Some Identities Involving Certain Hardy Sums and General Kloosterman Sums
Abstract
1. Introduction
2. Some Lemmas
3. Proof of the Theorems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bettin, S.; Conrey, J.B. A reciprocity formula for a cotangent sum. Int. Math. Res. Not. IMRN 2013, 24, 5709–5726. [Google Scholar] [CrossRef]
- Bettin, S.; Conrey, J.B. Period functions and cotangent sums. Algebra Number Theory 2013, 7, 215–242. [Google Scholar] [CrossRef]
- Bettin, S.; Drappeau, S. Partial sums of the cotangent function. arXiv 2019, arXiv:1905.01954. [Google Scholar]
- Maier, H.; Rassias, M.T. Distribution of a cotangent sum related to the Nyman-Beurling criterion for the Riemann Hypothesis. Appl. Math. Comput. 2019, 363, 124589. [Google Scholar] [CrossRef]
- Carlitz, L. The reciprocity theorem of Dedekind sums. Pac. J. Math. 1953, 3, 513–522. [Google Scholar] [CrossRef]
- Zhang, W.P. On the mean values of Dedekind sums. J. Théor. Nombres Bordx. 1996, 8, 429–442. [Google Scholar] [CrossRef]
- Kim, T. Note on Dedekind type DC sums. Adv. Stud. Contemp. Math. 2009, 18, 249–260. [Google Scholar]
- Kim, T. Note on q-Dedekind-type sums related to q-Euler polynomial. Glasg. Math. J. 2012, 54, 121–125. [Google Scholar] [CrossRef]
- Apostol, T.M. Modular Functions and Dirichlet Series in Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
- Cetin, E. A note on Hardy type sums and Dedekind sums. Filomat 2016, 30, 977–983. [Google Scholar] [CrossRef]
- Conrey, J.B.; Fransen, E.; Klein, R.; Scott, C. Mean values of Dedekind sums. J. Number Theory 1996, 56, 214–226. [Google Scholar] [CrossRef]
- Sitaramachandrarao, R. Dedekind and Hardy sums. Acta Arith. 1987, 48, 325–340. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, T.P. Some identities involving certain Hardy sum and Kloosterman sum. J. Number Theory 2016, 165, 355–362. [Google Scholar] [CrossRef]
- Guo, X.Y.; Zhang, W.P. A hybrid mean value related to certain Hardy sums and Kloosterman sums. Czech. Math. J. 2011, 61, 759–769. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.P. On the identity involving certain Hardy sums and Kloosterman sums. J. Inequal. Appl. 2014, 52, 1–9. [Google Scholar] [CrossRef]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, T. Some Identities Involving Certain Hardy Sums and General Kloosterman Sums. Mathematics 2020, 8, 95. https://doi.org/10.3390/math8010095
Zhang H, Zhang T. Some Identities Involving Certain Hardy Sums and General Kloosterman Sums. Mathematics. 2020; 8(1):95. https://doi.org/10.3390/math8010095
Chicago/Turabian StyleZhang, Huifang, and Tianping Zhang. 2020. "Some Identities Involving Certain Hardy Sums and General Kloosterman Sums" Mathematics 8, no. 1: 95. https://doi.org/10.3390/math8010095
APA StyleZhang, H., & Zhang, T. (2020). Some Identities Involving Certain Hardy Sums and General Kloosterman Sums. Mathematics, 8(1), 95. https://doi.org/10.3390/math8010095