = 0 k = 0 j q = 0 k j k ( η ) q S μ ( 2 ) ( k , q ) F j k , μ ( c ) ( 0 , ξ ; ρ ) z j j ! .
On comparing the coefficients of z in both sides, we get (55). The proof of (56) is similar. □
Theorem 11.
Let j 0 , then
F j , μ ( c ) ( η , ξ ; ρ ) = r = 0 j j r C j r , μ ( η , ξ ) k = 0 r ρ k k ! S 2 , μ ( r , k ) ,
and
F j , μ ( s ) ( η , ξ ; ρ ) = r = 0 j j r S j r , μ ( η , ξ ) k = 0 r ρ k k ! S 2 , μ ( r , k ) .
Proof. 
Using definition (26), we find
j = 0 F j , μ ( c ) ( η , ξ ; ρ ) z j j ! = 1 1 ρ ( e μ ( z ) 1 ) e μ ( η z ) cos μ ( ξ z )
= e μ ( η z ) cos μ ( ξ z ) k = 0 ρ k ( e μ ( z ) 1 ) k
= e μ ( η z ) cos μ ( ξ z ) k = 0 ρ k k ! r = k S 2 , μ ( r , k ) z r r !
= j = 0 C j , μ ( η , ξ ) z j j ! r = 0 k = 0 r ρ k k ! S 2 , μ ( r , k ) z r r !
L . H . S = j = 0 r = 0 j j r C j r , μ ( η , ξ ) k = 0 r ρ k k ! S 2 , μ ( r , k ) z j j ! .
Equating the coefficients of z j j ! in both sides, we get (57). The proof of (58) is similar. □
Theorem 12.
For j 0 , the following formula holds true:
F j , μ ( c ) ( η + α , ξ ; ρ ) = q = 0 j j q C j q , μ ( η , ξ ) k = 0 q ρ k k ! S 2 , μ ( q + α , k + α ) ,
and
F j , μ ( s ) ( η + α , ξ ; ρ ) = q = 0 j j q S j q , μ ( η , ξ ) k = 0 q ρ k k ! S 2 , μ ( q + α , k + α ) .
Proof. 
Replacing η by η + α in (26), we see
j = 0 F j , μ ( c ) ( η + α , ξ ; ρ ) z j j ! = 1 1 ρ ( e μ ( z ) 1 ) e μ ( ( η + α ) z ) cos μ ( ξ z )
= e μ ( ( η + α ) z ) cos μ ( ξ z ) e μ ( r t ) k = 0 ρ k ( e μ ( z ) 1 ) k
= e μ ( ( η + α ) z ) cos μ ( ξ z ) e μ ( r t ) k = 0 ρ k q = k k ! S 2 , μ ( q , k ) z q q !
= j = 0 C j , μ ( η , ξ ) z j j ! q = 0 ρ k k = 0 q k ! S 2 , μ ( q + α , k + α ) z q q ! .
j = 0 F j , μ ( c ) ( η + α , ξ ; ρ ) z j j !
= n = 0 q = 0 j j q C j q , μ ( η , ξ ) k = 0 q ρ k k ! S 2 , μ ( q + α , k + α ) z j j ! .
Comparing the coefficients of z j j ! in both sides, we get (59). The proof of (60) is similar. □

4. Conclusions

In this paper, we study the general properties and identities of the degenerate Fubini polynomials by treating the real and imaginary parts separately, which provide the degenerate cosine Fubini polynomials and degenerate sine Fubini polynomials. These presented results can be applied to any complex Appell type polynomials such as complex Bernoulli and complex Euler polynomials. Furthermore, we show that the degenerate cosine Fubini polynomials and degenerate sine Fubini polynomials can be expressed in terms of the Stirling numbers of the second kind.

Author Contributions

S.K.S., W.A.K., C.S.R. contributed equally to the manuscript and typed, read, and approved final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No. R-1441-93.

Acknowledgments

The authors would like to thank the referees for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kargin, L. Some formulae for products of Fubini polynomials with applications. arXiv 2016, arXiv:1701.01023v1. [Google Scholar]
  2. Duran, U.; Acikgoz, M. Truncated Fubini polynomials. Mathematics 2019, 7, 431. [Google Scholar] [CrossRef] [Green Version]
  3. Kim, T.; Kim, D.S.; Jang, G.W. A note on degenerate Fubini polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 521–531. [Google Scholar]
  4. Kim, D.S.; Kim, T.; Kwon, H.I.; Park, J.W. Two variable higher order Fubini polynomials. J. Korean Math. Soc. 2018, 55, 975–986. [Google Scholar] [CrossRef]
  5. Kilar, N.; Simsek, Y. A new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials. J. Korean Math. Soc. 2017, 54, 1605–1621. [Google Scholar]
  6. Su, D.D.; He, Y. Some identities for the two variable Fubini polynomial. Mathematics 2019, 7, 115. [Google Scholar] [CrossRef] [Green Version]
  7. Avram, F.; Taqqu, M.S. Noncentral limit theorems and Appell polynomials. Ann. Probab. 1987, 15, 767–775. [Google Scholar] [CrossRef]
  8. Tempesta, P. Formal groups, Bernoulli type polynomial and L-series. C. R. Math. Acad. Sci. Paris. 2007, 345, 303–306. [Google Scholar] [CrossRef]
  9. Kim, T.; Ryoo, C.S. Some identities for Euler and Bernoulli polynomials and their zeros. Axioms 2018, 7, 56. [Google Scholar] [CrossRef] [Green Version]
  10. Carlitz, L. Degenerate Stirling Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
  11. Carlitz, L. A degenerate Staud-Clausen theorem. Arch. Math. 1956, 7, 28–33. [Google Scholar] [CrossRef]
  12. Khan, W.A. A note on degenerate Hermite-poly-Bernoulli numbers and polynomials. J. Class. Anal. 2016, 8, 65–76. [Google Scholar] [CrossRef]
  13. Haroon, H.; Khan, W.A. Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite polynomials. Commun. Korean Math. Soc. 2018, 33, 651–669. [Google Scholar]
  14. Kim, D.S.; Dolgy, T.; Komatsu, D.V. Barnes type degenerate Bernoulli polynomials. Adv. Stud. Contemp. Math. 2015, 25, 121–146. [Google Scholar]
  15. Kim, T. Barnes type multiple degenerate Bernoulli and Euler polynomials. Appl. Math. Comput. 2015, 258, 556–564. [Google Scholar] [CrossRef]
  16. Kim, D.S.; Kim, T.; Lee, H. A note on degenerate Euler and Bernoulli polynomials of complex variable. Symmetry 2019, 11, 1168. [Google Scholar] [CrossRef] [Green Version]
  17. Howard, F.T. Degenerate weighted Stirlings numbers. Discrete Math. 1985, 57, 45–58. [Google Scholar] [CrossRef] [Green Version]
  18. Dil, A.; Kurt, V. Investing geometric and exponential polynomials with Euler-Seidel matrices. J. Integer Seq. 2011, 14, 1–12. [Google Scholar]
  19. Jamei, M.M.; Beyki, M.R.; Koepf, W. A new type of Euler polynomials and numbers. Mediterr. J. Math. 2018, 15, 138. [Google Scholar] [CrossRef]
  20. Jamei, M.M.; Beyki, M.R.; Koepf, W. On a Bivariate Kind of Bernoulli Polynomials. Available online: http://www/mathematik.uni-kassel.de/koepf/Publikationen (accessed on 1 February 2020).

Share and Cite

MDPI and ACS Style

Sharma, S.K.; Khan, W.A.; Ryoo, C.S. A Parametric Kind of the Degenerate Fubini Numbers and Polynomials. Mathematics 2020, 8, 405. https://doi.org/10.3390/math8030405

AMA Style

Sharma SK, Khan WA, Ryoo CS. A Parametric Kind of the Degenerate Fubini Numbers and Polynomials. Mathematics. 2020; 8(3):405. https://doi.org/10.3390/math8030405

Chicago/Turabian Style

Sharma, Sunil Kumar, Waseem A. Khan, and Cheon Seoung Ryoo. 2020. "A Parametric Kind of the Degenerate Fubini Numbers and Polynomials" Mathematics 8, no. 3: 405. https://doi.org/10.3390/math8030405

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop