Persistence for a Two-Stage Reaction-Diffusion System
Abstract
1. Introduction
2. Basic Properties
3. The Case of Small
4. The Case of and Large
5. General Diffusion Rates
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cantrell, R.S.; Cosner, C. Spatial Ecology via Reaction-Diffusion Equations; John Wiley and Sons: Chichester, UK, 2003. [Google Scholar]
- Cosner, C. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discret. Cont. Dyn. Syst. A 2014, 34, 1701–1745. [Google Scholar] [CrossRef]
- He, X.; Ni, W.-M. Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and Spatial Heterogeneity I. Commun. Pure Appl. Math. 2016, 69, 981–1014. [Google Scholar] [CrossRef]
- Dockery, J.; Hutson, V.; Mischaikow, K.; Pernarowski, M. The evolution of slow dispersal rates: A reaction diffusion model. J. Math. Biol. 1998, 37, 61–83. [Google Scholar] [CrossRef]
- Hastings, A. Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 1983, 24, 244–251. [Google Scholar] [CrossRef]
- Altenberg, L. Resolvent positive linear operators exhibit the reduction phenomenon. Proc. Natl. Acad. Sci. USA 2012, 109, 3705–3710. [Google Scholar] [CrossRef] [PubMed]
- Greenwood-Lee, J.; Taylor, P.D. The evolution of dispersal in spatially varying environments. Evol. Ecol. Res. 2001, 3, 649–665. [Google Scholar]
- Brown, K.J.; Zhang, Y. On a system of reaction–diffusion equations describing a population with two age groups. J. Math. Anal. Appl. 2003, 282, 444–452. [Google Scholar] [CrossRef]
- Cantrell, R.S.; Cosner, C.; Yu, X. Dynamics of populations with individual variation in dispersal on bounded domains. J. Biol. Dyn. 2018, 12, 288–317. [Google Scholar] [CrossRef]
- Cantrell, R.S.; Cosner, C.; Yu, X. Populations with individual variation in dispersal in heterogeneous environments: Dynamics and competition with simply diffusing populations. Sci. China Math. 2020, 63, 441–464. [Google Scholar] [CrossRef]
- Gurtin, M.E. A system of equations for age-dependent population diffusion. J. Theor. Biol. 1973, 40, 389–392. [Google Scholar] [CrossRef]
- Kunisch, K.; Schappacher, W.; Webb, G.F. Nonlinear age-dependent population dynamics with random diffusion. Comput. Math. Appl. 1985, 11, 155–173. [Google Scholar] [CrossRef]
- Langlais, M. A nonlinear problem in age-dependent population diffusion. SIAM J. Math. Anal. 1985, 16, 510–529. [Google Scholar] [CrossRef]
- Yan, S.; Guo, S. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discret. Contin. Dyn. Syst. B 2018, 23, 1559–1579. [Google Scholar] [CrossRef]
- López-Gómez, J.; Molina-Meyer, M. The maximum principle for cooperative weakly coupled elliptic systems and some applications. Differ. Int. Equ. 1994, 7, 383–398. [Google Scholar]
- Molina-Meyer, M. Global attractivity and singular perturbation for a class of nonlinear cooperative systems. J. Differ. Equ. 1996, 128, 347–378. [Google Scholar] [CrossRef]
- Cantrell, R.S.; Cosner, C. On the effects of spatial heterogeneity on the coexistence of competing species. J. Math. Biol. 1998, 37, 103–145. [Google Scholar] [CrossRef]
- Fernández-Rincón, S.; López-Gómez, J. A singular perturbation result in competition theory. J. Math. Anal. Appl. 2017, 445, 280–296. [Google Scholar] [CrossRef]
- Hutson, V.; López-Gómez, J.; Mischaikow, K.; Vickers, G. Limit Behavior for a Competing Speces Problem with Diffusion. In Dynamical Systems and Applications; Agarwal, R.P., Ed.; World Sci. Publishing: Hackensack, NJ, USA, 1995; pp. 343–358. [Google Scholar]
- Chen, S.; Shi, J. Asymptotic profiles of basic reproduction number for epidemic spreading in heterogeneous environment. arXiv 2019, arXiv:1909.10107. [Google Scholar]
- Magal, P.; Webb, G.F.; Wu, Y.-X. On the basic reproduction number of reaction-diffusion epidemic models. SIAM J. Appl. Math. 2019, 79, 284–304. [Google Scholar] [CrossRef]
- Hei, L.J.; Wu, J.H. Existence and stability of positive solutions for an elliptic cooperative system. Acta Math. Sin. Engl. Ser. 2005, 21, 1113–1120. [Google Scholar] [CrossRef]
- Lam, K.-Y.; Lou, Y. Asymptotic behavior of the principal eigenvalue for cooperative elliptic systems and applications. J. Dyn. Differ. Equ. 2016, 29, 29–48. [Google Scholar] [CrossRef]
- Cantrell, R.S.; Cosner, C.; Lou, Y. Evolution of dispersal and the ideal free distribution. Math. Biosci. Eng. 2010, 7, 17–36. [Google Scholar] [PubMed]
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 108, 29–48. [Google Scholar] [CrossRef]
- Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 1943, 35, 99–110. [Google Scholar]
- Derpanis, K.G. The Bhattacharyya measure. Mendeley Comput. 2008, 1, 1990–1992. [Google Scholar]
- Smith, H. Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems; Mathematical Surveys and Monographs, 41; American Mathematical Society: Providence, RI, USA, 1995. [Google Scholar]
- Hutson, V.; Mischaikow, K.; Polácik, P. The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 2001, 43, 501–533. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantrell, R.S.; Cosner, C.; Martínez, S. Persistence for a Two-Stage Reaction-Diffusion System. Mathematics 2020, 8, 396. https://doi.org/10.3390/math8030396
Cantrell RS, Cosner C, Martínez S. Persistence for a Two-Stage Reaction-Diffusion System. Mathematics. 2020; 8(3):396. https://doi.org/10.3390/math8030396
Chicago/Turabian StyleCantrell, Robert Stephen, Chris Cosner, and Salomé Martínez. 2020. "Persistence for a Two-Stage Reaction-Diffusion System" Mathematics 8, no. 3: 396. https://doi.org/10.3390/math8030396
APA StyleCantrell, R. S., Cosner, C., & Martínez, S. (2020). Persistence for a Two-Stage Reaction-Diffusion System. Mathematics, 8(3), 396. https://doi.org/10.3390/math8030396