Adaptive Pinning Synchronization of Fractional Complex Networks with Impulses and Reaction–Diffusion Terms
Abstract
1. Introduction
2. Preliminaries and System Description
2.1. Fractional Integral and Derivative
2.2. Theories of Graphs and Matrices
- (1)
- , where θ is a constant;
- (2)
- ;
- (3)
- ;
- (4)
- .
2.3. System Description
3. Main Results
3.1. Adaptive and Pinning Control
3.2. Pinning Scheme of Complex Networks
4. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bernardo, A.H.; Lada, A.A. Internet: Growth dynamics of the World-Wide Web. Nature 1999, 401, 131. [Google Scholar]
- Ding, W.Y.; Wei, X.C.; Yi, D. A closed-form solution for the impedance calculation of grid power distribution network. IEEE Trans. Electromagn. Compat. 2017, 59, 1449–1456. [Google Scholar] [CrossRef]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef]
- Selvaraj, P.; Sakthivel, R.; Kwon, O.M. Synchronization of fractional-order complex dynamical network with random coupling delay, actuator faults and saturation. Nonlinear Dyn. 2018, 94, 3101–3116. [Google Scholar] [CrossRef]
- Yih-Fang, H.; Stefan, W.; Jing, H.; Neelabh, K.; Vijay, G. State estimation in electric power grids: Meeting new challenges presented by the requirements of the future grid. IEEE Signal Process. Mag. 2012, 29, 33–43. [Google Scholar]
- Luo, S.X.; Deng, F.Q.; Chen, W.H. Pointwise-in-space stabilization and synchronization of a class of reaction-diffusion systems with mixed time delays via aperiodically impulsive control. Nonlinear Dyn. 2017, 88, 2899–2914. [Google Scholar] [CrossRef]
- Mo, L.P.; Lin, P. Distributed consensus of second-order multiagent systems with nonconvex input constraints. Int. J. Robust Nonlinear Control. 2018, 28, 3657–3664. [Google Scholar] [CrossRef]
- Mo, L.P.; Guo, S.Y.; Yu, Y.G. Mean-square consensus of heterogeneous multi-agent systems with nonconvex constraints, Markovian switching topologies and delays. Neurocomputing 2018, 291, 167–174. [Google Scholar] [CrossRef]
- Wang, K.H.; Fu, X.C.; Li, K.Z. Cluster synchronization in community networks with nonidentical nodes. Chaos 2009, 19, 023106. [Google Scholar] [CrossRef]
- Liu, S.T.; Zhang, F.F. Complex function projective synchronization of complex chaotic system and its applications in secure communication. Nonlinear Dyn. 2014, 76, 1087–1097. [Google Scholar] [CrossRef]
- Li, C.G.; Chen, G.R. Synchronization in general complex dynamical networks with coupling delays. Physica A 2004, 343, 263–278. [Google Scholar] [CrossRef]
- Wu, X.J.; Lu, H.T. Projective lag synchronization of the general complex dynamical networks with distinct nodes. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4417–4429. [Google Scholar] [CrossRef]
- Yu, C.B.; Qin, J.H.; Gao, H.J. Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control. Automatica 2014, 50, 2341–2349. [Google Scholar] [CrossRef]
- Yi, J.W.; Wang, Y.W.; Xiao, J.W.; Huang, Y.H. Exponential synchronization of complex dynamical networks with Markovian jump parameters and stochastic delays and its application to multi-agent systems. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1175–1192. [Google Scholar] [CrossRef]
- Selvaraj, P.; Kwon, O.M.; Sakthivel, R. Disturbance and uncertainty rejection performance for fractional-order complex dynamical networks. Neural Netw. 2019, 112, 73–84. [Google Scholar] [CrossRef]
- Chen, J.; Lu, J.A.; Wu, X.Q.; Zheng, W.X. Generalized synchronization of complex dynamical networks via impulsive control. Chaos 2009, 19, 043119. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, J.A.; Lu, J.H.; Tse, C.K. Adaptive feedback synchronization of a general complex dynamical network with delayed nodes. IEEE Trans. Circuits Syst. II Express Briefs 2008, 55, 183–187. [Google Scholar] [CrossRef]
- Chen, H.W.; Liang, J.L.; Wang, Z.D. Pinning controllability of autonomous Boolean control networks. Sci. China-Inf. Sci. 2016, 59, 070107. [Google Scholar] [CrossRef]
- Liu, X.W.; Chen, T.P. Synchronization of complex networks via aperiodically intermittent pinning control. IEEE Trans. Autom. Control. 2015, 60, 3316–3321. [Google Scholar] [CrossRef]
- Wang, G.S.; Xiao, J.W.; Wang, Y.W.; Yi, J.W. Adaptive pinning cluster synchronization of fractional-order complex dynamical networks. Appl. Math. Comput. 2014, 231, 347–356. [Google Scholar] [CrossRef]
- Chai, Y.; Chen, L.P.; Wu, R.C.; Sun, J. Adaptive pinning synchronization in fractional-order complex dynamical networks. Physica A 2012, 391, 5746–5758. [Google Scholar] [CrossRef]
- Wang, J.L.; Wu, H.N.; Guo, L. Novel adaptive strategies for synchronization of linearly coupled neural networks with reaction-diffusion terms. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 429–440. [Google Scholar] [CrossRef]
- Wang, J.L.; Wu, H.N. Passivity of delayed reaction-diffusion networks with application to a food Web model. Appl. Math. Comput. 2013, 219, 11311–11326. [Google Scholar] [CrossRef]
- Wang, J.L.; Wu, H.N.; Huang, T.W.; Ren, S.Y.; Wu, J.G. Pinning controlfor synchronization of coupled reaction-diffusion neural networks with directed topologies. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 1109–1120. [Google Scholar] [CrossRef]
- Song, Q.K.; Yan, H.; Zhao, Z.J.; Liu, Y.R. Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects. Neural Netw. 2016, 79, 108–116. [Google Scholar] [CrossRef]
- Zhu, Q.X.; Cao, J.D. Stability analysis of Markovian jump stochastic BAM neural networks with impulsive control and mixed time delays. Nature 2012, 13, 2259–2270. [Google Scholar]
- Keith, B.O.; Jerome, S. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.A.T.; Bates, J.H.T. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Magin, R.; Ortigueira, M.D.; Podlubny, I.; Trujillo, J. On the fractional signals and systems. Signal Process. 2011, 91, 350–371. [Google Scholar] [CrossRef]
- Park, M.; Lee, S.H.; Kwon, O.M.; Seuret, A. Closeness-Centrality-Based Synchronization Criteria for Complex Dynamical Networks With Interval Time-Varying Coupling Delays. IEEE Trans. Cybern. 2018, 48, 2192–2202. [Google Scholar] [CrossRef]
- Li, X.D.; Zhang, X.L.; Song, S.J. Effect of delayed impulses on input-to-state stability of nonlinear systems. Automatica 2017, 76, 378–382. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Y.G.; Wen, G.G.; Zhang, S.; Yu, J.Z. Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 2015, 154, 15–23. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Stamova, I. Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn. 2014, 77, 1251–1260. [Google Scholar] [CrossRef]
- Lu, J.G. Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Chaos 2008, 35, 116–125. [Google Scholar] [CrossRef]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory. In Semidefinite Programming and Linear Matrix Inequalities; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1994. [Google Scholar]
- Liu, S.; Li, X.Y.; Zhou, X.F.; Jiang, W. Synchronization analysis of singular dynamical networks with unbounded time-delays. Adv. Differ. Equations 2015, 2015, 193. [Google Scholar] [CrossRef][Green Version]
- Chen, T.P.; Liu, X.W.; Lu, W.L. Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 1317–1326. [Google Scholar] [CrossRef]
- Roger, A.H.; Charles, R.J. Topics in Matrix Analysis; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Roger, A.H.; Charles, R.J. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Zhang, W.B.; Wang, Z.D.; Liu, Y.R.; Ding, D.R.; Alsaadi, F.E. Event-based state estimation for a class of complex networks with time-varying delays: A comparison principle approach. Phys. Lett. A 2017, 381, 10–18. [Google Scholar] [CrossRef]
- Feng, J.W.; Yang, P.; Zhao, Y. Cluster synchronization for nonlinearly time-varying delayed coupling complex networks with stochastic perturbation via periodically intermittent pinning control. Appl. Math. Comput. 2016, 291, 52–68. [Google Scholar] [CrossRef]
- Lu, R.Q.; Yu, W.W.; Lu, J.H.; Xue, A.K. Synchronization on Complex Networks of Networks. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 2110–2118. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Marquez, H.J. Nonlinear Observer Design for One-Sided Lipschitz Systems. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 5284–5289. [Google Scholar]
- Chen, Y.; Yu, W.W.; Tan, S.L.; Zhu, H.H. Synchronizing nonlinear complex networks via switching disconnected topology. Automatica 2016, 70, 189–194. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.Q.; Podlubny, I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 2009, 45, 1965–1969. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.Q.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar] [CrossRef]
- Rivero, M.; Rogosin, S.V.; Tenreiro Machado, J.A.; Trujillo, J.J. Stability of Fractional Order Systems. Math. Probl. Eng. 2013, 2013, 356215. [Google Scholar] [CrossRef]
- Sabatier, J.; Farges, C.; Trigeassou, J.C. A stability test for non-commensurate fractional order systems. Syst. Control. Lett. 2013, 62, 739–746. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hai, X.; Ren, G.; Yu, Y.; Xu, C. Adaptive Pinning Synchronization of Fractional Complex Networks with Impulses and Reaction–Diffusion Terms. Mathematics 2019, 7, 405. https://doi.org/10.3390/math7050405
Hai X, Ren G, Yu Y, Xu C. Adaptive Pinning Synchronization of Fractional Complex Networks with Impulses and Reaction–Diffusion Terms. Mathematics. 2019; 7(5):405. https://doi.org/10.3390/math7050405
Chicago/Turabian StyleHai, Xudong, Guojian Ren, Yongguang Yu, and Conghui Xu. 2019. "Adaptive Pinning Synchronization of Fractional Complex Networks with Impulses and Reaction–Diffusion Terms" Mathematics 7, no. 5: 405. https://doi.org/10.3390/math7050405
APA StyleHai, X., Ren, G., Yu, Y., & Xu, C. (2019). Adaptive Pinning Synchronization of Fractional Complex Networks with Impulses and Reaction–Diffusion Terms. Mathematics, 7(5), 405. https://doi.org/10.3390/math7050405