A Study of Generalized Laguerre Poly-Genocchi Polynomials
Abstract
:1. Introduction
2. Generalized Laguerre Poly-Genocchi Polynomials
3. Implicit Summation Formulae
4. Addition-Symmetry Identities
5. Connection with Sheffer Polynomials
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dattoli, G.; Torre, A. Operational methods and two variable Laguerre polynomials. Atti Acad. Torino. 1998, 132, 1–7. [Google Scholar]
- Rainville, E.D. Special Functions; The MacMillan Comp.: New York, NY, USA, 1960. [Google Scholar]
- Kaneko, M. Poly-Bernoulli numbers. J. Theo. Nombres 1997, 9, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Jolany, H.; Darafsheh, M.R.; Alikelaye, R.E. Generalizations of Poly-Bernoulli Numbers and Polynomials. Int. J. Math. Comb. 2010, 2, A07–A14. [Google Scholar]
- Jolany, H.; Corcino, R.B. Explicit formula for generalization of Poly-Bernoulli numbers and polynomials with a,b,c parameters. J. Class. Anal. 2015, 6, 119–135. [Google Scholar] [CrossRef]
- Jolany, H.; Aliabadi, M.; Corcino, R.B.; Darafsheh, M.R. A Note on Multi Poly-Euler Numbers and Bernoulli Polynomials. Gen. Math. 2012, 20, 122–134. [Google Scholar]
- Jolany, H.; Corcino, R.B. More properties on Multi-Euler polynomials. arXiv, 2014; arXiv:1401.627. [Google Scholar]
- Appell, P.; Kampé de Fériet, J.J. Fonctions Hypergéométriques et Hypersphériques: Polynomes d Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Bell, E.T. Exponential polynomials. Ann. Math. 1934, 35, 258–277. [Google Scholar] [CrossRef]
- Pathan, M.A.; Khan, W.A. A new class of generalized Hermite-Bernoulli polynomials. Georgian Math. J. 2012, 19, 559–573. [Google Scholar] [CrossRef]
- Dattoli, G.; Lorenzutta, S.; Cesarano, C. Finite sums and generalized forms of Bernoulli polynomials. Rend. Math. 1999, 19, 385–391. [Google Scholar]
- Khan, W.A. A new class of Hermite poly-Genocchi polynomials. J. Anal. Numb. Theory 2016, 4, 1–8. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Ellis Horwood Limited: New York, NY, USA, 1984. [Google Scholar]
- Khan, W.A. A note on Hermite-Based poly-Euler and Multi poly-Euler polynomials. Palest. J. Math. 2016, 5, 17–26. [Google Scholar]
- Khan, N.U.; Usman, T. A new class of Laguerre-Based Generalized Apostol Polynomials. Faciculi Math. 2016, 57, 67–89. [Google Scholar] [CrossRef]
- Khan, N.U.; Usman, T. A new class of Laguerre poly-Bernoulli numbers and polynomial. Adv. Stud. Contemp. Math. 2017, 27, 229–241. [Google Scholar]
- Khan, N.U.; Usman, T. A new class of Laguerre-Based Poly-Euler and Multi Poly-Euler Polynomials. J. Anal. Number Theory 2016, 4, 113–120. [Google Scholar] [CrossRef]
- Khan, N.U.; Usman, T.; Choi, J. Certain generating function of Hermite-Bernoulli-Laguerre polynomials. Far East J. Math. Sci. 2017, 101, 893–908. [Google Scholar] [CrossRef]
- Khan, N.U.; Usman, T.; Choi, J. A New generalization of Apostol type Laguerre-Genocchi polynomials. C. R. Acad. Sci. Paris Ser. I 2017, 355, 607–617. [Google Scholar] [CrossRef]
- Khan, N.U.; Usman, T.; Choi, J. A new class of generalized polynomials associated with Laguerre and Bernoulli polynomials. Turk. J. Math. 2019, 43, 486–497. [Google Scholar] [CrossRef]
- Khan, N.U.; Usman, T.; Aman, M. Generating functions for Legendre-Based Poly-Bernoulli numbers and polynomials. Honam Math. J. 2017, 39, 217–231. [Google Scholar]
- Zhang, Z.; Yang, H. Several identities for the generalized Apostol-Bernoulli polynomials. Comp. Math. Appl. 2008, 56, 2993–2999. [Google Scholar] [CrossRef]
- Khan, S.; Al-Saad, M.W.; Khan, R. Laguerre-based Appell polynomials: Properties and applications. Math. Comput. Model. 2010, 52, 247–259. [Google Scholar] [CrossRef]
- Dattoli, G.; Migliorati, M.; Srivastava, H.M. Sheffer polynomials, monomiality principle, algebraic methods and the theory of classical polynomials. Math. Comp. Model. 2007, 45, 1033–1041. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kurt, B.; Simsek, B.B. Some families of Genocchi type polynomials and their interpolation functions. Integral Transf. Spec. Funct. 2012, 23, 919–938. [Google Scholar] [CrossRef]
- Andrews, L.C. Special Functions for Engineers and Mathematicians; Macmillan Co.: New York, NY, USA, 1985. [Google Scholar]
- Apostol, T.M. On the Lerch zeta function. Pac. J. Math. 1951, 1, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Dere, R.; Simsek, Y. Genocchi polynomials associated with the Umbral algebra. Appl. Math. Comput. 2011, 218, 756–761. [Google Scholar] [CrossRef]
- Kim, T. Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 2010, 20, 23–28. [Google Scholar]
- Sandor, J.; Crisci, B. Handbook of Number Theory; Springer: Berlin, Germany, 2004; Volume II. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Usman, T.; Nisar, K.S. A Study of Generalized Laguerre Poly-Genocchi Polynomials. Mathematics 2019, 7, 219. https://doi.org/10.3390/math7030219
Khan N, Usman T, Nisar KS. A Study of Generalized Laguerre Poly-Genocchi Polynomials. Mathematics. 2019; 7(3):219. https://doi.org/10.3390/math7030219
Chicago/Turabian StyleKhan, Nabiullah, Talha Usman, and Kottakkaran Sooppy Nisar. 2019. "A Study of Generalized Laguerre Poly-Genocchi Polynomials" Mathematics 7, no. 3: 219. https://doi.org/10.3390/math7030219
APA StyleKhan, N., Usman, T., & Nisar, K. S. (2019). A Study of Generalized Laguerre Poly-Genocchi Polynomials. Mathematics, 7(3), 219. https://doi.org/10.3390/math7030219