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Abstract: In this paper, a class of fractional complex networks with impulses and reaction–diffusion
terms is introduced and studied. Meanwhile, a class of more general network structures is considered,
which consists of an instant communication topology and a delayed communication topology.
Based on the Lyapunov method and linear matrix inequality techniques, some sufficient criteria are
obtained, ensuring adaptive pinning synchronization of the network under a designed adaptive
control strategy. In addition, a pinning scheme is proposed, which shows that the nodes with delayed
communication are good candidates for applying controllers. Finally, a numerical example is given
to verify the validity of the main results.

Keywords: fractional complex networks; adaptive control; pinning synchronization; time-varying
delays; impulses; reaction–diffusion terms

1. Introduction

Complex networks, which are composed of a large set of nodes connected by edges, are used to
describe many large-scale systems in nature and human societies, such as the Internet, power grid
networks, the World Wide Web and so on [1–3]. Therefore, it is very meaningful and important
to investigate the dynamical behaviors of complex networks. Up until now, there have been a
large number of excellent scientific research results on the dynamical analysis of complex networks,
including of synchronization [4], state estimation [5], impulsive control [6], and so on.

Synchronization, as one of the most important collective behaviors of complex dynamical
systems, widely exists in the world, ranging from natural systems to man-made networks [7,8].
In recent years, synchronization has received a great deal of attention due to its potential application
in various fields, including signal processing, secure communication, biological systems, and so
on [9–11]. Various types of synchronization problems have been studied, such as projective lag
synchronization [12], cluster synchronization [13], and exponential synchronization [14]. However, as
we know, it is impossible for most dynamical systems to achieve synchronization by themselves in
many real situations. Some control strategies must be designed to force the systems to be synchronized,
such as feedback control [15], impulsive control [16], and adaptive control [17]. It could be a waste
of money and resources op add controllers to all nodes in a large-scale network. In order to solve
this problem, a pinning control strategy, which involves only a small fraction of all the nodes being
controlled to force networks to become synchronized, has been proposed and extensively studied by
researchers [18,19]. To reduce the enormous difference in control strength between theoretical values
and practical needs, adaptive control, as a valid method, has been discussed in literature [20,21].

In practice, diffusion phenomena cannot be ignored. For example, electrons move in a nonuniform
electromagnetic field and, in the process of chemical reactions, different chemicals react with each
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other and spatially diffuse in the inter-medium until a balanced-state spatial concentration pattern
has been structured. Thus, it is reasonable to consider complex networks with reaction–diffusion
terms. In recent years, some papers concerning the control and synchronization of complex dynamical
systems with diffusion effects terms have been published [22–24]. In the real world, the state of
artificial and biological networks are often subject to instantaneous perturbations and experience
abrupt changes at certain instants, which may be caused by switching phenomena, frequency changes,
or other sudden noises. These instantaneous perturbations always exhibit impulsive effects. Impulsive
dynamical systems have naturally received a lot of attention, and some excellent results have been
published [25,26]. Therefore, it is necessary to investigate the influence of impulsive perturbations on
complex networks.

It should be noted that all of the mathematical models in this paper are fractional systems.
As a generalization of traditional calculus, fractional calculus [27] provides an excellent instrument
for the description of memory and the hereditary properties of various materials and processes.
With the development of scientific research, these advantageous properties of fractional integration
and differentiation have been noticed by more and more researchers, and fractional calculus, as a useful
tool, has been widely applied in many fields such as mathematical biology [28], signal processing [29],
and so on.

In addition, to be more practical, it is necessary to consider time delay. Due to the finite switching
speed of amplifiers and the finite signal propagation time, time delay naturally exists in all kinds of
dynamical systems and is unavoidable, which may lead to instability, chaos, or other performances
of dynamical systems [30,31]. Thus, it is valuable to investigate the phenomenon of time delay in
complex dynamical systems, and some outstanding results from research into time delay have been
published, such as [32].

Motivated by the above discussions, the main contributions of this paper are as follows. (1) A class
of fractional complex networks with impulses and reaction–diffusion terms is studied. Meanwhile,
a class of more general network structures is considered in which all nodes are divided into three
categories: nodes can only send information to others instantly; nodes can only be connected with
others with a time delay; and nodes can communicate both instantly and with a delay. (2) Some
sufficient conditions are derived to ensure the adaptive pinning synchronization of the network.
(3) A pinning scheme is designed that shows that some delay-coupled nodes should be pinned first.

The rest of this paper is arranged as follows: some preliminaries and the model description of
fractional networks with impulses and reaction–diffusion terms are provided in Section 2; in Section 3,
the main results of this paper are described; next, in Section 4, a numerical simulation is presented to
illustrate the effectiveness and correctness of the main results; finally, the conclusion of this paper is
given in Section 5.

Notations: Let R+ = [0,+∞), R = (−∞,+∞), Rn be the n-dimensional Euclidean space,
and Rn×m be the space of n × m real matrices. P ∈ Rn×n ≥ 0 (P ∈ Rn×n ≤ 0) means that matrix
P is symmetric and semi-positive (semi-negative) definite. P ∈ Rn×n > 0 (P ∈ Rn×n < 0) means
that matrix P is symmetric and positive (negative) definite. In denotes an n× n real identity matrix.
AT is the transpose of matrix A. B−1 means the inverse of matrix B. Let A2 = AT A where A ∈ Rn×n.
⊗ represents the Kronecker product of two matrices. λmin(·) and λmax(·) denote the minimum and
the maximum eigenvalue of the corresponding matrix, respectively. ‖ · ‖ denotes the Euclidean norm

of a vector, for example, ‖ β ‖=
√

∑n
i=1 β2

i where β = (β1, · · · , βn)T .

2. Preliminaries and System Description

In this section, some basic definitions of fractional calculus are introduced as the preliminaries
of this paper, and some necessary conclusions are presented for use in the next several sections.
Meanwhile, the mathematical model of a class of fractional complex networks with impulses and
reaction–diffusion terms is described and the definition of synchronization of complex networks
is given.
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2.1. Fractional Integral and Derivative

Definition 1 ([33]). Riemann–Liouville fractional derivative with order α for a function x : R+ → R is
defined as

R
t0

Dα
t x(t) =

1
Γ(m− α)

dm

dtm

∫ t

t0

(t− τ)m−α−1x(τ)dτ,

where 0 ≤ m − 1 ≤ α < m, m ∈ Z+, and Z+ denotes the collection of all positive integers. Γ(·) is the
gamma function.

Definition 2 ([33]). Riemann–Liouville fractional integral of order α for a function f : R+ → R is defined by

R
t0

Iα
t f (t) =

1
Γ (α)

∫ t

t0

(t− τ)α−1 f (τ)dτ,

where α > 0 and Γ(·) is the gamma function.

Lemma 1 ([33]). For any constants k1 and k2, the linearity of the Riemann–Liouville fractional derivative is
described by

R
t0

Dα
t (k1 f (t) + k2g(t)) = k1

R
t0

Dα
t f (t) + k2

R
t0

Dα
t g(t).

Lemma 2 ([33]). If p > q > 0, then the following equality

R
t0

Dp
t

R
t0

Iq
t f (t) = R

t0
Dp−q

t f (t)

holds for sufficiently good functions f (t). In particular, this relation holds if f (t) is integrable.

Lemma 3 ([34]). Let x(t) : Rn → Rn be a vector of differentiable function. Then, for any time instant t ≥ t0,
the following inequality holds

R
t0

Dα
t (xT(t)Px(t)) ≤ 2xT(t)(PR

t0
Dα

t x(t)),

where 0 < α < 1 and P ∈ Rn×n is a constant, square, symmetric, and positive definite matrix.

Lemma 4 ([35]). Let Ω be a cube |xk| < lk k = 1, 2, · · · , q, and let h(x) be a real-valued function belonging to
C1(Ω), which vanishes on the boundary ∂Ω of Ω, i.e., h(x)|∂Ω = 0. Then,∫

Ω
h2(x)dx ≤ l2

k

∫
Ω
(

∂h
∂xk

)2dx,

where x = (x1, x2, · · · , xq)T .

Lemma 5 ([36]). The following linear matrix inequality (LMI)

L =

[
Q(x) S(x)
S(x)T R(x)

]
< 0,

where Q(x)T = Q(x) and R(x)T = R(x), is equivalent to any one of the following conditions:

(1) Q(x) < 0, R(x)− S(x)TQ(x)−1S(x) < 0;

(2) R(x) < 0, Q(x)− S(x)R(x)−1S(x)T < 0.

Lemma 6 ([37]). For any x, y ∈ Rn, ε > 0, the inequality 2xTy ≤ εxTx + 1
ε yTy holds.
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2.2. Theories of Graphs and Matrices

An undirected graph G = {V , E} consists of nodes V = {1, 2, · · · , N} and a set of edges E . If there
is an edge between nodes i and j, then (i, j) ∈ E , and node j is called the neighbor of node i and vice
versa. The Laplacian matrix L = (Lij)N×N representing the topological structure of graph G is defined
as: when i 6= j, Lij = Lji < 0 if (i, j) ∈ E ; otherwise, Lij = Lji = 0; Lii = −∑N

j=1,j 6=i Lij = −∑N
j=1,j 6=i Lji,

which ensures the property that ∑N
j=1 Lij = ∑N

i=1 Lij = 0.

Lemma 7 ([38]). If L is the Laplacian matrix of a connected network, Lij = Lji ≤ 0 for i 6= j, and ∑N
j=1 Lij = 0

for all i = 1, . . . , N, then all eigenvalues of the matrix
L11 + ε L12 · · · L1N

L21 L22 · · · L2N
...

...
. . .

...
LN1 LN2 · · · LNN


are positive for any positive constant ε.

Lemma 8 ([39]). For matrices A, B, C, and D with appropriate dimensions, the Kronecker product ⊗ satisfies

(1) (θA)⊗ B = A⊗ (θB), where θ is a constant;
(2) (A + B)⊗ C = A⊗ C + B⊗ C;
(3) (A⊗ B)(C⊗ D) = (AC)⊗ (BD);
(4) (A⊗ B)T = AT ⊗ BT .

Lemma 9 ([40]). The Laplacian matrix L in an undirected graph is semi-positive definite. It has a simple zero
eigenvalue, and all the other eigenvalues are positive if and only if the graph is connected.

2.3. System Description

In this paper, a class of fractional complex networks with time-varying delays is considered. It is
assumed that there exist two different modes of communication between the nodes in a network:
instant communication and delayed communication. Namely, the network structure consists of
two topologies, the instant communication topology G and the delayed communication topology
Ĝ. G = {V , E} and Ĝ = {V , Ê}, where E and Ê denote the sets of instant communication links
and delayed communication links, respectively. Let L = (Lij)N×N and L̂ = (L̂ij)N×N represent the
Laplacian matrices of G and Ĝ, respectively. It is noted that each node in the network has at least one
mode of communication and that the graphs G and Ĝ can be disconnected, which implies that they
consist of several connected components, and each component is considered as a cluster (group or
family). In other words, if there are p nodes that can only communicate with other nodes instantly and
q nodes that can only be connected to others with delays, then there exist two elementary matrices F
and H such that

FT LF =


L1 0 0 0 0
0 L2 0 0 0
...

. . .
...

...
...

0 0 0 Lm 0
0 0 0 0 0q×q

 , HT L̂H =


L̂1 0 0 0 0
0 L̂2 0 0 0
...

. . .
...

...
...

0 0 0 L̂l 0
0 0 0 0 0p×p

 , (1)

where Li and L̂i are the Laplacian matrices of the ith connected component of G and Ĝ, respectively.
Then the mathematical model of fractional complex networks with impulses and reaction–diffusion
terms is considered as follows:
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
∂αzi(x, t)

∂tα
= D∆zi(x, t) + f (zi(x, t))− c

N

∑
j=1

LijΓzj(x, t)− ĉ
N

∑
j=1

L̂ijΓ̂zj(x, t− τ(t)), i = 1, · · · , N, t 6= tk;

zi(x, t+k ) = zi(x, t−k ) + pik(x, tk), k = 1, 2, · · · ,

(2)

where ∂α denotes the Riemann–Liouville fractional derivative operator of order α (0 < α < 1);
x = (x1, x2, . . . , xq)T ∈ Ω ⊂ Rq, ∆ = ∑

q
k=1(

∂2

∂x2
k
) is the Laplace diffusion operator on Ω; zi(x, t) =

(zi1(x, t), zi2(x, t), . . . , zin(x, t))T ∈ Rn is the state vector of the ith node at time t and in space x;
D = diag(d1, d2, · · · , dn) ≥ 0, and di is the transmission diffusion coefficient along the ith node;
τ(t) > 0 corresponds to the time-varying delay at time t, and it is a continuous function satisfying
0 < τ(t) ≤ τM, τ̇(t) ≤ τD < 1, where τM = sup

t≥t0

τ(t) and τD are nonnegative constants; f : Rn →

Rn is a continuously differentiable vector function; c ≥ 0 and ĉ ≥ 0 are the coupling strength;
Γ = diag(γ1, γ1, · · · , γn) ∈ Rn×n and Γ̂ = diag(γ̂1, γ̂1, · · · , γ̂n) ∈ Rn×n are positive semi-definite
inner coupling matrices where γj, γ̂j > 0 if two nodes can communicate through the jth state and
γj, γ̂j = 0 otherwise; L = (Lij)N×N and L̂ = (L̂ij)N×N are the Laplacian matrices representing the
topological structure of the network; tk (k = 0, 1, 2, · · · ) denote impulsive moments and satisfy
t0 < t1 < t2 < · · · , lim

k→∞
tk = ∞, and tk+1 − tk ≥ ω > 0; zi(x, t−k ) and zi(x, t+k ) are the state

variables of the ith node before and after impulsive perturbation, respectively; zi(x, t−k ) = lim
t→t−k

zi(x, t),

zi(x, t+k ) = lim
t→t+k

zi(x, t), and assuming that zi(x, t−k ) = zi(x, tk), the solution of system (2) is left

continuous at time tk; pik(x, tk) : Rn → Rn is the function of the change of zi(x, t) at time tk in space x.
Next, the dynamics of an isolated node can be described by

∂αz0(x, t)
∂tα

= D∆z0(x, t) + f (z0(x, t)), (3)

where z0(x, t) ∈ Rn is the state vector of the isolated node and may be an equilibrium point, a periodic
orbit, or even a chaotic orbit.

Synchronization errors between the relative state of nodes in network and the state of an
isolated node can be defined by ei(x, t) = zi(x, t) − z0(x, t), i = 1, 2, · · · , N. Next, the definition
of synchronization of complex networks is given as follows

Definition 3. A complex network (2) is said to be synchronized if for any initial condition, the following
equality is satisfied:

lim
t→∞
‖ ei(x, t) ‖= lim

t→∞
‖ zi(x, t)− z0(x, t) ‖= 0, i = 1, 2, · · · , N.

Remark 1. The model (2) has been proposed and studied in [41,42]. But it is different from [41,42] in that
impulsive perturbations, reaction–diffusion terms, and a class of more general network structures are considered
in this paper. All nodes in the network can be divided into three categories: (1) nodes that can only send
information to others instantly; (2) nodes that can only be connected to others with a time delay; and (3) nodes
that can communicate with others both instantly and with a delay. Note that the assumption that the whole
network should be connected is no longer needed. Thus, the mathematical model is more practical.

Remark 2. The impulses in the system (2) can be understood as a special property of the system itself or some
uncertain disturbances caused by external noises. The pulse period may be no longer fixed or regular, and the
intensity of the impulses can be uncertain.

3. Main Results

In this section, some sufficient criteria for pinning and adaptive synchronization of complex
networks (2) are derived, and a pinning scheme is given to discuss which node should be selected first.
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Throughout this paper, the following assumptions are needed:

Assumption 1. The set Ω is that Ω = {x : x = (x1, x2, · · · , xq)T , | xk |< lk, k = 1, 2, · · · , q} where lk
(k = 1, 2, · · · , q) are positive constants.

Assumption 2. There exist functions δik(x, tk) such that the functions pik(x, tk) satisfy

pik(x, tk) = −δik(x, tk)[
N

∑
j=1

Lijzj(x, tk)], 0 ≤ δik(x, tk) ≤
2

λmax(L)
,

where i = 1, 2, · · · , N, k = 0, 1, 2, · · · . δik(x, tk) : Rq+1 → R stands for the impulsive strength of the ith node
at time instants tk and in space x.

Assumption 3. (One-sided Lipschitz condition) There exists a constant diagonal matrix Ξ =

diag(Ξ1, Ξ2, . . . , Ξn) such that

(u(x, t)− v(x, t))T( f (u(x, t))− f (v(x, t))) ≤ (u(x, t)− v(x, t))TΞ(u(x, t)− v(x, t)),

∀u, v ∈ Rn, t ∈ R+, x ∈ Ω.

Remark 3. Note that Assumption 3 is very mild [43]. For example, all linear and piece-wise linear functions
satisfy this condition. In addition, if ∂ fi/∂uj (i, j = 1, 2, . . . , n) are bounded, the above condition is satisfied
in many well-known systems such as the Lorenz system, Chen system, Lü system, recurrent neural networks,
Chua’s circuit, and so on. Generally speaking, any function in the system that satisfyies the Lipschitz condition
can guarantee this assumption. According to [44], any Lipschitz function is a one-sided Lipschitz function,
but the converse is not true. This means that for some nonlinear functions with a big Lipschitz constant,
the corresponding one-sided Lipschitz constant matrix Ξ may be a non-positive definite matrix (see the example
given in [45]).

3.1. Adaptive and Pinning Control

The boundary and initial value conditions of complex networks are given in the following form:

zi(x, t) = 0, t ∈ [t0 − τM, ∞), x ∈ ∂Ω; (4)

zi(x, s) = ϕ0i(x, s) ∈ Rn, s ∈ [t0 − τM, 0), x ∈ Ω, (5)

where i = 0, 1, 2, · · · , N, and ϕ0i(x, s) is bounded and continuous on Ω× [t0 − τM, 0).
Then, the synchronization error system between systems (2) and (3) is given as follows:

∂αei(x, t)
∂tα

= D∆ei(x, t) + f (zi(x, t))− f (z0(x, t))− c
N

∑
j=1

LijΓej(x, t)

− ĉ
N

∑
j=1

L̂ijΓ̂ej(x, t− τ(t)) + ui(x, t), t 6= tk;

ei(x, t+k ) = ei(x, t−k )− δik(x, tk)[
N

∑
j=1

Lijej(x, tk)], i = 1, 2, · · · , N, k = 1, 2, · · · ,

(6)

where ∑N
j=1 Lij = 0 and ∑N

j=1 L̂ij = 0 are used above. ui(x, t) is the n-dimensional linear feedback
controller on the ith node. Without loss of generality, it is assumed that the first l nodes are controlled
in the network, and the pinning controller is designed by
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ui(x, t) =

{
−biΓei(x, t) i = 1, . . . , l,

0 i = l + 1, . . . , N,
(7)

where bi ≥ 0 (i = 1, 2, · · · , l) denotes control gain.
Next, a theorem is established to derive the synchronization criteria for network (2).

Theorem 1. Suppose Assumptions 1–3 hold. Under control law (7), network (2) with initial conditions (4) and
(5) can be synchronized if there exist a positive definite matrix Q ∈ Rn×n and a positive constant ε such that the
following inequalities are satisfied:λmax(−ξD + Ξ + 1

1−τD Q)IN − λmin(Γ)(cL + B)
√

2εĉλmax(Γ̂)
2 L̂

√
2εĉλmax(Γ̂)

2 L̂ −IN

 < 0, (8)

ĉ
2ε

In −Q ≤ 0, (9)

where ξ = ∑
q
k=1

1
l2
k
, B = diag(b1, b2, · · · , bN) and bi ≥ 0 (i = 1, · · · , l), bi = 0 (i = l + 1, · · · , N).

Proof of Theorem 1. Let ‖ e(x, t) ‖2=
N
∑

i=1
eT

i (x, t)ei(x, t) where e(t) =

(eT
1 (x, t), eT

2 (x, t), · · · , eT
N(x, t))T . Then, the proof of this theorem can be given in two steps.

Firstly, the case of t > t0 and t = tk, (k = 1, 2, · · · ) is considered. According to Assumption 2,
the following inequality holds:

‖ e(x, t+k ) ‖
2 =

N

∑
i=1

eT
i (x, t+k )ei(x, t+k )

=
N

∑
i=1
{ei(x, t−k )− δik(x, tk)[

N

∑
j=1

Lijej(x, tk)]}T{ei(x, t−k )− δik(x, tk)[
N

∑
j=1

Lijej(x, tk)]}

= eT(x, tk)[InN − (δx,tk L)⊗ In]
2e(x, tk)

≤‖ e(x, tk) ‖2,

(10)

where δx,tk = diag(δ1k(x, tk), δ2k(x, tk), · · · , δNk(x, tk)).
Secondly, the case of t ≥ t0 and t ∈ (tk, tk+1] (k = 0, 1, 2, · · · ) is considered. Consider the following

Lyapunov function for error system (6),

V(t) =
∫

Ω
{1

2

N

∑
i=1

R
t0

I1−α
t (eT

i (x, t)ei(x, t)) +
N

∑
i=1

1
1− τD

∫ t

t−τ(t)
eT

i (x, s)Qei(x, s)ds}dx, (11)

where Q > 0 and Q ∈ Rn×n.
Taking the time derivative of V(t) along the trajectories of (6), it is evident that ei(x, t) and ∂αei(x,t)

∂tα

are continuous when (x, t) ∈ Ω× (tk, tk+1]. Then, by Lemmas 2 and 3, the following inequality holds:
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V̇(t) ≤
∫

Ω
{

N

∑
i=1

[eT
i (x, t)

∂αei(x, t)
∂tα

] +
N

∑
i=1

[
1

1− τD eT
i (x, t)Qei(x, t)

− 1− τ̇(t)
1− τD eT

i (x, t− τ(t))Qei(x, t− τ(t))]}dx

≤
∫

Ω
{

N

∑
i=1

[eT
i (x, t)D∆ei(x, t) + eT

i (x, t)( f (zi(x, t))− f (z0(x, t)))

− ceT
i (x, t)

N

∑
j=1

LijΓej(x, t)− ĉeT
i (x, t)

N

∑
j=1

L̂ijΓ̂ej(x, t− τj(t)) + ui(x, t)]

+
N

∑
i=1

[
1

1− τD eT
i (x, t)Qei(x, t)− eT

i (x, t− τ(t))Qei(x, t− τ(t))]}dx

=
∫

Ω

N

∑
i=1

eT
i (x, t)D∆ei(x, t)dx +

∫
Ω

N

∑
i=1

eT
i (x, t)[ f (zi(x, t))− f (z0(x, t))]dx

−
∫

Ω

N

∑
i=1

[ceT
i (x, t)

N

∑
j=1

LijΓej(x, t) + ĉeT
i (x, t)

N

∑
j=1

L̂ijΓ̂ej(x, t− τ(t))− ui(x, t)]dx

+
∫

Ω

N

∑
i=1

[
1

1− τD eT
i (x, t)Qei(x, t)− eT

i (x, t− τ(t))Qei(x, t− τ(t))]dx.

(12)

From Green’s formula and the boundary conditions, the following equality holds:

∫
Ω

N

∑
i=1

eT
i (x, t)D∆ei(x, t)dx =

∫
Ω

N

∑
i=1

n

∑
l=1

eil(x, t)dl∆eil(x, t)dx

=
N

∑
i=1

n

∑
l=1

dl

∫
Ω

eil(x, t)∆eil(x, t)dx

=
N

∑
i=1

n

∑
l=1

dl [−
q

∑
k=1

∫
Ω
(

∂eil(x, t)
∂xk

)2]dx.

(13)

According to Lemma 4, the following inequality can be obtained:

N

∑
i=1

n

∑
l=1

dl [−
q

∑
k=1

∫
Ω
(

∂eil(x, t)
∂xk

)2]dx ≤
N

∑
i=1

n

∑
l=1

dl [−
q

∑
k=1

1
l2
k

∫
Ω

e2
il(x, t)]dx

= −
N

∑
i=1

q

∑
k=1

1
l2
k

n

∑
l=1

dl

∫
Ω

e2
il(x, t)dx

= −
N

∑
i=1

q

∑
k=1

1
l2
k

∫
Ω

eT
i (x, t)Dei(x, t)dx.

(14)

It follows from Assumption 3 and inequalities (12)–(14) that

V̇(t) ≤ −
N

∑
i=1

q

∑
k=1

1
l2
k

∫
Ω

eT
i (x, t)Dei(x, t)dx +

N

∑
i=1

∫
Ω

eT
i (x, t)Ξei(x, t)dx

−
∫

Ω
[ceT(x, t)(L⊗ Γ)e(x, t) + ĉeT(x, t)(L̂⊗ Γ̂)e(x, t− τ(t))]dx

−
∫

Ω

N

∑
i=1

eT
i (x, t)biΓei(x, t)dx +

∫
Ω

N

∑
i=1

[
1

1− τD eT
i (x, t)Qei(x, t)− eT

i (x, t− τ(t))Qei(x, t− τ(t))]dx,

(15)

where e(x, t− τ(t)) = (eT
1 (x, t− τ(t)), eT

2 (x, t− τ(t)), · · · , eT
N(x, t− τ(t)))T .
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By using Lemma 6, an inequality holds as follows:

V̇(t) ≤ −
∫

Ω
ξeT(x, t)(IN ⊗ D)e(x, t)dx +

∫
Ω

eT(x, t)(IN ⊗ Ξ)e(x, t)dx−
∫

Ω
ceT(x, t)(L⊗ Γ)e(x, t)dx

+
∫

Ω

ĉ
2
[εeT(x, t)(L̂⊗ Γ̂)2e(x, t) +

1
ε

eT(x, t− τ(t))e(x, t− τ(t))]dx−
∫

Ω
eT(x, t)(B⊗ Γ)e(x, t)dx

+
∫

Ω
[

1
1− τD eT(x, t)(IN ⊗Q)e(x, t)− eT(x, t− τ(t))(IN ⊗Q)e(x, t− τ(t))]dx

=
∫

Ω
eT(x, t)[IN ⊗ (−ξD + Ξ +

1
1− τD Q)− (cL + B)⊗ Γ +

εĉ
2
(L̂⊗ Γ̂)2]e(x, t)dx

+
∫

Ω
eT(x, t− τ(t))[IN ⊗ (

ĉ
2ε

In −Q)]e(x, t− τ(t))dx,

(16)

where ξ = ∑
q
k=1

1
l2
k
, B = diag(b1, b2, · · · , bN) and bi ≥ 0 (i = 1, 2, · · · , l), bi = 0 (i = l + 1, · · · , N).

Then, according to Lemma 5 and conditions (8) and (9) in Theorem 1, the following
inequality holds:

V̇(t) ≤
∫

Ω
eT(x, t)[IN ⊗ (−ξD + Ξ +

1
1− τD Q)− (cL + B)⊗ Γ +

εĉ
2
(L̂⊗ Γ̂)2]e(x, t)dx < 0. (17)

Next, it can be proven that ‖ e(x, t) ‖→ 0 for t → ∞ and t 6= tk. Suppose, for the purpose of
contradiction, that lim

t→∞
‖ e(x, t) ‖6= 0. According to the properties of function V(t) that V(t) ≥ 0 and

V̇(t) < 0, there exists a positive constant η > 0 such that V(t)→ η for t→ ∞ (monotone and bounded
property). Thus, V̇(t)→ 0 for t→ ∞. Then the following inequality holds:

0 = lim
t→∞

V̇(t) ≤ lim
t→∞

∫
Ω

eT(x, t)Φe(x, t)dx ≤ lim
t→∞

∫
Ω

λmaxΦ ‖ e(x, t) ‖2 dx < 0, (18)

where Φ = IN ⊗ (−ξD + Ξ + 1
1−τD Q) − (cL + B) ⊗ Γ + εĉ

2 (L̂ ⊗ Γ̂)2. This contradicts the previous
hypothesis.

In conclusion, ‖ e(x, t) ‖→ 0 for t→ ∞. According to Definition 3, complex network (2) can be
synchronized under controller (7).

Remark 4. According to Lemma 5, the matrix Q in (8) and (9) can be found by solving the linear matrix

inequalities λmax(−ξD + Ξ + 1
1−τD Q)IN − λmin(Γ)(cL + B) + εĉλ2

max(Γ̂)
2 L̂2 < 0 and ĉ

2ε In − Q ≤ 0.
Furthermore, conditions (8) and (9) provide the control design for synchronization of network (2). It is
easy to see that the coupling strengths c and ĉ play a key role in (8) and (9). If the coupling strengths c and ĉ can
be designed, the larger c and the smaller ĉ can make these conditions easier to satisfy.

In order to reduce the enormous difference in control strength between theoretical values and
practical need, adaptive and pinning control is considered. Then, without loss of generality, it is
assumed that the first l nodes are controlled in the complex networks (2) and an adaptive pinning
controller is designed by {

ui(x, t) = −bi(t)Γei(x, t) i = 1, . . . , l,

ḃi(t) =
∫

Ω eT
i (x, t)Γei(x, t)dx,

(19)

where bi(t) ≥ 0 (i = 1, 2, · · · , l) denote control strength.
Next, a theorem is obtained to guarantee that the complex networks (2) can be adaptively

synchronized.
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Theorem 2. Suppose Assumptions 1–3 hold. Under the adaptive law and controller (19), network (2) with
initial conditions (4) and (5) can be synchronized if there exists a positive definite matrix Q ∈ Rn×n and
constants ε > 0, b∗i ≥ 0 (i = 1, · · · , l) such that the following conditions are satisfied:λmax(−ξD + Ξ + 1

1−τD Q)IN − λmin(Γ)(cL + B∗)
√

2εĉλmax(Γ̂)
2 L̂

√
2εĉλmax(Γ̂)

2 L̂ −IN

 < 0, (20)

ĉ
2ε

In −Q ≤ 0, (21)

where B∗ = diag(b∗1 , b∗2 , · · · , b∗N) and b∗i ≥ 0 (i = 1, · · · , l), b∗i = 0 (i = l + 1, · · · , N). ξ = ∑
q
k=1

1
l2
k
.

Proof of Theorem 2. The proof of this theorem is given in two steps.
Firstly, the case of t > t0 and t = tk, (k = 1, 2, · · · ) is considered. Similar to the proof of Theorem 1,

the following conclusion can be obtained immediately:

‖ e(x, t+k ) ‖
2≤‖ e(x, tk) ‖2 . (22)

Secondly, the case of t ≥ t0 and t ∈ (tk, tk+1] (k = 0, 1, 2, · · · ) is considered. Consider the following
Lyapunov function for error system (6),

V(t) =
∫

Ω
{1

2

N

∑
i=1

R
t0

I1−α
t (eT

i (x, t)ei(x, t)) +
N

∑
i=1

1
1− τD

∫ t

t−τ(t)
eT

i (x, s)Qei(x, s)ds}dx +
1
2

N

∑
i=1

(bi(t)− b∗i )
2, (23)

where Q > 0 ∈ Rn×n and b∗i ≥ 0 (i = 1, · · · , l), b∗i = 0 (i = l + 1, · · · , N). b∗i (i = 1, · · · , l) are
non-negative constants that should be determined later.

Similar to the proof of Theorem 1, computing the derivative of V(t) along the trajectories of error
system (6) under the adaptive law and controller (19), the following inequality is obtained,

V̇(t) ≤ −
N

∑
i=1

q

∑
k=1

1
l2
k

∫
Ω

eT
i (x, t)Dei(x, t)dx +

N

∑
i=1

∫
Ω

eT
i (x, t)Ξei(x, t)dx

−
∫

Ω
[ceT(x, t)(L⊗ Γ)e(x, t) + ĉeT(x, t)(L̂⊗ Γ̂)e(x, t− τ(t))]dx

−
∫

Ω

N

∑
i=1

eT
i (x, t)bi(t)Γei(x, t)dx +

∫
Ω

N

∑
i=1

[
1

1− τD eT
i (x, t)Qei(x, t)

− eT
i (x, t− τ(t))Qei(x, t− τ(t))]dx +

N

∑
i=1

(bi(t)− b∗i )
∫

Ω
eT

i (x, t)Γei(x, t)dx.

(24)

Then,

V̇(t) = −
N

∑
i=1

q

∑
k=1

1
l2
k

∫
Ω

eT
i (x, t)Dei(x, t)dx +

N

∑
i=1

∫
Ω

eT
i (x, t)Ξei(x, t)dx

−
∫

Ω
[ceT(x, t)(L⊗ Γ)e(x, t) + ĉeT(x, t)(L̂⊗ Γ̂)e(x, t− τ(t))]dx

−
∫

Ω

N

∑
i=1

eT
i (x, t)b∗i Γei(x, t)dx +

∫
Ω

N

∑
i=1

[
1

1− τD eT
i (x, t)Qei(x, t)

− eT
i (x, t− τ(t))Qei(x, t− τ(t))]dx.

(25)
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The rest is the same as in the proof of Theorem 1. Therefore, the complex networks (2) can be
synchronized under the adaptive law and controller (19). Meanwhile, the following equalities hold:

lim
t→∞

bi(t) = b∗i , f or lim
t→∞

ḃi(t) = 0, i = 1, · · · , l. (26)

3.2. Pinning Scheme of Complex Networks

In order to design a pinning scheme for network (2), some notations are introduced for
simplicity. Let

Ψ = λmax(−ξD + Ξ +
1

1− τD Q)IN +
εĉλ2

max(Γ̂)
2

L̂2 − cλmin(Γ)L. (27)

Using matrix decomposition, the following equation holds:

H = Ψ− λmin(Γ)B =

[
A− λmin(Γ)B̃ E

ET C

]
, (28)

where B̃ = diag(b1, b2, · · · , bl). C = (λmax(−ξD + Ξ + 1
1−τD Q)IN + εĉλ2

max(Γ̂)
2 L̂2 − cλmin(Γ)L)l is

obtained by removing the first l row–column pairs of matrix Ψ.
Then, a necessary condition is proposed to clearly reveal how the network’s characters can affect

the pinning synchronization criteria.

Theorem 3. (Necessary condition) Suppose Assumptions 1–3 hold. To satisfy condition (8), it is necessary that

Hii = λmax(−ξD + Ξ +
1

1− τD Q) +
εĉλ2

max(Γ̂)
2

N

∑
j=1

L̂2
ij − λmin(Γ)(cLii + bi) < 0, 1 ≤ i ≤ l, (29)

Hii = λmax(−ξD + Ξ +
1

1− τD Q) +
εĉλ2

max(Γ̂)
2

N

∑
j=1

L̂2
ij − λmin(Γ)cLii < 0, l + 1 ≤ i ≤ N. (30)

Proof of Theorem 3. According to Lemma 5, condition (8) is equivalent to H < 0. It is necessary that
Hii < 0.

Remark 5. L̂ij is an element of the Laplacian matrix L̂, which denotes the delayed communication topology
of network (2). According to the definition of the Laplacian matrix, the greater the degree of the ith node is,

the greater the value of
N
∑

j=1
L̂2

ij is, and vice versa. From (29) and (30), for the nodes without a controller, the degrees

of these nodes in the delayed communication topology must be less than a critical value. Namely, the condition
N
∑

j=1
L̂2

ij < ( 2
εĉλ2

max(Γ̂)
)(λmin(Γ)cLii − λmax(−ξD + Ξ + 1

1−τD Q)) must be satisfied, which indicates that the

nodes with large degrees in delayed communication topology should be controlled first, otherwise, (30) is
not satisfied. This is consistent with the intuition that the delayed communication between nodes can lead
to some instability in the network. In addition, some results have been proposed [43] that, in the instant
communication topology network, nodes with very low and very large degrees are good candidates for applying
pinning controllers.

In order to be more practical, some low-dimensional conditions are presented to guarantee the
global asymptotic stability of the pinning process.
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Theorem 4. Suppose Assumptions 1–3 hold. Under controller (7), the pinning controlled network (2) is
globally synchronized when the following two conditions are satisfied:

bi >
λmax(A− EC−1ET)

λmin(Γ)
, i = 1, 2, · · · , l, (31)

λmax(
εĉλ2

max(Γ̂)
2

L̂2 − cλmin(Γ)L)l < −λmax(−ξD + Ξ +
1

1− τD Q), (32)

where bi is the pinning feedback gain, A, B, and C are defined in (28), and ( εĉλ2
max(Γ̂)
2 L̂2 − cλmin(Γ)L)l is the

minor matrix of εĉλ2
max(Γ̂)
2 L̂2 − cλmin(Γ)L by removing its first l row–column pairs.

Proof of Theorem 4. From Lemma 5, it follows (31) and (32) that H < 0, which is equivalent to (8).

Remark 6. The synchronization conditions (31) and (32) are easier to verify than (8). Thus, Theorem 4 has
more practical value. Meanwhile, the conditions (8), (31), and (32) provide a method of controller design for
synchronization of the complex networks (2).

Remark 7. Note that for α = 1, the model of complex networks (2) reduces to the classical integer-order
system with impulsive effects and reaction–diffusion terms. It is not difficult to verify that, in the case of
α = 1, the conditions given in Theorems 1, 2, and 4 can also guarantee the synchronization of corresponding
integer-order complex networks via the designed controllers (7) and (19). Therefore, the synchronization results
in Theorems 1, 2, and 4 extend and improve the synchronization results for integer-order complex networks with
reaction–diffusion terms and impulsive effects compared to the fractional case.

Remark 8. When D = 0, the partial differential equations (2) can be degraded to fractional ordinary differential
equations. It is easy to demonstrate that in this special case, the criteria given in Theorems 1, 2, and 4 are
also valid for ensuring the synchronization of corresponding ordinary differential systems under controllers (7)
and (19).

Remark 9. In recent years, many outstanding results from the analysis of the stability of fractional systems,
as in [46–49], have been reported. But, since there exists an integration term in the definition of the
Riemann–Liouville fractional derivative, which means that the fractional derivative of a function x(t) at
any given moment depends on its initial state, the existing fractional Lyapunov methods are invalid for analyzing
the stability of fractional systems with impulsive effects. Thus, according to Lemma 2, two special Lyapunov
functions with fractional integration terms are constructed to complete the proof of Theorems 1 and 2.

Remark 10. Adaptive control for fractional complex networks (2) is studied in this paper. However, there is no
such property of the Riemann–Liouville fractional derivative that x(t) → m for R

t0
Dα

t x(t) → 0, where m is a
constant. Therefore, an integer-order adaptive law (19) is designed rather than a fractional-order adaptive law.
This is more practical because the computational complexity of fractional derivatives is much higher than that of
integral derivatives.

4. Numerical Simulations

In this section, an example is given to illustrate the effectiveness of the main results.

Example 1. Consider the two-dimensional Riemann–Liouville fractional complex network (2), which consists
of five nodes, with impulses and reaction–diffusion terms. The parameters are designed as: α = 0.95; ∆ = ∂2

∂x ,
x ∈ Ω = {x | 0 ≤ x ≤ π}; D = diag(0.3, 0.3) τ(t) = 1; Γ, Γ̂ are identity matrices; c = 1, ĉ = 0.25; and the
Laplacian matrices L, L̂ are given as follows:
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L =


0.1 −0.1 0 0 0
−0.1 0.2 −0.1 0 0

0 −0.1 0.2 −0.1 0
0 0 −0.1 0.2 −0.1
0 0 0 −0.1 0.1

 , L̂ =


0.2 −0.2 0 0 0
−0.2 0.4 −0.2 0 0

0 −0.2 0.4 −0.2 0
0 0 −0.2 0.4 −0.2
0 0 0 −0.2 0.2

 . (33)

The nonlinear function f : R2 → R2 is

f (s(t)) =

(
2tanh(s1(t))− 1.2tanh(s2(t))

1.8tanh(s1(t)) + 1.71tanh(s2(t))

)
,

where s(t) = (s1(t), s2(t))T . The boundary and initial value conditions of the isolated node (3) and network (2)
are given in the form

zi(x, t) = 0, t ∈ [−1, ∞), x ∈ ∂Ω, i = 0, 1, 2, · · · , 5; (34)

zi(x, s) = (ϕi1(x), ϕi2(x))T , s ∈ [−1, 0), x ∈ Ω, i = 0, 1, 2, · · · , 5 , (35)

where ϕ01(x) = −sin(x), ϕ02(x) = 0.3sin(x), ϕ11(x) = ϕ12(x) = sinx, ϕ21(x) = ϕ22(x) = 0.5sinx,
ϕ31(x) = ϕ32(x) = −0.7sinx, ϕ41(x) = ϕ42(x) = −0.5sinx, ϕ51(x) = ϕ52(x) = 1.5sinx. The impulsive
strength functions are given as follows: δ1k(x, tk) = 0.8, δ2k(x, tk) = 0.8 | cos( x

3 )sin( tk
2 ) |, δ3k(x, tk) = 0.3 |

cos(xtk) |, δ4k(x, tk) = 0.1 | sin( x
2 )cos( tk

5 ) |, δ5k(x, tk) = 0.2 | sin(x)cos(tk) |, k = 1, 2, · · · . The pulse
period is tk+1 − tk = 0.4s.

Pinning control strategy is considered here, supposing the first node in network (2) is controlled.
Then, the appropriate controller and adaptive law can be designed as follows:{

ui(x, t) = −bi(t)Γei(x, t) i = 1,

ḃi(t) =
∫

Ω eT
i (x, t)Γei(x, t)dx,

(36)

where ei(x, t) = zi(x, t)− z0(x, t) (i = 1, · · · , 5). b1(t) > 0 and b1(0) = 0.2.
Let ‖ e(x, t) ‖ stand for the norm of synchronization error between systems (2) and (3).

In Figures 1–4, it is shown that under the adaptive law and designed controller (36), complex networks
(2) with reaction–diffusion terms and impulsive effects can achieve synchronization. In Figure 5,
it is easy to see that the adaptive control parameter b1(t) turns out to be a constant b∗1 = 8.788,
which satisfies the conditions in Theorem 2, when synchronization is realized. The efficiency of
Theorem 2 can be demonstrated by this example.
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Figure 1. Spatiotemporal evolution of the error norm ‖ e(x, t) ‖ between systems (2) and (3)
without controller.
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Figure 2. Spatiotemporal evolution of the error norm ‖ e(x, t) ‖ between systems (2) and (3) with
controller (36).
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controller at x = 0.698.
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5. Conclusions

Pinning and adaptive synchronization of fractional complex networks with impulses and
reaction–diffusion terms is investigated in this paper. In order to analyze the stability of the fractional
systems with impulsive effects, two special Lyapunov functions with fractional integration terms are
constructed and the Lyapunov method is applied. By designing appropriate controllers and adaptive
laws, some sufficient criteria for pinning and adaptive synchronization of fractional complex networks
with time-varying delays are derived. In addition, a pinning scheme is proposed in which some
delay-coupled nodes should be prioritized for pinning. Finally, a numerical example is given to
demonstrate the effectiveness and correctness of the main results. A goal of our future investigations
is to study more general impulsive fractional systems and analyze the dynamical behaviors of these
special systems.
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