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Abstract: Using the properties of Gauss sums, the orthogonality relation of character sum and
the mean value of Dirichlet L-function, we obtain some exact computational formulas for the
hybrid mean value involving general Kloosterman sums K(r, l, λ; p) and certain Hardy sums

S1(h, q)
p−1

∑
m=1

p−1

∑
s=1

K(m, n, λ; p)K(s, t, λ; p)S1(2ms, p),
p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p).

Our results not only cover the previous results, but also contain something quite new. Actually
the previous authors just consider the case of the principal character λ modulo p, while we consider
all the cases.

Keywords: certain Hardy sums; general Kloosterman sums; hybrid mean value; exact computational
formulas

1. Introduction

Let k be a positive integer and h be arbitrary integer with (h, k) = 1, the classical Dedekind sums
S(h, k) are defined as

S(h, k) =
k

∑
a=1

(( a
k

))(( ah
k

))
,

where

((x)) =

{
x− [x]− 1

2 , if x is not an integer;
0, if x is an integer.

S(h, k) also can be written as

S(h, k) = − 1
4k

k−1

∑
a=1

cot
πa
k

cot
πah

k
,

which belong to the family of “cotangent sums”.
These sums have a wide range of applications and in some cases relations to some major open

problems, such as Riemann Hypothesis. Refs. [1–4] introduced the cotangent sums

C
(

h
k

)
=

k−1

∑
a=1

a
k

cot
πah

k
,

and the Vasyunin sums

V
(

h
k

)
=

k−1

∑
a=1

{
ah
k

}
cot

πah
k

= C

(
h
k

)
,
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where {u} = u− buc, hh ≡ 1 mod k. Actually the Vasyunin sums are associated to the study of the
Riemann Hypothesis through the following equation (see [1–4]):

1

2π
√

hk

∫ ∞

−∞

∣∣∣∣ζ (1
2
+ it

)∣∣∣∣2 (h
k

)it dt
1
4 + t2

=
log 2π − γ

2

(
1
h
+

1
k

)
+

k− h
2hk

log
h
k
− π

2hk

(
V
(

h
k

)
+ V

(
k
h

))
.

So the cotangent sums arise in connection with the Nyman-Beurling approach to the Riemann
Hypothesis.

Dedekind sums also play an important role in the transformation theory of the Dedekind
η function. Dedekind sums have many interesting properties. For example, L. Carlitz [5] obtained the
reciprocity theorem of S(h, k) as

S(h, k) + S(k, h) = −1
4
+

1
12

(
h
k
+

k
h
+

1
hk

)
.

W. P. Zhang [6] established the relationship between Dedekind sums and Dirichlet L-function:

S(a, k) =
1

π2k ∑
d|k

d2

ϕ(d) ∑
χ mod d

χ(−1)=−1

χ(a)|L(1, χ)|2, (1)

where k > 2 is an integer, a is an integer with (a, k) = 1, ϕ(d) denotes the Euler function and L(1, χ)

denotes the Dirichlet L-function corresponding to character χ modulo d.
Some scholars also studied Dedekind type sums and obtained interesting results. For example,

by considering Dedekind type DC(Daehee-Changhee) sums

Tp(h, k) = 2
k−1

∑
u=1

(−1)u−1 u
k

Ep

(
hu
k

)
, (h ∈ Z+),

where Ep(x) are the p-th Euler functions, T. Kim [7] proved reciprocity law:

kpTp(h, k) + hpTp(k, h)

= 2
k−1

∑
u=0

u−[ hu
k ]≡1 mod 2

(
kh
(

E +
u
k

)
+ k

(
E + h−

[
hu
k

]))p
+ (hE + kE)p + (p + 2)Ep,

where (h, k) = 1, [x] is the largest integer ≤ x, En are the n-th Euler numbers. Later T. Kim [8] defined
p-adic Dedekind-type DC sums as follows:

Sp,q(s : h, k : qk) =
k−1

∑
M=1

(
1− qM

1− q

)
(−1)M−1Tq(s, hM, k : qk),

where (h, k) = (p, k) = 1, s ∈ Zp, and Tq(m, a, N : qN) is a continuous p-adic extension of

( 1−qN

1−q )mEm,qN ( a
N ), then he got a continuous function Sp,q(m : h, k : qk) on Zp, which satisfies

Sp,q(m : h, k : qk) =

(
1− qk

1− q

)m+1

Sm,q(h, k : qk)−
(

1− qk

1− q

)m+1(
1− qkp

1− qk

)m

Sm,q((p−1h)k, k : qpk),
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where

Sm,q(h, k : ql) =
k−1

∑
M=1

(−1)M−1
(

1− qM

1− qk

) ∫
Zp

q−lx

(
1− ql(x+{ hM

k })

1− ql

)m

dµql (x).

The other sums analogous to Dedekind sums are defined as

S1(h, k) =
k−1

∑
j=1

(−1)j+1+[
hj
k ],

where h and k are integers with k > 0. The sums S1(h, k) are sometimes called Hardy sums.
Some authors studied the properties of S1(h, k) and related sums, and obtained some interesting
results, see [9–12]. A relation between certain Hardy sums S1(h, k) and classical Dedekind sums S(h, k)
can be obtained in [12] that if (h, k) = 1, then

S1(h, k) = −8S(h + k, 2k) + 4S(h, k).

Other scholars showed their interests to the hybrid mean value involving Hardy sums and other
famous sums, see [13–15]. For example, W. P. Zhang [15] studied the hybrid mean value involving
certain Hardy sums S1(h, k) and Kloosterman sums

K(r, q) =
q

∑′

a=1
e
(

ra + a
q

)
,

where
q

∑′

a=1
denotes the summation over all a with (a, q) = 1, e(y) = e2πiy, and obtained some exact

computational formulas for
p−1

∑
m=1

p−1

∑
s=1

K(m, p)K(s, p)S1(2ms, p),

p−1

∑
m=1

p−1

∑
s=1
|K(m, p)|2|K(s, p)|2S1(2ms, p).

Actually the transforming formula (1) and

S1(2h, p) = −20S(2h, p) + 8S(4h, p) + 8S(h, p)

are used, where p is an odd prime and 0 < h < p. Therefore,

S1(2ms, p) = − 20p
π2(p− 1) ∑

χ mod p
χ(−1)=−1

χ(2ms) |L(1, χ)|2

+
8p

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(4ms) |L(1, χ)|2 (2)

+
8p

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(ms) |L(1, χ)|2 .
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However, as far as we know, it seems that nobody has yet studied the hybrid mean value involving
certain Hardy sums S1(h, k) and general Kloosterman sums K(r, l, λ; p), which are defined as follows:

K(r, l, λ; q) =
q

∑′

a=1
λ(a)e

(
ra + la

q

)
,

where λ is a Dirichlet character modulo q. If λ = λ0 is the principal character modulo q and l = 1,
then K(r, 1, λ0; q) = K(r, q).

Inspired by [15], we will study the hybrid mean value

p−1

∑
m=1

p−1

∑
s=1

K(m, n, λ; p)K(s, t, λ; p)S1(2ms, p),

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p).

Since they are more comprehensive than those in [15], we turn to some novel methods and finally
obtain several explicit formulas. Our results not only cover those of [15], but also contain something
quite new.

Theorem 1. Let p be an odd prime. Then for any character λ mod p and any integers n, t with (n, p) =

(t, p) = 1, if p ≡ 1 mod 4, we have the identity

p−1

∑
m=1

p−1

∑
s=1

K(m, n, λ; p)K(s, t, λ; p)S1(2ms, p) = 0.

If p ≡ 3 mod 4, we have

p−1

∑
m=1

p−1

∑
s=1

K(m, n, λ; p)K(s, t, λ; p)S1(2ms, p) =

{
2p, if λχ = χ0;
2p2, if λχ 6= χ0,

where χ is any odd character modulo p and χ0 is the principal character modulo p.

Note: The emergences of χ in Theorem 1 are due to the application of (2) in the proof.

Theorem 2. Let p be an odd prime. Then for any character λ mod p and any integers n, t with (n, p) =

(t, p) = 1, if p ≡ 1 mod 4, we have the identity

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2 |K(s, t, λ; p)|2S1(2ms, p) = 0.

If p ≡ 3 mod 8, we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p)

=



2p3 − 36p2h2
p, if λχ 6= χ0, λχ 6= χ0;

2p2 − 36ph2
p, if λχ 6= χ0, λχ = χ0;

2p2[p2 − p− 54h2
p + 1 + 2(p− 1− 18h2

p)Re τ(χ2)], if λχ = χ0, λχ = χ0;
2p2[2p2 − 2p− 18ph2

p + 1− 2(p− 1− 18h2
p)Re τ(χ2)τ(λχ)

+36h2
pRe τ(λχ)], if λχ = χ0, λχ 6= χ0.
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If p ≡ 7 mod 8, we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p)

=



2p3 + 4p2h2
p, if λχ 6= χ0, λχ 6= χ0;

2p2 + 4ph2
p, if λχ 6= χ0, λχ = χ0;

2p2[p2 − p + 6h2
p + 1 + 2(p− 1 + 2h2

p)Re τ(χ2)], if λχ = χ0, λχ = χ0;
2p2[2p2 − 2p + 2ph2

p + 1− 2(p− 1 + 2h2
p)Re τ(χ2)τ(λχ)

+4h2
pRe τ(λχ)], if λχ = χ0, λχ 6= χ0,

where hp denotes the class number of the quadratic field Q(
√−p), χ is any odd character modulo p, and τ(χ) =

p−1

∑
a=1

χ(a)e
(

a
p

)
denotes the classical Gauss sums.

Note: We know that |τ(χ)| = √p if χ is a primitive character modulo p. For the case of λχ = χ0,
λχ = χ0, taking

√
p as the upper bound estimate of Re τ(χ2), we can get

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p) =

{
2p4 + O(p

7
2 ), if p ≡ 3 mod 8;

2p4 + O(p
7
2 ), if p ≡ 7 mod 8.

Let n = t = 1, λ = λ0 in Theorems, we may immediately obtain Theorems 1 and 2 of [15] as
the following:

Corollary 1. Let p be an odd prime, then we have

p−1

∑
m=1

p−1

∑
s=1

K(m, p)K(s, p)S1(2ms, p) =

{
0, if p ≡ 1 mod 4;
2p2, if p ≡ 3 mod 4.

Corollary 2. Let p be an odd prime, then we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, p)|2|K(s, p)|2S1(2ms, p) =


0, if p ≡ 1 mod 4;
2p3 − 36p2h2

p, if p ≡ 3 mod 8;
2p3 + 4p2h2

p, if p ≡ 7 mod 8.

It should be pointed out that we only consider the prime modulus case. The question of whether
there exist some exact computational formulas for the general modulus q remains open.

2. Some Lemmas

In this section, we will give several simple lemmas, which are necessary in the proof
of our theorems. Hereinafter, we shall use some knowledge of elementary number theory,
the orthogonality relation of character sum and the properties of Gauss sums, which all can be
found in [16], here we only list a few. For example,

p−1

∑
a=1

χ(a)e
(

ua
p

)
= τ(χ)χ(u),

if (u, p) = 1 or χ is a primitive character modulo p. If χ is a primitive character modulo p,
then |τ(χ)| = √p.

Now we have the following lemmas:
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Lemma 1. Let p be an odd prime, n be any integer with (n, p) = 1. Then for any non-principal character χ

mod p and any character λ mod p, we have

∣∣∣∣∣ p−1

∑
m=1

χ(m)|K(m, n, λ; p)|2
∣∣∣∣∣ =


p|τ(χ2)|, if λχ 6= χ0, λχ 6= χ0;
p

1
2 |τ(χ2)|, if λχ 6= χ0, λχ = χ0;

p|τ(χ2) + (p− 1)|, if λχ = χ0, λχ = χ0;
p| − τ(χ2)τ(λχ) + (p− 1))|, if λχ = χ0, λχ 6= χ0.

Proof. From the properties of Gauss sums and the reduced residue system modulo p, we have

p−1

∑
m=1

χ(m)|K(m, n, λ; p)|2

=
p−1

∑
m=1

χ(m)

∣∣∣∣∣p−1

∑
a=1

λ(a)e
(

ma + na
p

)∣∣∣∣∣
2

=
p−1

∑
a=1

p−1

∑
b=1

λ(ab)
p−1

∑
m=1

χ(m)e

(
m(a− b) + n(a− b)

p

)

=
p−1

∑
a=1

λ(a)
p−1

∑
b=1

p−1

∑
m=1

χ(m)e

(
mb(a− 1) + nb(a− 1)

p

)

=
p−1

∑
a=1

λ(a)
p−1

∑
b=1

e

(
nb(a− 1)

p

)
p−1

∑
m=1

χ(m)e
(

mb(a− 1)
p

)

= τ(χ)
p−1

∑
a=1

λ(a)χ(a− 1)
p−1

∑
b=1

χ(b)e
(

nb(a− 1)
p

)

= τ2(χ)χ(n)
p−1

∑
a=1

λ(a)χ(a− 1)χ(a− 1)

= τ2(χ)χ(n)
p−1

∑
a=1

λ(a)χ(2− a− a)

= τ2(χ)χ(n)
p−1

∑
a=1

λ(a)χ(a)χ(2a− a2 − 1)

= τ2(χ)χ(−n)
p−1

∑
a=1

λχ(a)χ((a− 1)2)

= τ2(χ)χ(−n)
p−2

∑
a=1

λχ(a + 1)χ2(a). (3)

Using the properties of Gauss sums and the periodicity of Dirichlet character, we have

p−2

∑
a=1

λχ(a + 1)χ2(a)

=
1

τ(λχ)

p−1

∑
b=1

λχ(b)
p−2

∑
a=1

χ2(a)e
(

b(a + 1)
p

)

=
1

τ(λχ)

p−1

∑
b=1

λχ(b)e
(

b
p

) p−2

∑
a=1

χ2(a)e
(

ab
p

)

=
1

τ(λχ)

p−1

∑
b=1

λχ(b)e
(

b
p

)(p−1

∑
a=1

χ2(a)e
(

ab
p

)
− χ2(p− 1)e

(
pb− b

p

))
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=
1

τ(λχ)

p−1

∑
b=1

λχ(b)e
(

b
p

)(p−1

∑
a=1

χ2(a)e
(

ab
p

)
− e

(
−b
p

))

=
τ(χ2)

τ(λχ)

p−1

∑
b=1

λχ(b)e
(

b
p

)
− 1

τ(λχ)

p−1

∑
b=1

λχ(b)

=
τ(λχ)τ(χ2)

τ(λχ)
− 1

τ(λχ)

p−1

∑
b=1

λχ(b).

Applying the orthogonality relation for character modulo p, it is clear that

p−1

∑
b=1

λχ(b) =

{
0, if λχ 6= χ0;
p− 1, if λχ = χ0.

And note that τ(χ0) = −1, so we can get

p−2

∑
a=1

λχ(a + 1)χ2(a)

=


τ(λχ)τ(χ2)

τ(λχ)
, if λχ 6= χ0;

−τ(λχ)τ(χ2) + (p− 1), if λχ = χ0.

=



τ(χ2)τ(λχ)

τ(λχ)
, if λχ 6= χ0, λχ 6= χ0;

−τ(χ2)

τ(λχ)
, if λχ 6= χ0, λχ = χ0;

τ(χ2) + (p− 1), if λχ = χ0, λχ = χ0;
−τ(λχ)τ(χ2) + (p− 1), if λχ = χ0, λχ 6= χ0.

(4)

Note that |χ(−n)| = 1 and |τ(λχ)| = |τ(λχ)| = |τ(χ)| = √p if λχ and λχ are all non-principal
characters modulo p. Thus, from (3) and (4) we may immediately deduce that∣∣∣∣∣ p−1

∑
m=1

χ(m)|K(m, n, λ; p)|2
∣∣∣∣∣

=


p
∣∣τ(χ2)

∣∣ , if λχ 6= χ0, λχ 6= χ0;
p

1
2
∣∣τ(χ2)

∣∣ , if λχ 6= χ0, λχ = χ0;
p
∣∣(τ(χ2) + (p− 1))

∣∣ , if λχ = χ0, λχ = χ0;
p
∣∣(−τ(χ2)τ(λχ) + (p− 1))

∣∣ , if λχ = χ0, λχ 6= χ0.

This proves Lemma 1.

Lemma 2. Let p be an odd prime, n be any integer with (n, p) = 1. Then for any non-principal character χ

mod p and any character λ mod p, we have∣∣∣∣∣ p−1

∑
m=1

χ(m)K(m, n, λ; p)

∣∣∣∣∣ =
{

p
1
2 , if λχ = χ0;

p, if λχ 6= χ0.
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Proof. From the definition of Kloosterman sums and the properties of Gauss sums we have∣∣∣∣∣ p−1

∑
m=1

χ(m)K(m, n, λ; p)

∣∣∣∣∣
=

∣∣∣∣∣ p−1

∑
m=1

χ(m)
p−1

∑
a=1

λ(a)e
(

ma + na
p

)∣∣∣∣∣
=

∣∣∣∣∣p−1

∑
a=1

λ(a)e
(

na
p

) p−1

∑
m=1

χ(m)e
(

ma
p

)∣∣∣∣∣
=

∣∣∣∣∣τ(χ) p−1

∑
a=1

λ(a)χ(a)e
(

na
p

)∣∣∣∣∣
=

∣∣∣∣∣τ(χ) p−1

∑
a=1

λχ(a)e
(

na
p

)∣∣∣∣∣
=
∣∣τ(χ)τ(λχ)λχ(n)

∣∣ .

Note that |τ(χ)| = √p, |λχ(n)| = 1, τ(χ0) = −1, then we can immediately deduce that∣∣∣∣∣ p−1

∑
m=1

χ(m)K(m, n, λ; p)

∣∣∣∣∣ =
{

p
1
2 , if λχ = χ0;

p, if λχ 6= χ0.

This proves Lemma 2.

Lemma 3. Let p be an odd prime, then we have

∑
χ mod p

χ(−1)=−1

|L(1, χ)|2 =
π2

12
(p− 1)2(p− 2)

p2 ,

∑
χ mod p

χ(−1)=−1

χ(2)|L(1, χ)|2 =
π2

24
(p− 1)2(p− 5)

p2 ,

∑
χ mod p

χ(−1)=−1

χ(4)|L(1, χ)|2 =


π2

48
(p− 1)2(p− 17)

p2 , p ≡ 1 mod 4;

π2

48
(p− 1)(p2 − 6p + 17)

p2 , p ≡ 3 mod 4.

Proof. See Lemma 5 of [15].

3. Proof of the Theorems

In this section, we shall use the above lemmas to complete the proof of Theorems. First we prove
Theorem 1 From the identity (2), we have
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p−1

∑
m=1

p−1

∑
s=1

K(m, n, λ; p)K(s, t, λ; p)S1(2ms, p)

= − 20p
π2(p− 1) ∑

χ mod p
χ(−1)=−1

χ(2)

∣∣∣∣∣ p−1

∑
m=1

χ(m)K(m, n, λ; p)

∣∣∣∣∣
2

|L(1, χ)|2

+
8p

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(4)

∣∣∣∣∣ p−1

∑
m=1

χ(m)K(m, n, λ; p)

∣∣∣∣∣
2

|L(1, χ)|2

+
8p

π2(p− 1) ∑
χ mod p

χ(−1)=−1

∣∣∣∣∣ p−1

∑
m=1

χ(m)K(m, n, λ; p)

∣∣∣∣∣
2

|L(1, χ)|2 .

Firstly, we consider the case of p ≡ 1 mod 4. If λχ = χ0, from Lemmas 2 and 3, we have

p−1

∑
m=1

p−1

∑
s=1

K(m, n, λ; p)K(s, t, λ; p)S1(2ms, p)

= − 20p2

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(2)|L(1, χ)|2 + 8p2

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(4)|L(1, χ)|2

+
8p2

π2(p− 1) ∑
χ mod p

χ(−1)=−1

|L(1, χ)|2

= −5
6
(p− 1)(p− 5) +

2
3
(p− 1)(p− 2) +

1
6
(p− 1)(p− 17)

= 0.

If λχ 6= χ0, then from Lemmas 2 and 3, we have

p−1

∑
m=1

p−1

∑
s=1

K(m, n, λ; p)K(s, t, λ; p)S1(2ms, p)

= − 20p3

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(2)|L(1, χ)|2 + 8p3

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(4)|L(1, χ)|2

+
8p3

π2(p− 1) ∑
χ mod p

χ(−1)=−1

|L(1, χ)|2

= −5
6

p(p− 1)(p− 5) +
2
3

p(p− 1)(p− 2) +
1
6

p(p− 1)(p− 17)

= 0.

For the case of p ≡ 3 mod 4, similarly we have

p−1

∑
m=1

p−1

∑
s=1

K(m, n, λ; p)K(s, t, λ; p)S1(2ms, p) =

{
2p, if λχ = χ0;
2p2, if λχ 6= χ0.

This completes the proof of Theorem 1.
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Now we prove Theorem 2. From the identity (2), it is clear that

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p)

= − 20p
π2(p− 1) ∑

χ mod p
χ(−1)=−1

χ(2)

∣∣∣∣∣ p−1

∑
m=1

χ(m)|K(m, n, λ; p)|2
∣∣∣∣∣
2

|L(1, χ)|2

+
8p

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(4)

∣∣∣∣∣ p−1

∑
m=1

χ(m)|K(m, n, λ; p)|2
∣∣∣∣∣
2

|L(1, χ)|2

+
8p

π2(p− 1) ∑
χ mod p

χ(−1)=−1

∣∣∣∣∣ p−1

∑
m=1

χ(m)|K(m, n, λ; p)|2
∣∣∣∣∣
2

|L(1, χ)|2.

Firstly, we consider the case of p ≡ 1 mod 4. Note that |τ(χ2)| = √p. If λχ 6= χ0, λχ 6= χ0,
from Lemmas 1 and 3, we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p)

= − 20p4

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(2)|L(1, χ)|2 + 8p4

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(4)|L(1, χ)|2

+
8p4

π2(p− 1) ∑
χ mod p

χ(−1)=−1

|L(1, χ)|2

= −5
6

p2(p− 1)(p− 5) +
1
6

p2(p− 1)(p− 17) +
2
3

p2(p− 1)(p− 2)

= 0.

If λχ 6= χ0, λχ = χ0, from Lemmas 1 and 3, we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p)

= − 20p3

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(2)|L(1, χ)|2 + 8p3

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(4)|L(1, χ)|2

+
8p3

π2(p− 1) ∑
χ mod p

χ(−1)=−1

|L(1, χ)|2

= −5
6

p(p− 1)(p− 5) +
1
6

p(p− 1)(p− 17) +
2
3

p(p− 1)(p− 2)

= 0.

Similarly, we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p) =

{
0, if λχ = χ0, λχ = χ0;
0, if λχ = χ0, λχ 6= χ0.
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Now, we consider the case of p ≡ 3 mod 4. In this case, we note that(
−1
p

)
= χ2(−1) = −1, L(1, χ2) =

πhp√
p

, τ(χ2
2) = −1,

(
4
p

)
=

(
22

p

)
= 1.

So, if λχ 6= χ0, λχ 6= χ0, from Lemmas 1 and 3, we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p)

= − 20p4

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(2)|L(1, χ)|2 + 8p4

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(4)|L(1, χ)|2

+
8p4

π2(p− 1) ∑
χ mod p

χ(−1)=−1

|L(1, χ)|2 + 20p4

π2(p− 1)
χ2(2)|L(1, χ2)|2

− 20p3

π2(p− 1)
χ2(2)|L(1, χ2)|2 −

8p4

π2(p− 1)
χ2(4)|L(1, χ2)|2 +

8p3

π2(p− 1)
χ2(4)|L(1, χ2)|2

− 8p4

π2(p− 1)
|L(1, χ2)|2 +

8p3

π2(p− 1)
|L(1, χ2)|2

= −5
6

p2(p− 1)(p− 5) +
1
6

p2(p2 − 6p + 17) +
2
3

p2(p− 1)(p− 2)

+
20p3

π2 χ2(2)|L(1, χ2)|2 −
16p3

π2 |L(1, χ2)|2

= 2p3 − 16p2h2
p + 20p2h2

p

(
2
p

)
.

If λχ 6= χ0, λχ = χ0, from Lemmas 1 and 3, we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p)

= − 20p3

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(2)|L(1, χ)|2 + 8p3

π2(p− 1) ∑
χ mod p

χ(−1)=−1

χ(4)|L(1, χ)|2

+
8p3

π2(p− 1) ∑
χ mod p

χ(−1)=−1

|L(1, χ)|2 + 20p3

π2(p− 1)
χ2(2)|L(1, χ2)|2

− 20p2

π2(p− 1)
χ2(2)|L(1, χ2)|2 −

8p3

π2(p− 1)
χ2(4)|L(1, χ2)|2 +

8p2

π2(p− 1)
χ2(4)|L(1, χ2)|2

− 8p3

π2(p− 1)
|L(1, χ2)|2 +

8p2

π2(p− 1)
|L(1, χ2)|2

= −5
6

p(p− 1)(p− 5) +
1
6

p(p2 − 6p + 17) +
2
3

p(p− 1)(p− 2)

+
20p2

π2 χ2(2)|L(1, χ2)|2 −
16p2

π2 |L(1, χ2)|2

= 2p2 − 16ph2
p + 20ph2

p

(
2
p

)
.
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Similarly, if λχ = χ0, λχ = χ0, we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p)

= 2p2[p + (p− 1)2 + 2(p− 1)Reτ(χ2)]

+20p2h2
p(3 + 2Reτ(χ2))

(
2
p

)
− 16p2h2

p(3 + 2Reτ(χ2)).

If λχ = χ0, λχ 6= χ0, we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p)

= 2p2[p2 + (p− 1)2 − 2(p− 1)Reτ(χ2)τ(λχ)]

+20p2h2
p(p− 2(Reτ(χ2)τ(λχ) + Reτ(λχ)))

(
2
p

)
−16p2h2

p(p− 2(Reτ(χ2)τ(λχ) + Reτ(λχ))).

Then if p ≡ 3 mod 8, note that
(

2
p

)
= (−1)

p2−1
8 = −1, we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p)

=



2p3 − 36p2h2
p, if λχ 6= χ0, λχ 6= χ0;

2p2 − 36ph2
p, if λχ 6= χ0, λχ = χ0;

2p2[p2 − p− 54h2
p + 1 + 2(p− 1− 18h2

p)Re τ(χ2)], if λχ = χ0, λχ = χ0;
2p2[2p2 − 2p− 18ph2

p + 1− 2(p− 1− 18h2
p)Re τ(χ2)τ(λχ)

+36h2
pRe τ(λχ)], if λχ = χ0, λχ 6= χ0.

If p ≡ 7 mod 8, note that
(

2
p

)
= (−1)

p2−1
8 = 1, we have

p−1

∑
m=1

p−1

∑
s=1
|K(m, n, λ; p)|2|K(s, t, λ; p)|2S1(2ms, p)

=



2p3 + 4p2h2
p, if λχ 6= χ0, λχ 6= χ0;

2p2 + 4ph2
p, if λχ 6= χ0, λχ = χ0;

2p2[p2 − p + 6h2
p + 1 + 2(p− 1 + 2h2

p)Re τ(χ2)], if λχ = χ0, λχ = χ0;
2p2[2p2 − 2p + 2ph2

p + 1− 2(p− 1 + 2h2
p)Re τ(χ2)τ(λχ)

+4h2
pRe τ(λχ)], if λχ = χ0, λχ 6= χ0.

This completes the proof of Theorem 2.

4. Conclusions

In this paper, we obtain some exact computational formulas for the hybrid mean value involving
general Kloosterman sums and certain Hardy sums. We also prove some identities in the second part
by using the properties of Gauss sums, the orthogonality relation of character sum and the mean value
of Dirichlet L-function, which are necessary for the proof of our Theorems. We only consider the prime
modulus case. The question of whether there exist some exact computational formulas for the general
modulus q remains open.



Mathematics 2020, 8, 95 13 of 13

Author Contributions: H.Z. drafted the manuscript. T.Z. participated in its design and coordination and help to
draft the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (No. 11871317, 11926325),
and the Fundamental Research Funds for the Central Universities (No. GK201802011).

Acknowledgments: The authors would like to thank the referees for their very helpful and detailed comments,
which have significantly improved the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bettin, S.; Conrey, J.B. A reciprocity formula for a cotangent sum. Int. Math. Res. Not. IMRN 2013, 24,
5709–5726. [CrossRef]

2. Bettin, S.; Conrey, J.B. Period functions and cotangent sums. Algebra Number Theory 2013, 7, 215–242.
[CrossRef]

3. Bettin, S.; Drappeau, S. Partial sums of the cotangent function. arXiv 2019, arXiv:1905.01954.
4. Maier, H.; Rassias, M.T. Distribution of a cotangent sum related to the Nyman-Beurling criterion for the

Riemann Hypothesis. Appl. Math. Comput. 2019, 363, 124589. [CrossRef]
5. Carlitz, L. The reciprocity theorem of Dedekind sums. Pac. J. Math. 1953, 3, 513–522. [CrossRef]
6. Zhang, W.P. On the mean values of Dedekind sums. J. Théor. Nombres Bordx. 1996, 8, 429–442. [CrossRef]
7. Kim, T. Note on Dedekind type DC sums. Adv. Stud. Contemp. Math. 2009, 18, 249–260.
8. Kim, T. Note on q-Dedekind-type sums related to q-Euler polynomial. Glasg. Math. J. 2012, 54, 121–125.

[CrossRef]
9. Apostol, T.M. Modular Functions and Dirichlet Series in Number Theory; Springer: New York, NY, USA, 1976.
10. Cetin, E. A note on Hardy type sums and Dedekind sums. Filomat 2016, 30, 977–983. [CrossRef]
11. Conrey, J.B.; Fransen, E.; Klein, R.; Scott, C. Mean values of Dedekind sums. J. Number Theory 1996, 56,

214–226. [CrossRef]
12. Sitaramachandrarao, R. Dedekind and Hardy sums. Acta Arith. 1987, 48, 325–340. [CrossRef]
13. Peng, W.; Zhang, T.P. Some identities involving certain Hardy sum and Kloosterman sum. J. Number Theory

2016, 165, 355–362. [CrossRef]
14. Guo, X.Y.; Zhang, W.P. A hybrid mean value related to certain Hardy sums and Kloosterman sums.

Czech. Math. J. 2011, 61, 759–769. [CrossRef]
15. Zhang, H.; Zhang, W.P. On the identity involving certain Hardy sums and Kloosterman sums. J. Inequal. Appl.

2014, 52, 1–9. [CrossRef]
16. Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/imrn/rns211
http://dx.doi.org/10.2140/ant.2013.7.215
http://dx.doi.org/10.1016/j.amc.2019.124589
http://dx.doi.org/10.2140/pjm.1953.3.513
http://dx.doi.org/10.5802/jtnb.179
http://dx.doi.org/10.1017/S0017089511000450
http://dx.doi.org/10.2298/FIL1604977C
http://dx.doi.org/10.1006/jnth.1996.0014
http://dx.doi.org/10.4064/aa-48-4-325-340
http://dx.doi.org/10.1016/j.jnt.2016.01.028
http://dx.doi.org/10.1007/s10587-011-0024-z
http://dx.doi.org/10.1186/1029-242X-2014-52
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Some Lemmas
	Proof of the Theorems
	Conclusions
	References

