Next Article in Journal
Numerical Solutions for Multi-Term Fractional Order Differential Equations with Fractional Taylor Operational Matrix of Fractional Integration
Next Article in Special Issue
Studies in Sums of Finite Products of the Second, Third, and Fourth Kind Chebyshev Polynomials
Previous Article in Journal
Stability Results for Implicit Fractional Pantograph Differential Equations via ϕ-Hilfer Fractional Derivative with a Nonlocal Riemann-Liouville Fractional Integral Condition
Previous Article in Special Issue
Some Identities of Degenerate Bell Polynomials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Identities Involving Certain Hardy Sums and General Kloosterman Sums

School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710119, China
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(1), 95; https://doi.org/10.3390/math8010095
Submission received: 20 November 2019 / Revised: 2 January 2020 / Accepted: 2 January 2020 / Published: 7 January 2020
(This article belongs to the Special Issue Special Polynomials)

Abstract

:
Using the properties of Gauss sums, the orthogonality relation of character sum and the mean value of Dirichlet L-function, we obtain some exact computational formulas for the hybrid mean value involving general Kloosterman sums K ( r , l , λ ; p ) and certain Hardy sums S 1 ( h , q ) m = 1 p 1 s = 1 p 1 K ( m , n , λ ; p ) K ( s , t , λ ; p ) S 1 ( 2 m s ¯ , p ) , m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) . Our results not only cover the previous results, but also contain something quite new. Actually the previous authors just consider the case of the principal character λ modulo p, while we consider all the cases.

1. Introduction

Let k be a positive integer and h be arbitrary integer with ( h , k ) = 1 , the classical Dedekind sums S ( h , k ) are defined as
S ( h , k ) = a = 1 k a k a h k ,
where
x = x [ x ] 1 2 , if x is not an integer ; 0 , if x is an integer .
S ( h , k ) also can be written as
S ( h , k ) = 1 4 k a = 1 k 1 cot π a k cot π a h k ,
which belong to the family of “cotangent sums”.
These sums have a wide range of applications and in some cases relations to some major open problems, such as Riemann Hypothesis. Refs. [1,2,3,4] introduced the cotangent sums
C h k = a = 1 k 1 a k cot π a h k ,
and the Vasyunin sums
V h k = a = 1 k 1 a h k cot π a h k = C h ¯ k ,
where { u } = u u , h h ¯ 1 mod k . Actually the Vasyunin sums are associated to the study of the Riemann Hypothesis through the following equation (see [1,2,3,4]):
1 2 π h k ζ 1 2 + i t 2 h k i t d t 1 4 + t 2 = log 2 π γ 2 1 h + 1 k + k h 2 h k log h k π 2 h k V h k + V k h .
So the cotangent sums arise in connection with the Nyman-Beurling approach to the Riemann Hypothesis.
Dedekind sums also play an important role in the transformation theory of the Dedekind η function. Dedekind sums have many interesting properties. For example, L. Carlitz [5] obtained the reciprocity theorem of S ( h , k ) as
S ( h , k ) + S ( k , h ) = 1 4 + 1 12 h k + k h + 1 h k .
W. P. Zhang [6] established the relationship between Dedekind sums and Dirichlet L-function:
S ( a , k ) = 1 π 2 k d | k d 2 φ ( d ) χ mod d χ ( 1 ) = 1 χ ( a ) | L ( 1 , χ ) | 2 ,
where k > 2 is an integer, a is an integer with ( a , k ) = 1 , φ ( d ) denotes the Euler function and L ( 1 , χ ) denotes the Dirichlet L-function corresponding to character χ modulo d.
Some scholars also studied Dedekind type sums and obtained interesting results. For example, by considering Dedekind type DC(Daehee-Changhee) sums
T p ( h , k ) = 2 u = 1 k 1 ( 1 ) u 1 u k E ¯ p h u k , ( h Z + ) ,
where E ¯ p ( x ) are the p-th Euler functions, T. Kim [7] proved reciprocity law:
k p T p ( h , k ) + h p T p ( k , h ) = 2 u = 0 k 1 u [ h u k ] 1 mod 2 k h E + u k + k E + h h u k p + ( h E + k E ) p + ( p + 2 ) E p ,
where ( h , k ) = 1 , [ x ] is the largest integer x , E n are the n-th Euler numbers. Later T. Kim [8] defined p-adic Dedekind-type DC sums as follows:
S p , q ( s : h , k : q k ) = M = 1 k 1 1 q M 1 q ( 1 ) M 1 T q ( s , h M , k : q k ) ,
where ( h , k ) = ( p , k ) = 1 , s Z p , and T q ( m , a , N : q N ) is a continuous p-adic extension of ( 1 q N 1 q ) m E m , q N ( a N ) , then he got a continuous function S p , q ( m : h , k : q k ) on Z p , which satisfies
S p , q ( m : h , k : q k ) = 1 q k 1 q m + 1 S m , q ( h , k : q k ) 1 q k 1 q m + 1 1 q k p 1 q k m S m , q ( ( p 1 h ) k , k : q p k ) ,
where
S m , q ( h , k : q l ) = M = 1 k 1 ( 1 ) M 1 1 q M 1 q k Z p q l x 1 q l ( x + { h M k } ) 1 q l m d μ q l ( x ) .
The other sums analogous to Dedekind sums are defined as
S 1 ( h , k ) = j = 1 k 1 ( 1 ) j + 1 + [ h j k ] ,
where h and k are integers with k > 0 . The sums S 1 ( h , k ) are sometimes called Hardy sums. Some authors studied the properties of S 1 ( h , k ) and related sums, and obtained some interesting results, see [9,10,11,12]. A relation between certain Hardy sums S 1 ( h , k ) and classical Dedekind sums S ( h , k ) can be obtained in [12] that if ( h , k ) = 1 , then
S 1 ( h , k ) = 8 S ( h + k , 2 k ) + 4 S ( h , k ) .
Other scholars showed their interests to the hybrid mean value involving Hardy sums and other famous sums, see [13,14,15]. For example, W. P. Zhang [15] studied the hybrid mean value involving certain Hardy sums S 1 ( h , k ) and Kloosterman sums
K ( r , q ) = a = 1 q e r a + a ¯ q ,
where a = 1 q denotes the summation over all a with ( a , q ) = 1 , e ( y ) = e 2 π i y , and obtained some exact computational formulas for
m = 1 p 1 s = 1 p 1 K ( m , p ) K ( s , p ) S 1 ( 2 m s ¯ , p ) ,
m = 1 p 1 s = 1 p 1 | K ( m , p ) | 2 | K ( s , p ) | 2 S 1 ( 2 m s ¯ , p ) .
Actually the transforming formula (1) and
S 1 ( 2 h , p ) = 20 S ( 2 h , p ) + 8 S ( 4 h , p ) + 8 S ( h , p )
are used, where p is an odd prime and 0 < h < p . Therefore,
S 1 ( 2 m s ¯ , p ) = 20 p π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 2 m s ¯ ) L ( 1 , χ ) 2 + 8 p π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 4 m s ¯ ) L ( 1 , χ ) 2 + 8 p π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( m s ¯ ) L ( 1 , χ ) 2 .
However, as far as we know, it seems that nobody has yet studied the hybrid mean value involving certain Hardy sums S 1 ( h , k ) and general Kloosterman sums K ( r , l , λ ; p ) , which are defined as follows:
K ( r , l , λ ; q ) = a = 1 q λ ( a ) e r a + l a ¯ q ,
where λ is a Dirichlet character modulo q. If λ = λ 0 is the principal character modulo q and l = 1 , then K ( r , 1 , λ 0 ; q ) = K ( r , q ) .
Inspired by [15], we will study the hybrid mean value
m = 1 p 1 s = 1 p 1 K ( m , n , λ ; p ) K ( s , t , λ ; p ) S 1 ( 2 m s ¯ , p ) ,
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) .
Since they are more comprehensive than those in [15], we turn to some novel methods and finally obtain several explicit formulas. Our results not only cover those of [15], but also contain something quite new.
Theorem 1.
Let p be an odd prime. Then for any character λ mod p and any integers n, t with ( n , p ) = ( t , p ) = 1 , if p 1 mod 4 , we have the identity
m = 1 p 1 s = 1 p 1 K ( m , n , λ ; p ) K ( s , t , λ ; p ) S 1 ( 2 m s ¯ , p ) = 0 .
If p 3 mod 4 , we have
m = 1 p 1 s = 1 p 1 K ( m , n , λ ; p ) K ( s , t , λ ; p ) S 1 ( 2 m s ¯ , p ) = 2 p , if λ ¯ χ = χ 0 ; 2 p 2 , if λ ¯ χ χ 0 ,
where χ is any odd character modulo p and χ 0 is the principal character modulo p.
Note: The emergences of χ in Theorem 1 are due to the application of (2) in the proof.
Theorem 2.
Let p be an odd prime. Then for any character λ mod p and any integers n, t with ( n , p ) = ( t , p ) = 1 , if p 1 mod 4 , we have the identity
m = 1 p 1 s = 1 p 1 K ( m , n , λ ; p ) 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 0 .
If p 3 mod 8 , we have
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 2 p 3 36 p 2 h p 2 , if λ χ ¯ χ 0 , λ ¯ χ χ 0 ; 2 p 2 36 p h p 2 , if λ χ ¯ χ 0 , λ ¯ χ = χ 0 ; 2 p 2 [ p 2 p 54 h p 2 + 1 + 2 ( p 1 18 h p 2 ) R e τ ( χ ¯ 2 ) ] , if λ χ ¯ = χ 0 , λ ¯ χ = χ 0 ; 2 p 2 [ 2 p 2 2 p 18 p h p 2 + 1 2 ( p 1 18 h p 2 ) R e τ ( χ ¯ 2 ) τ ( λ ¯ χ ) + 36 h p 2 R e τ ( λ ¯ χ ) ] , if λ χ ¯ = χ 0 , λ ¯ χ χ 0 .
If p 7 mod 8 , we have
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 2 p 3 + 4 p 2 h p 2 , if λ χ ¯ χ 0 , λ ¯ χ χ 0 ; 2 p 2 + 4 p h p 2 , if λ χ ¯ χ 0 , λ ¯ χ = χ 0 ; 2 p 2 [ p 2 p + 6 h p 2 + 1 + 2 ( p 1 + 2 h p 2 ) R e τ ( χ ¯ 2 ) ] , if λ χ ¯ = χ 0 , λ ¯ χ = χ 0 ; 2 p 2 [ 2 p 2 2 p + 2 p h p 2 + 1 2 ( p 1 + 2 h p 2 ) R e τ ( χ ¯ 2 ) τ ( λ ¯ χ ) + 4 h p 2 R e τ ( λ ¯ χ ) ] , if λ χ ¯ = χ 0 , λ ¯ χ χ 0 ,
where h p denotes the class number of the quadratic field Q ( p ) , χ is any odd character modulo p, and τ ( χ ) = a = 1 p 1 χ ( a ) e a p denotes the classical Gauss sums.
Note: We know that | τ ( χ ) | = p if χ is a primitive character modulo p. For the case of λ χ ¯ = χ 0 , λ ¯ χ = χ 0 , taking p as the upper bound estimate of R e τ ( χ ¯ 2 ) , we can get
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 2 p 4 + O ( p 7 2 ) , if p 3 mod 8 ; 2 p 4 + O ( p 7 2 ) , if p 7 mod 8 .
Let n = t = 1 , λ = λ 0 in Theorems, we may immediately obtain Theorems 1 and 2 of [15] as the following:
Corollary 1.
Let p be an odd prime, then we have
m = 1 p 1 s = 1 p 1 K ( m , p ) K ( s , p ) S 1 ( 2 m s ¯ , p ) = 0 , if p 1 mod 4 ; 2 p 2 , if p 3 mod 4 .
Corollary 2.
Let p be an odd prime, then we have
m = 1 p 1 s = 1 p 1 | K ( m , p ) | 2 | K ( s , p ) | 2 S 1 ( 2 m s ¯ , p ) = 0 , if p 1 mod 4 ; 2 p 3 36 p 2 h p 2 , if p 3 mod 8 ; 2 p 3 + 4 p 2 h p 2 , if p 7 mod 8 .
It should be pointed out that we only consider the prime modulus case. The question of whether there exist some exact computational formulas for the general modulus q remains open.

2. Some Lemmas

In this section, we will give several simple lemmas, which are necessary in the proof of our theorems. Hereinafter, we shall use some knowledge of elementary number theory, the orthogonality relation of character sum and the properties of Gauss sums, which all can be found in [16], here we only list a few. For example,
a = 1 p 1 χ ( a ) e u a p = τ ( χ ) χ ¯ ( u ) ,
if ( u , p ) = 1 or χ is a primitive character modulo p. If χ is a primitive character modulo p, then | τ ( χ ) | = p .
Now we have the following lemmas:
Lemma 1.
Let p be an odd prime, n be any integer with ( n , p ) = 1 . Then for any non-principal character χ mod p and any character λ mod p, we have
m = 1 p 1 χ ( m ) | K ( m , n , λ ; p ) | 2 = p | τ ( χ ¯ 2 ) | , if λ χ ¯ χ 0 , λ ¯ χ χ 0 ; p 1 2 | τ ( χ ¯ 2 ) | , if λ χ ¯ χ 0 , λ ¯ χ = χ 0 ; p | τ ( χ ¯ 2 ) + ( p 1 ) | , if λ χ ¯ = χ 0 , λ ¯ χ = χ 0 ; p | τ ( χ ¯ 2 ) τ ( λ ¯ χ ) + ( p 1 ) ) | , if λ χ ¯ = χ 0 , λ ¯ χ χ 0 .
Proof. 
From the properties of Gauss sums and the reduced residue system modulo p, we have
m = 1 p 1 χ ( m ) | K ( m , n , λ ; p ) | 2 = m = 1 p 1 χ ( m ) a = 1 p 1 λ ( a ) e m a + n a ¯ p 2 = a = 1 p 1 b = 1 p 1 λ ( a b ¯ ) m = 1 p 1 χ ( m ) e m ( a b ) + n ( a ¯ b ¯ ) p = a = 1 p 1 λ ( a ) b = 1 p 1 m = 1 p 1 χ ( m ) e m b ( a 1 ) + n b ¯ ( a ¯ 1 ) p = a = 1 p 1 λ ( a ) b = 1 p 1 e n b ¯ ( a ¯ 1 ) p m = 1 p 1 χ ( m ) e m b ( a 1 ) p = τ ( χ ) a = 1 p 1 λ ( a ) χ ¯ ( a 1 ) b = 1 p 1 χ ( b ) e n b ( a ¯ 1 ) p = τ 2 ( χ ) χ ¯ ( n ) a = 1 p 1 λ ( a ) χ ¯ ( a 1 ) χ ¯ ( a ¯ 1 ) = τ 2 ( χ ) χ ¯ ( n ) a = 1 p 1 λ ( a ) χ ¯ ( 2 a a ¯ ) = τ 2 ( χ ) χ ¯ ( n ) a = 1 p 1 λ ( a ) χ ¯ ( a ¯ ) χ ¯ ( 2 a a 2 1 ) = τ 2 ( χ ) χ ¯ ( n ) a = 1 p 1 λ χ ( a ) χ ¯ ( ( a 1 ) 2 ) = τ 2 ( χ ) χ ¯ ( n ) a = 1 p 2 λ χ ( a + 1 ) χ ¯ 2 ( a ) .
Using the properties of Gauss sums and the periodicity of Dirichlet character, we have
a = 1 p 2 λ χ ( a + 1 ) χ ¯ 2 ( a ) = 1 τ ( λ χ ¯ ) b = 1 p 1 λ χ ¯ ( b ) a = 1 p 2 χ ¯ 2 ( a ) e b ( a + 1 ) p = 1 τ ( λ χ ¯ ) b = 1 p 1 λ χ ¯ ( b ) e b p a = 1 p 2 χ ¯ 2 ( a ) e a b p = 1 τ ( λ χ ¯ ) b = 1 p 1 λ χ ¯ ( b ) e b p a = 1 p 1 χ ¯ 2 ( a ) e a b p χ ¯ 2 ( p 1 ) e p b b p = 1 τ ( λ χ ¯ ) b = 1 p 1 λ χ ¯ ( b ) e b p a = 1 p 1 χ ¯ 2 ( a ) e a b p e b p = τ ( χ ¯ 2 ) τ ( λ χ ¯ ) b = 1 p 1 λ ¯ χ ( b ) e b p 1 τ ( λ χ ¯ ) b = 1 p 1 λ χ ¯ ( b ) = τ ( λ ¯ χ ) τ ( χ ¯ 2 ) τ ( λ χ ¯ ) 1 τ ( λ χ ¯ ) b = 1 p 1 λ χ ¯ ( b ) .
Applying the orthogonality relation for character modulo p, it is clear that
b = 1 p 1 λ χ ¯ ( b ) = 0 , if λ χ ¯ χ 0 ; p 1 , if λ χ ¯ = χ 0 .
And note that τ ( χ 0 ) = 1 , so we can get
a = 1 p 2 λ χ ( a + 1 ) χ ¯ 2 ( a ) = τ ( λ ¯ χ ) τ ( χ ¯ 2 ) τ ( λ χ ¯ ) , if λ χ ¯ χ 0 ; τ ( λ ¯ χ ) τ ( χ ¯ 2 ) + ( p 1 ) , if λ χ ¯ = χ 0 . = τ ( χ ¯ 2 ) τ ( λ ¯ χ ) τ ( λ χ ¯ ) , if λ χ ¯ χ 0 , λ ¯ χ χ 0 ; τ ( χ ¯ 2 ) τ ( λ χ ¯ ) , if λ χ ¯ χ 0 , λ ¯ χ = χ 0 ; τ ( χ ¯ 2 ) + ( p 1 ) , if λ χ ¯ = χ 0 , λ ¯ χ = χ 0 ; τ ( λ ¯ χ ) τ ( χ ¯ 2 ) + ( p 1 ) , if λ χ ¯ = χ 0 , λ ¯ χ χ 0 .
Note that | χ ¯ ( n ) | = 1 and | τ ( λ χ ¯ ) | = | τ ( λ ¯ χ ) | = | τ ( χ ) | = p if λ χ ¯ and λ ¯ χ are all non-principal characters modulo p. Thus, from (3) and (4) we may immediately deduce that
m = 1 p 1 χ ( m ) | K ( m , n , λ ; p ) | 2 = p τ ( χ ¯ 2 ) , if λ χ ¯ χ 0 , λ ¯ χ χ 0 ; p 1 2 τ ( χ ¯ 2 ) , if λ χ ¯ χ 0 , λ ¯ χ = χ 0 ; p ( τ ( χ ¯ 2 ) + ( p 1 ) ) , if λ χ ¯ = χ 0 , λ ¯ χ = χ 0 ; p ( τ ( χ ¯ 2 ) τ ( λ ¯ χ ) + ( p 1 ) ) , if λ χ ¯ = χ 0 , λ ¯ χ χ 0 .
This proves Lemma 1. □
Lemma 2.
Let p be an odd prime, n be any integer with ( n , p ) = 1 . Then for any non-principal character χ mod p and any character λ mod p, we have
m = 1 p 1 χ ( m ) K ( m , n , λ ; p ) = p 1 2 , if λ ¯ χ = χ 0 ; p , if λ ¯ χ χ 0 .
Proof. 
From the definition of Kloosterman sums and the properties of Gauss sums we have
m = 1 p 1 χ ( m ) K ( m , n , λ ; p ) = m = 1 p 1 χ ( m ) a = 1 p 1 λ ( a ) e m a + n a ¯ p = a = 1 p 1 λ ( a ) e n a ¯ p m = 1 p 1 χ ( m ) e m a p = τ ( χ ) a = 1 p 1 λ ( a ) χ ¯ ( a ) e n a ¯ p = τ ( χ ) a = 1 p 1 λ ¯ χ ( a ) e n a p = τ ( χ ) τ ( λ ¯ χ ) λ χ ¯ ( n ) .
Note that | τ ( χ ) | = p , λ χ ¯ ( n ) = 1 , τ ( χ 0 ) = 1 , then we can immediately deduce that
m = 1 p 1 χ ( m ) K ( m , n , λ ; p ) = p 1 2 , if λ ¯ χ = χ 0 ; p , if λ ¯ χ χ 0 .
This proves Lemma 2. □
Lemma 3.
Let p be an odd prime, then we have
χ mod p χ ( 1 ) = 1 | L ( 1 , χ ) | 2 = π 2 12 ( p 1 ) 2 ( p 2 ) p 2 ,
χ mod p χ ( 1 ) = 1 χ ( 2 ) | L ( 1 , χ ) | 2 = π 2 24 ( p 1 ) 2 ( p 5 ) p 2 ,
χ mod p χ ( 1 ) = 1 χ ( 4 ) | L ( 1 , χ ) | 2 = π 2 48 ( p 1 ) 2 ( p 17 ) p 2 , p 1 mod 4 ; π 2 48 ( p 1 ) ( p 2 6 p + 17 ) p 2 , p 3 mod 4 .
Proof. 
See Lemma 5 of [15]. □

3. Proof of the Theorems

In this section, we shall use the above lemmas to complete the proof of Theorems. First we prove Theorem 1 From the identity (2), we have
m = 1 p 1 s = 1 p 1 K ( m , n , λ ; p ) K ( s , t , λ ; p ) S 1 ( 2 m s ¯ , p ) = 20 p π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 2 ) m = 1 p 1 χ ( m ) K ( m , n , λ ; p ) 2 L ( 1 , χ ) 2 + 8 p π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 4 ) m = 1 p 1 χ ( m ) K ( m , n , λ ; p ) 2 L ( 1 , χ ) 2 + 8 p π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 m = 1 p 1 χ ( m ) K ( m , n , λ ; p ) 2 L ( 1 , χ ) 2 .
Firstly, we consider the case of p 1 mod 4 . If λ ¯ χ = χ 0 , from Lemmas 2 and 3, we have
m = 1 p 1 s = 1 p 1 K ( m , n , λ ; p ) K ( s , t , λ ; p ) S 1 ( 2 m s ¯ , p ) = 20 p 2 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 2 ) | L ( 1 , χ ) | 2 + 8 p 2 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 4 ) | L ( 1 , χ ) | 2 + 8 p 2 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 | L ( 1 , χ ) | 2 = 5 6 ( p 1 ) ( p 5 ) + 2 3 ( p 1 ) ( p 2 ) + 1 6 ( p 1 ) ( p 17 ) = 0 .
If λ ¯ χ χ 0 , then from Lemmas 2 and 3, we have
m = 1 p 1 s = 1 p 1 K ( m , n , λ ; p ) K ( s , t , λ ; p ) S 1 ( 2 m s ¯ , p ) = 20 p 3 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 2 ) | L ( 1 , χ ) | 2 + 8 p 3 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 4 ) | L ( 1 , χ ) | 2 + 8 p 3 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 | L ( 1 , χ ) | 2 = 5 6 p ( p 1 ) ( p 5 ) + 2 3 p ( p 1 ) ( p 2 ) + 1 6 p ( p 1 ) ( p 17 ) = 0 .
For the case of p 3 mod 4 , similarly we have
m = 1 p 1 s = 1 p 1 K ( m , n , λ ; p ) K ( s , t , λ ; p ) S 1 ( 2 m s ¯ , p ) = 2 p , if λ ¯ χ = χ 0 ; 2 p 2 , if λ ¯ χ χ 0 .
This completes the proof of Theorem 1.
Now we prove Theorem 2. From the identity (2), it is clear that
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 20 p π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 2 ) m = 1 p 1 χ ( m ) | K ( m , n , λ ; p ) | 2 2 | L ( 1 , χ ) | 2 + 8 p π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 4 ) m = 1 p 1 χ ( m ) | K ( m , n , λ ; p ) | 2 2 | L ( 1 , χ ) | 2 + 8 p π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 m = 1 p 1 χ ( m ) | K ( m , n , λ ; p ) | 2 2 | L ( 1 , χ ) | 2 .
Firstly, we consider the case of p 1 mod 4 . Note that | τ ( χ ¯ 2 ) | = p . If λ χ ¯ χ 0 , λ ¯ χ χ 0 , from Lemmas 1 and 3, we have
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 20 p 4 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 2 ) | L ( 1 , χ ) | 2 + 8 p 4 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 4 ) | L ( 1 , χ ) | 2 + 8 p 4 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 | L ( 1 , χ ) | 2 = 5 6 p 2 ( p 1 ) ( p 5 ) + 1 6 p 2 ( p 1 ) ( p 17 ) + 2 3 p 2 ( p 1 ) ( p 2 ) = 0 .
If λ χ ¯ χ 0 , λ ¯ χ = χ 0 , from Lemmas 1 and 3, we have
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 20 p 3 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 2 ) | L ( 1 , χ ) | 2 + 8 p 3 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 4 ) | L ( 1 , χ ) | 2 + 8 p 3 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 | L ( 1 , χ ) | 2 = 5 6 p ( p 1 ) ( p 5 ) + 1 6 p ( p 1 ) ( p 17 ) + 2 3 p ( p 1 ) ( p 2 ) = 0 .
Similarly, we have
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 0 , if λ χ ¯ = χ 0 , λ ¯ χ = χ 0 ; 0 , if λ χ ¯ = χ 0 , λ ¯ χ χ 0 .
Now, we consider the case of p 3 mod 4 . In this case, we note that
1 p = χ 2 ( 1 ) = 1 , L ( 1 , χ 2 ) = π h p p , τ ( χ 2 ¯ 2 ) = 1 , 4 p = 2 2 p = 1 .
So, if λ χ ¯ χ 0 , λ ¯ χ χ 0 , from Lemmas 1 and 3, we have
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 20 p 4 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 2 ) | L ( 1 , χ ) | 2 + 8 p 4 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 4 ) | L ( 1 , χ ) | 2 + 8 p 4 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 | L ( 1 , χ ) | 2 + 20 p 4 π 2 ( p 1 ) χ 2 ( 2 ) | L ( 1 , χ 2 ) | 2 20 p 3 π 2 ( p 1 ) χ 2 ( 2 ) | L ( 1 , χ 2 ) | 2 8 p 4 π 2 ( p 1 ) χ 2 ( 4 ) | L ( 1 , χ 2 ) | 2 + 8 p 3 π 2 ( p 1 ) χ 2 ( 4 ) | L ( 1 , χ 2 ) | 2 8 p 4 π 2 ( p 1 ) | L ( 1 , χ 2 ) | 2 + 8 p 3 π 2 ( p 1 ) | L ( 1 , χ 2 ) | 2 = 5 6 p 2 ( p 1 ) ( p 5 ) + 1 6 p 2 ( p 2 6 p + 17 ) + 2 3 p 2 ( p 1 ) ( p 2 ) + 20 p 3 π 2 χ 2 ( 2 ) | L ( 1 , χ 2 ) | 2 16 p 3 π 2 | L ( 1 , χ 2 ) | 2 = 2 p 3 16 p 2 h p 2 + 20 p 2 h p 2 2 p .
If λ χ ¯ χ 0 , λ ¯ χ = χ 0 , from Lemmas 1 and 3, we have
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 20 p 3 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 2 ) | L ( 1 , χ ) | 2 + 8 p 3 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 χ ( 4 ) | L ( 1 , χ ) | 2 + 8 p 3 π 2 ( p 1 ) χ mod p χ ( 1 ) = 1 | L ( 1 , χ ) | 2 + 20 p 3 π 2 ( p 1 ) χ 2 ( 2 ) | L ( 1 , χ 2 ) | 2 20 p 2 π 2 ( p 1 ) χ 2 ( 2 ) | L ( 1 , χ 2 ) | 2 8 p 3 π 2 ( p 1 ) χ 2 ( 4 ) | L ( 1 , χ 2 ) | 2 + 8 p 2 π 2 ( p 1 ) χ 2 ( 4 ) | L ( 1 , χ 2 ) | 2 8 p 3 π 2 ( p 1 ) | L ( 1 , χ 2 ) | 2 + 8 p 2 π 2 ( p 1 ) | L ( 1 , χ 2 ) | 2 = 5 6 p ( p 1 ) ( p 5 ) + 1 6 p ( p 2 6 p + 17 ) + 2 3 p ( p 1 ) ( p 2 ) + 20 p 2 π 2 χ 2 ( 2 ) | L ( 1 , χ 2 ) | 2 16 p 2 π 2 | L ( 1 , χ 2 ) | 2 = 2 p 2 16 p h p 2 + 20 p h p 2 2 p .
Similarly, if λ χ ¯ = χ 0 , λ ¯ χ = χ 0 , we have
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 2 p 2 [ p + ( p 1 ) 2 + 2 ( p 1 ) R e τ ( χ ¯ 2 ) ] + 20 p 2 h p 2 ( 3 + 2 R e τ ( χ ¯ 2 ) ) 2 p 16 p 2 h p 2 ( 3 + 2 R e τ ( χ ¯ 2 ) ) .
If λ χ ¯ = χ 0 , λ ¯ χ χ 0 , we have
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 2 p 2 [ p 2 + ( p 1 ) 2 2 ( p 1 ) R e τ ( χ ¯ 2 ) τ ( λ ¯ χ ) ] + 20 p 2 h p 2 ( p 2 ( R e τ ( χ ¯ 2 ) τ ( λ ¯ χ ) + R e τ ( λ ¯ χ ) ) ) 2 p 16 p 2 h p 2 ( p 2 ( R e τ ( χ ¯ 2 ) τ ( λ ¯ χ ) + R e τ ( λ ¯ χ ) ) ) .
Then if p 3 mod 8 , note that 2 p = ( 1 ) p 2 1 8 = 1 , we have
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 2 p 3 36 p 2 h p 2 , if λ χ ¯ χ 0 , λ ¯ χ χ 0 ; 2 p 2 36 p h p 2 , if λ χ ¯ χ 0 , λ ¯ χ = χ 0 ; 2 p 2 [ p 2 p 54 h p 2 + 1 + 2 ( p 1 18 h p 2 ) R e τ ( χ ¯ 2 ) ] , if λ χ ¯ = χ 0 , λ ¯ χ = χ 0 ; 2 p 2 [ 2 p 2 2 p 18 p h p 2 + 1 2 ( p 1 18 h p 2 ) R e τ ( χ ¯ 2 ) τ ( λ ¯ χ ) + 36 h p 2 R e τ ( λ ¯ χ ) ] , if λ χ ¯ = χ 0 , λ ¯ χ χ 0 .
If p 7 mod 8 , note that 2 p = ( 1 ) p 2 1 8 = 1 , we have
m = 1 p 1 s = 1 p 1 | K ( m , n , λ ; p ) | 2 | K ( s , t , λ ; p ) | 2 S 1 ( 2 m s ¯ , p ) = 2 p 3 + 4 p 2 h p 2 , if λ χ ¯ χ 0 , λ ¯ χ χ 0 ; 2 p 2 + 4 p h p 2 , if λ χ ¯ χ 0 , λ ¯ χ = χ 0 ; 2 p 2 [ p 2 p + 6 h p 2 + 1 + 2 ( p 1 + 2 h p 2 ) R e τ ( χ ¯ 2 ) ] , if λ χ ¯ = χ 0 , λ ¯ χ = χ 0 ; 2 p 2 [ 2 p 2 2 p + 2 p h p 2 + 1 2 ( p 1 + 2 h p 2 ) R e τ ( χ ¯ 2 ) τ ( λ ¯ χ ) + 4 h p 2 R e τ ( λ ¯ χ ) ] , if λ χ ¯ = χ 0 , λ ¯ χ χ 0 .
This completes the proof of Theorem 2.

4. Conclusions

In this paper, we obtain some exact computational formulas for the hybrid mean value involving general Kloosterman sums and certain Hardy sums. We also prove some identities in the second part by using the properties of Gauss sums, the orthogonality relation of character sum and the mean value of Dirichlet L-function, which are necessary for the proof of our Theorems. We only consider the prime modulus case. The question of whether there exist some exact computational formulas for the general modulus q remains open.

Author Contributions

H.Z. drafted the manuscript. T.Z. participated in its design and coordination and help to draft the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the National Natural Science Foundation of China (No. 11871317, 11926325), and the Fundamental Research Funds for the Central Universities (No. GK201802011).

Acknowledgments

The authors would like to thank the referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bettin, S.; Conrey, J.B. A reciprocity formula for a cotangent sum. Int. Math. Res. Not. IMRN 2013, 24, 5709–5726. [Google Scholar] [CrossRef]
  2. Bettin, S.; Conrey, J.B. Period functions and cotangent sums. Algebra Number Theory 2013, 7, 215–242. [Google Scholar] [CrossRef]
  3. Bettin, S.; Drappeau, S. Partial sums of the cotangent function. arXiv 2019, arXiv:1905.01954. [Google Scholar]
  4. Maier, H.; Rassias, M.T. Distribution of a cotangent sum related to the Nyman-Beurling criterion for the Riemann Hypothesis. Appl. Math. Comput. 2019, 363, 124589. [Google Scholar] [CrossRef]
  5. Carlitz, L. The reciprocity theorem of Dedekind sums. Pac. J. Math. 1953, 3, 513–522. [Google Scholar] [CrossRef]
  6. Zhang, W.P. On the mean values of Dedekind sums. J. Théor. Nombres Bordx. 1996, 8, 429–442. [Google Scholar] [CrossRef]
  7. Kim, T. Note on Dedekind type DC sums. Adv. Stud. Contemp. Math. 2009, 18, 249–260. [Google Scholar]
  8. Kim, T. Note on q-Dedekind-type sums related to q-Euler polynomial. Glasg. Math. J. 2012, 54, 121–125. [Google Scholar] [CrossRef] [Green Version]
  9. Apostol, T.M. Modular Functions and Dirichlet Series in Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
  10. Cetin, E. A note on Hardy type sums and Dedekind sums. Filomat 2016, 30, 977–983. [Google Scholar] [CrossRef]
  11. Conrey, J.B.; Fransen, E.; Klein, R.; Scott, C. Mean values of Dedekind sums. J. Number Theory 1996, 56, 214–226. [Google Scholar] [CrossRef] [Green Version]
  12. Sitaramachandrarao, R. Dedekind and Hardy sums. Acta Arith. 1987, 48, 325–340. [Google Scholar] [CrossRef] [Green Version]
  13. Peng, W.; Zhang, T.P. Some identities involving certain Hardy sum and Kloosterman sum. J. Number Theory 2016, 165, 355–362. [Google Scholar] [CrossRef]
  14. Guo, X.Y.; Zhang, W.P. A hybrid mean value related to certain Hardy sums and Kloosterman sums. Czech. Math. J. 2011, 61, 759–769. [Google Scholar] [CrossRef]
  15. Zhang, H.; Zhang, W.P. On the identity involving certain Hardy sums and Kloosterman sums. J. Inequal. Appl. 2014, 52, 1–9. [Google Scholar] [CrossRef] [Green Version]
  16. Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]

Share and Cite

MDPI and ACS Style

Zhang, H.; Zhang, T. Some Identities Involving Certain Hardy Sums and General Kloosterman Sums. Mathematics 2020, 8, 95. https://doi.org/10.3390/math8010095

AMA Style

Zhang H, Zhang T. Some Identities Involving Certain Hardy Sums and General Kloosterman Sums. Mathematics. 2020; 8(1):95. https://doi.org/10.3390/math8010095

Chicago/Turabian Style

Zhang, Huifang, and Tianping Zhang. 2020. "Some Identities Involving Certain Hardy Sums and General Kloosterman Sums" Mathematics 8, no. 1: 95. https://doi.org/10.3390/math8010095

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop