The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas
Abstract
:1. Introduction. Infinite-Volume Gibbs States and Reduced Density Matrices
1.1. The Local Hamiltonian
1.2. The Thermodynamic Limit. The Shift-Invariance Property
1.3. Integral Kernels of Gibbs Operators and RDMs
2. The FK Representation and the FK-DLR Equation
2.1. The Background of the FK-Representation
2.2. The FK-Representation in a Box
- (a)
- for a path collection with ,
- (b)
- for a loop configuration ,
2.3. The Infinite-Volume FK-DLR Equations and RDMKs
2.4. Results on Infinite-Volume FK-DLR PMs and Gibbs States
3. Proof of Theorems 1 and 6: A Compactness Argument
4. Proof of Theorem 2: A Tuned-Shift Argument
5. Definition of Transformations
6. Estimates for the Jacobians
7. Estimates for the Change in the Energy
8. Concluding Remarks and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ginibre, J. Some applications of functional integration in statistical mechanics. In Statistical Mechanics and Quantum Field Theory; DeWitt, C.M., Stora, R., Eds.; Gordon and Breach: London, UK, 1973; pp. 327–428. [Google Scholar]
- Bratteli, O.; Robinson, D. Operator Algebras and Quantum Statistical Mechanics. Vol. I: C*- and W*-Algebras. Symmetry Groups. Decomposition of States; Vol. II: Equilibrium States. Models in Quantum Statistical Mechanics; Springer: Berlin, Germany, 2002. [Google Scholar]
- Fröhlich, J.; Knowles, A.; Schlein, B.; Sohinger, V. The mean-field limit of quantum Bose gases at positive temperature. arXiv 2020, arXiv:2001.01546v1. [Google Scholar]
- Lewin, M.; Nam, P.T.; Rougerie, N. Classical field theory limit of many-body quantum Gibbs states in 2D and 3D. arXiv 2020, arXiv:1810.08370v3. [Google Scholar]
- Lieb, E.H.; Solovej, J.P.; Seiringer, R.; Yngvason, J. The Mathematics of the Bose Gas and its Condensation; Oberwolfach Seminars; Birkhäuser: Basel, Switzerland, 2005. [Google Scholar]
- Mermin, N.D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136. [Google Scholar] [CrossRef]
- Dobrushin, R.L.; Shlosman, S.B. Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics. Commun. Math. Phys. 1975, 42, 30–40. [Google Scholar] [CrossRef]
- Ioffe, D.; Shlosman, S.; Velenik, Y. 2D models of statistical physics with continuous symmetry: The case of singular interactions. Commun. Math. Phys. 2002, 226, 433–454. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, J.; Pfister, C. On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Commun. Math. Phys. 1981, 81, 277–298. [Google Scholar] [CrossRef]
- Pfister, C.E. On the symmetry of the Gibbs states in two-dimensional lattice systems. Commun. Math. Phys. 1981, 79, 181–188. [Google Scholar] [CrossRef]
- Richthammer, T. Two-dimensional Gibbsian point processes with continuous spin symmetries. Stoch. Process. Appl. 2005, 115, 827–848. [Google Scholar] [CrossRef] [Green Version]
- Richthammer, T. Translation invariance of two dimensional Gibbsian point processes. Commun. Math. Phys. 2007, 274, 81–122. [Google Scholar] [CrossRef] [Green Version]
- Richthammer, T. Translation invariance of two dimensional Gibbsian systems of particles with internal degrees of freedom. Stoch. Process. Appl. 2009, 119, 700–736. [Google Scholar] [CrossRef] [Green Version]
- Albeverio, S.; Kondratiev, Y.; Kozitsky, Y.; Röckner, M. The Statistical Mechanics of Quantum Lattice Systems; A Path Integral Approach; EMS Publishing House: Zürich, Switzerland, 2009. [Google Scholar]
- Kozitsky, Y.; Pasurek, T. Euclidean Gibbs measures of interacting quantum anharmonic oscillators. J. Stat. Phys. 2007, 127, 985–1047. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.; Simon, B. Methods of Modern Mathematical Physics. Vol. IV: Analysis of Operators; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Alonso, A.; Simon, B. The Birman–Krein–Vishik theory of self-adjoint extensions of semi bounded operators. J. Oper. Theory 1980, 4, 251–270. [Google Scholar]
- Fournais, S.; Solovej, J.P. The energy of dilute Bose gases. arXiv 2020, arXiv:1904.06164. [Google Scholar]
- Georgii, H.O. Gibbs Measures and Phase Transitions; Walter de Gruyter: Berlin, Germany, 1988. [Google Scholar]
- Simon, B. Functional Integration and Quantum Physics; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Simon, B. The Statistical Mechanics of Lattice Gases; Princeton University Press: Princeton, NJ, USA, 1983. [Google Scholar]
- Simon, B.; Sokal, A. Rigorous entropy-energy arguments. J. Stat. Phys. 1981, 25, 679–694. [Google Scholar] [CrossRef]
- Kelbert, M.; Suhov, Y. FK-DLR states of a quantum Bose-gas with a card-core interaction. arXiv 2013, arXiv:1304.0782v2. [Google Scholar]
- Suhov, Y.M. Existence and regularity of the limit Gibbs state for one-dimensional continuous systems of quantum statistical mechanics. Soviet Math. 1970, 11, 1629–1632. [Google Scholar]
- Heyer, H. Probability Measures on Locally Compact Groups; Springer: Berlin, Germany, 1977. [Google Scholar]
- Karlin, S.; Taylor, H.M. A Second Course in Stochastic Processes; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Itô, K.; McKean, H.P. Diffusion Processes and Their Sample Paths; Springer: Berlin, Germany, 1996. [Google Scholar]
- Kelbert, M.; Suhov, Y. A quantum Mermin-Wagner theorem for a generalized Hubbard model on a 2D graph. Adv. Math. Phys. 2013, 2013, 637375. [Google Scholar] [CrossRef]
- Kelbert, M.; Suhov, Y.; Yambartsev, A. A Mermin-Wagner theorem on Lorentzian triangulations with quantum spins. Braz. J. Prob. Stat. 2014, 28, 515–537. [Google Scholar] [CrossRef]
- Dümbgen, L. Bounding standard Gaussian tail probabilities. arXiv 2010, arXiv:1012.2063. [Google Scholar]
- Suhov, Y.; Stuhl, I. FK-DLR properties of a quantum multi-type bose-gas with a repulsive interaction. J. Math. Phys. 2014, 55, 083306. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhov, Y.; Kelbert, M.; Stuhl, I. The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas. Mathematics 2020, 8, 1683. https://doi.org/10.3390/math8101683
Suhov Y, Kelbert M, Stuhl I. The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas. Mathematics. 2020; 8(10):1683. https://doi.org/10.3390/math8101683
Chicago/Turabian StyleSuhov, Yuri, Mark Kelbert, and Izabella Stuhl. 2020. "The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas" Mathematics 8, no. 10: 1683. https://doi.org/10.3390/math8101683
APA StyleSuhov, Y., Kelbert, M., & Stuhl, I. (2020). The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas. Mathematics, 8(10), 1683. https://doi.org/10.3390/math8101683