Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series
Abstract
1. Introduction and Preliminaries
2. Generalized Fractional Integration of the Mathieu Series
3. Interesting Special Cases
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tomovski, Ž; Pogány, T.K. Integral expressions for Mathieu-type power series and for the Butzer-Flocke-Hauss W-function. Fract. Calc. Appl. Anal. 2011, 14, 623–634. [Google Scholar] [CrossRef]
- Cerone, P.; Lenard, C.T. On integral forms of generalized Mathieu series. J. Inequal. Pure Appl. Math. 2003, 4, 1–11. [Google Scholar]
- Milovanović, G.V.; Pogány, T.K. New integral forms of generalized Mathieu series and related applications. Appl. Anal. Discret. Math. 2013, 7, 180–192. [Google Scholar]
- Diananda, P.H. Some inequalities related to an inequality of Mathieu. Math. Ann. 1980, 250, 95–98. [Google Scholar] [CrossRef]
- Pogány, T.K.; Srivastava, H.M.; Tomovski, Ž. Some families of Mathieu a-series and alternating Mathieu a-series. Appl. Math. Comput. 2006, 173, 69–108. [Google Scholar]
- Choi, J.; Parmar, R.K.; Pogány, T.K. Mathieu-type series built by (p, q)—Extended Gaussian hypergeometric function. Bull. Korean Math. Soc. 2017, 54, 789–797. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Mathieu series and associated sums involving the Zeta functions. Comput. Math. Appl. 2010, 59, 861–867. [Google Scholar] [CrossRef]
- Elezović, N.; Srivastava, H.M.; Tomovski, Ž. Integral representations and integral transforms of some families of Mathieu type series. Integral Transform. Spec. Funct. 2008, 19, 481–495. [Google Scholar]
- Pogány, T.K.; Tomovski, Ž. Bounds improvement for alternating Mathieu type series. J. Math. Inequal. 2010, 4, 315–324. [Google Scholar]
- Saxena, R.K.; Pogány, T.K.; Saxena, R. Integral transforms of the generalized Mathieu series. J. Appl. Math. Stat. Inform. 2010, 6, 5–16. [Google Scholar]
- Srivastava, H.M.; Tomovski, Ž.; Leákovski, D. Some families of Mathieu type series and Hurwitz-Lerch zeta functions and associated probability distributions. Appl. Comput. Math. 2014, 14, 349–380. [Google Scholar]
- Tomovski, Ž. Integral representations of generalized Mathieu series via Mittag-Leffler type functions. Fract. Calc. Appl. Anal. 2007, 10, 127–138. [Google Scholar]
- Tomovski, Ž. New integral and series representations of the generalized Mathieu series. Appl. Anal. Discret. Math. 2008, 2, 205–212. [Google Scholar] [CrossRef]
- Tomovski, Ž.; Pogány, T.K. New upper bounds for Mathieu-type series. Banach J. Math. Anal. 2009, 3, 9–15. [Google Scholar] [CrossRef]
- Srivastava, H.M. A contour integral involving Fox’s H-function. Indian J. Math. 1972, 14, 1–6. [Google Scholar]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric functions. J. Lond. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. Lond. 1940, 238, 423–451. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function II. Proc. Lond. Math. Soc. 1940, 46, 389–408. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press Ellis Horwood Limited: Chichester, UK, 1985. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Pohlen, T. The Hadamard Product and Universal Power Series. Ph.D. Thesis, Universität Trier, Trier, Germany, 2009. [Google Scholar]
- Saxena, R.K.; Parmar, R.K. Fractional integration and differentiation of the generalized Mathieu series. Axioms 2017, 6, 18. [Google Scholar] [CrossRef]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Coll. Gen. Ed. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Mathai, A.M.; Saxena, R.K. The H- Functions with Application in Statistics and Other Disciplines; Halsted Press: New York, NY, USA, 1978. [Google Scholar]
- Rainville, E.D. Special Function; Chelsea Publishing Co.: Bronx, NY, USA, 1971. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications (“Nauka i Tekhnika”, Minsk, 1987); Gordon and Breach Science Publishers: Reading, UK, 1993. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisar, K.S.; Suthar, D.L.; Bohra, M.; Purohit, S.D. Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series. Mathematics 2019, 7, 206. https://doi.org/10.3390/math7020206
Nisar KS, Suthar DL, Bohra M, Purohit SD. Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series. Mathematics. 2019; 7(2):206. https://doi.org/10.3390/math7020206
Chicago/Turabian StyleNisar, K.S., D.L. Suthar, M. Bohra, and S.D. Purohit. 2019. "Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series" Mathematics 7, no. 2: 206. https://doi.org/10.3390/math7020206
APA StyleNisar, K. S., Suthar, D. L., Bohra, M., & Purohit, S. D. (2019). Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series. Mathematics, 7(2), 206. https://doi.org/10.3390/math7020206