Self-Similar Inverse Semigroups from Wieler Solenoids
Abstract
:1. Introduction
2. Smale Spaces and Wieler Solenoids
2.1. Smale Spaces
- ,
- when both sides are defined,
- when both sides are defined,
- when both sides are defined,
- when , and
- when .
2.2. Wieler Solenoids
3. Self-Similar Inverse Semigroups
3.1. Inverse Semigroups
3.2. Groupoids of Germs
3.3. Tight Groupoids of Inverse Semigroups
- ,
- and imply , and
- for any elements , there is an element such that .
- and
- .
3.4. Self-Similar Inverse Semigroups and Limit Solenoids
4. Adjacency Semigroups of Wieler Solenoids
Adjacency Semigroups
5. Groupoid Equivalence
Tight Groupoids
- 1.
- generates E.
- 2.
- For , if and only if .
- 3.
- For , is a clopen subset of .
6. Traces and Invariant Means
- 1.
- Γ is an ample groupoid,
- 2.
- is a Boolean inverse monoid, and
- 3.
- .
- 1.
- for every
- 2.
- for all such that .
- 1.
- for every
- 2.
- for all .
Funding
Conflicts of Interest
References
- Wieler, S. Smale spaces via inverse limits. Ergod. Theory Dyn. Syst. 2014, 34, 2066–2092. [Google Scholar] [CrossRef] [Green Version]
- Brownlowe, N.; Buss, A.; Goncalves, D.; Sims, A.; Whittaker, M. K-Theoretic Duality for Self-Similar Group Actions on Graphs, in preparation.
- Deely, R.; Goffeng, M.; Mesland, B.; Whittaker, M. Wieler solenoids, Cuntz-Pimsner algebras and K-theory. Ergod. Theory Dyn. Syst. 2018, 38, 2942–2988. [Google Scholar] [CrossRef] [Green Version]
- Deeley, R.; Yashinski, A. The stable algebra of a Wieler Solenoid: Inductive limits and K-theory. Ergod. Theory Dyn. Syst. 2019, 1–35. [Google Scholar] [CrossRef]
- Bartholdi, L.; Grigorchuk, R.; Nekrashevych, V. From Fractal Groups to Fractal Sets; Fractals in Graz 2001; Grabner, P., Woess, W., Eds.; Birkhäuser: Basel, Switzerland, 2003; pp. 25–118. [Google Scholar]
- Grigorchuk, R.; Nekrashevych, V. Self-Similar Groups, Operator Algebras and Schur Complement. J. Mod. Dyn. 2007, 1, 323–370. [Google Scholar] [CrossRef]
- Nekrashevych, V. Self-similar inverse semigroups and Smale spaces. Int. J. Algebra Comput. 2006, 16, 849–874. [Google Scholar] [CrossRef] [Green Version]
- Exel, R.; Gonçalves, D.; Starling, C. The tiling C*-algebra viewed as a tight inverse semigroup algebra. Semigroup Forum. 2012, 84, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Kaminker, J.; Putnam, I.; Spielberg, J. Operator Algebras and Hyperbolic Dynamics. In Operator Algebras and Quantum Field Theory (Rome, 1996); Doplicher, S., Longo, R., Roberts, J.E., Zsido, L., Eds.; International Press: Vienna, Austria, 1997; pp. 525–532. [Google Scholar]
- Putnam, I. C*-algebras from Smale spaces. Can. J. Math. 1996, 48, 175–195. [Google Scholar] [CrossRef]
- Putnam, I. Hyperbolic Systems and Generalized Cuntz-Krieger Algebras; Lecture Notes from Summer School in Operator Algebras, Odense, Denmark; American Mathematical Society: Providence, RI, USA, 1996. [Google Scholar]
- Putnam, I.; Spielberg, J. The structure of C*-algebras associated with hyperbolic dynamical systems. J. Funct. Anal. 1999, 163, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Putnam, I. Lifting factor maps to resolving maps. Israel J. Math. 2005, 146, 253–280. [Google Scholar] [CrossRef]
- Exel, R. Partial Dynamical Systems, Fell Bundles and Applications; American Mathematical Society: Providence, RI, USA, 2017; Volume 224. [Google Scholar]
- Exel, R.; Pardo, E. The tight groupoid of an inverse semigroup. Semigroup Forum 2016, 92, 274–303. [Google Scholar] [CrossRef] [Green Version]
- Exel, R. Inverse semigroups and combinatorial C*-algebras. Bull. Braz. Math. Soc. 2008, 39, 191–313. [Google Scholar] [CrossRef]
- Lawson, M.V. Inverse Semigroups, the Theory of Partial Symmetries; World Scientific: Singapore, 1998. [Google Scholar]
- Lind, D.; Marcus, B. An Introduction to Symbolic Dynamics and Coding; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Nekrashevych, V. Self-Similar Groups; Math. Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2005; Volume 117. [Google Scholar]
- Nekrashevych, V. C*-algebras and self-similar groups. J. Reine Angew. Math. 2009, 630, 59–123. [Google Scholar] [CrossRef]
- Muhly, P.; Renault, J.; Williams, D. Equivalence and isomorphism for groupoid C*-algebras. J. Operator Theory 1987, 17, 3–22. [Google Scholar]
- Yi, I. Inverse semigroups associated with one-dimensional generalized solenoids. Semigroup Forum 2018, 96, 81–104. [Google Scholar] [CrossRef]
- Starling, C. C*-algebras of Boolean inverse monoids–traces and invariant means. Doc. Math. 2016, 21, 809–840. [Google Scholar]
- Exel, R. Reconstructing a totally disconnected groupoid from its ample semigroup. Proc. Am. Math. Soc. 2010, 138, 2991–3001. [Google Scholar] [CrossRef] [Green Version]
- Anantharaman-Delaroche, C.; Renault, J. Amenable Groupoids; Monographies de L’Enseignement Mathématique No. 36; L’Enseignement Mathématique: Geneva, Switzerland, 2000. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, I. Self-Similar Inverse Semigroups from Wieler Solenoids. Mathematics 2020, 8, 266. https://doi.org/10.3390/math8020266
Yi I. Self-Similar Inverse Semigroups from Wieler Solenoids. Mathematics. 2020; 8(2):266. https://doi.org/10.3390/math8020266
Chicago/Turabian StyleYi, Inhyeop. 2020. "Self-Similar Inverse Semigroups from Wieler Solenoids" Mathematics 8, no. 2: 266. https://doi.org/10.3390/math8020266
APA StyleYi, I. (2020). Self-Similar Inverse Semigroups from Wieler Solenoids. Mathematics, 8(2), 266. https://doi.org/10.3390/math8020266