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Abstract: Fractional calculus image formulas involving various special functions are important for
evaluation of generalized integrals and to obtain the solution of differential and integral equations.
In this paper, the Saigo’s fractional integral operators involving hypergeometric function in the kernel
are applied to the product of Srivastava’s polynomials and the generalized Mathieu series, containing
the factor xλ(xk + ck)−ρ in its argument. The results are expressed in terms of the generalized
hypergeometric function and Hadamard product of the generalized Mathieu series. Corresponding
special cases related to the Riemann–Liouville and Erdélyi–Kober fractional integral operators are
also considered.

Keywords: generalized fractional integral operators; generalized Mathieu series; Srivastava’s
polynomial; generalized hypergeometric series

1. Introduction and Preliminaries

Recently, the integral representation of the generalized power series of Mathieu-type was studied
and defined by Tomovski and Pogány [1] as follows

Sτ (p; z) = ∑
n≥1

2nzn

(p2 + n2)τ+1 (τ > 0, p ∈ R) . (1)

Some of the special cases of Equation (1) listed as under

Sτ (p; 1) = Sτ (p) and S̃τ (p;−1) = −Sτ (p) ,

Sτ (p) = ∑
n≥1

2n
(p2 + n2)τ+1 , (τ > 0, p > 0) , (2)

S̃τ (p) = ∑
n≥1

(−1)n−1 2n
(p2 + n2)τ+1 , (τ > 0, p > 0) . (3)

For several interesting special cases of the generalized Mathieu series and their fundamental
properties, along with integral representations, one may refer to the works of Cerone and Lenard [2]
and Milovanović and Pogány [3]. The Mathieu series has been broadly acknowledged in the theory of
mathematical analysis (for instance, see Cerone and Lenard [2], Diananda [4] and Pogány et al. [5]).
Further, one can also find numerous applications in recent articles [6–14].
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The general class of polynomials was defined by Srivastava ([15], p.1, Equation (1)) in the
subsequent way:

Su
w[x] =

[w/u]

∑
s=0

(−w)us

s!
Aw,s xs, w = 0, 1, 2, . . ., (w ∈ N0 = N∪ 0; u ∈ N), (4)

and the coefficients Aw,s (w, s ≥ 0) are arbitrary constants, real or complex.
The generalized Wright hypergeometric function is given by the series ([16–18]) (see also, [19]):

pΨq(z) = pΨq

[
(ai, ci)1, p
(bj, dj)1, q

|z
]

=
∞

∑
r=0

∏
p
i=1 Γ(ai + cir) zr

∏
q
j=1 Γ(bj + djr) r!

, (5)

where ai, bj ∈ C and ci, dj ∈ <, (ci, dj 6= 0; i = 1, 2, ... , p; j = 1, 2, ... , q).
Here, we recall the generalized hypergeometric function (see [20], Section 4.1(1)) as under

pFq(a 1, · · · , ap; b 1, · · · , bq; z) =
∞

∑
r=0

(a1)r · · · (ap)r zr

(b1)r · · · (bq)rr!
, (6)

provided the coefficients ai, bj ∈ C, however bj 6= 0,−1, · · · (i = 1, · · · , p; j = 1, · · · , q). The above
series converges, if p = q + 1 for all |z| < 1 and p ≤ q for any z. For our investigation, we express the
main results in terms of series defined as Equation (6).
Moreover, if we take ϑ1 = · · · = ϑp = ϕ1 = · · ·= ϕq = 1, then we have

pFq(a 1, · · · , ap; b 1, · · · , bq; z) =
∏

q
j=1 Γ(bj)

∏
p
i=1 Γ(ai)

pψq

[
(ai, 1)1, p
(bj, 1)1, q

|z
]

. (7)

For our purpose, we also need the concept of Hadamard product of two functions. Assume that
f (z) := ∑∞

q=0 aqzq and g (z) := ∑∞
q=0 bqzq are dual power series, whose radii of convergence are given

by R f and Rg, jointly. The power series is defined in the form of Hadamard product (see [21]) as

( f ∗ g) (z) :=
∞

∑
q=0

aqbqzq. (8)

If R is considered as radius of convergence for the above Hadamard product series in Equation (8),
it must satisfies the condition R f · Rg ≤ R. It is impressive to note that, if one of the power series
characterizes as an entire function, then the Hadamard product series also defines an entire function.

Following the work of Saxena and Parmar [22], our aim is to study the novel combination of
the Saigo’s fractional integral operators involving the product of Srivastava’s polynomials and the
generalized Mathieu series. The results are general in nature and expressed in terms of the generalized
hypergeometric function and Hadamard product of the generalized Mathieu series. We also include
certain special cases of our results as corresponding image formulas for Riemann–Liouville and
Erdélyi–Kober fractional integral operators.

2. Generalized Fractional Integration of the Mathieu Series

Let ϑ, ϕ and η be complex numbers, and further let x ∈ R + = (0, ∞). Following Saigo [23],
the fractional integral (< (ϑ) > 0) and the fractional derivative (< (ϑ) < 0) of the function f (x) on
R + are defined by

(
Iϑ,ϕ,η
0+ f

)
(x) =

x−ϑ−ϕ

Γ(ϑ)

∫ x

0
(x− t)ϑ−1

2F1(ϑ + ϕ,−η; ϑ; 1− t/x) f (t)dt, (< (ϑ) > 0) ; (9)
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(
Dϑ,ϕ,η

0+ f
)
(x) =

(
I−ϑ,−ϕ,ϑ+η
0+ f

)
(x)

=
dk

dxk

(
I−ϑ+k,−ϕ−k,ϑ+η−k
0+ f

)
(x), < (ϑ) ≤ 0, k = [< (ϑ)] + 1, (10)(

Iϑ,ϕ,η
− f

)
(x) =

1
Γ(ϑ)

∫ ∞

x
(t− x)ϑ−1t−ϑ−ϕ

2F1(ϑ + ϕ,−η; ϑ; 1− x/t) f (t)dt, (< (ϑ) > 0) ; (11)(
Dϑ,ϕ,η
− f

)
(x) =

(
I−ϑ,−ϕ,ϑ+η
− f

)
(x)

= (−1)k dk

dxk

(
I−ϑ+k,−ϕ−k,ϑ+η
− f

)
(x), < (ϑ) ≤ 0, k = [< (ϑ)] + 1. (12)

It can be easily seen that the Riemann–Liouville and Erdélyi–Kober fractional integral operators
are special cases of Saigo’s operators. The symbol Γ

[
a b c ...
d e f ...

]
represents the fraction of the product of

gamma functions Γ(a) Γ(b) Γ(c) ...
Γ(d) Γ(e) Γ( f ) ... .

Now, we begin with the following statement:
If

f (t) = tλ(tk + ck)−ρ Su
w[ytµ(tk + ck)−υ] Sτ

(
p; zth(tk + ck)−δ

)
(13)

then, we have the following relations:

Theorem 1. Let <(ϑ) > 0, λ > 0, k = 1, 2, 3, . . ., wherec is a positive number and ρ is a complex number,
then there holds the relation

(
Iϑ,ϕ,η
0+ f

)
(x) =

[w/u]

∑
s=0

∑
n≥1

2n (−w)us Aw,s ys zn

(p2 + n2)τ+1 s! cR xT−ϕ

× Γ(T + 1)Γ(T + η − ϕ + 1)
Γ(T − ϕ + 1)Γ(T + ϑ + η + 1)

× 2k+1F2k

 ρ + υs− δn, ∆(k, T + 1), ∆(k, T − ϕ + η + 1);
− xk

ck

∆(k, T + 1− ϕ), ∆(k, T + ϑ + η + 1);

 , (14)

where T = λ + µs + hn and R = kρ + kυs− kδn.
The result in Equation (14) is valid for<(ϑ) > 0,< (λ + µs + hn) > 0. In addition, c is a positive number

and ρ, µ, υ, h, δ are complex numbers, k = 1, 2, 3, . . ., u is an arbitrary positive integer and the coefficients
Aw,s(w, s ≥ 0) are arbitrary constants, real or complex. Here, ∆(k, ϑ) represents the sequence of parameters

ϑ

k
,

ϑ + 1
k

, ...,
ϑ + k− 1

k
,

and 2k+1F2k(·) is the generalized hypergeometric function, defined in [24].

Proof. Let ` be the left-hand side of result in Equation (14). Using Equations (4) and (1) and applying
Equations (13)–(9), we have

` =
[w/u]

∑
s=0

∑
n≥1

2n (−w)us Aw,s ys zn

(p2 + n2)τ+1 s!

× x−ϑ−ϕ

Γ(ϑ)

∫ x

0
(x− t)ϑ−1

2F1(ϑ + ϕ,−η; ϑ; 1− t/x) tλ+µs+hn(tk + ck)−(ρ+υs−δn)dt. (15)
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Further, on employing the Gauss hypergeometric function and series formula, namely

(tk + ck)−ρ = c−kρ
∞

∑
q=0

(ρ)q

q!

(
− tk

ck

)q

in Equation (15), we get

=
[w/u]

∑
s=0

∑
n≥1

2n (−w)us Aw,s ys zn

(p2 + n2)τ+1 s!

× x−ϑ−ϕ

Γ(ϑ)

∞

∑
l=0

(ϑ + ϕ)l (−η)l
(ϑ)l l!

x−l
∞

∑
q=0

(ρ + υs− δn)q

q!
c−k(ρ+υs−δn)

(
− 1

ck

)q

×
∫ x

0
tλ+µs+hn+kq(x− t)ϑ+l−1dt.

On interchanging the order of integration and summation, which is valid under the given
conditions, evaluating the inner integral by means of the formula

∫ x

0
tλ+kq (x− t)ϑ+p−1 dt = xϑ+λ+p+kq Γ (ϑ + p) Γ (λ + kq + 1)

Γ (ϑ + p + λ + kq + 1)
, (16)

and performing some simplification, we get

=
[w/u]

∑
s=0

∑
n≥1

2n (−w)us Aw,s ys zn

(p2 + n2)τ+1 s! cR xT−ϕ

×
∞

∑
l=0

(ϑ + ϕ)l (−η)l
(T + ϑ + kq + 1)l l!

∞

∑
q=0

(ρ + υs− δn)q

q!
Γ (T + 1 + kq)

Γ (T + ϑ + kq + 1)

(
− xk

ck

)q

. (17)

Now, by employing the Gauss theorem and multiplication formula (see, Rainville ([25],
pp. 49, 24–29)) in Equation (17), we arrive at the right-hand side of Equation (14).

Again, by considering the another function in the form

f (t) = tλ(tk + ck)−ρ Su
w[ytµ(tk + ck)−υ] Sτ

(
p; zt−h(tk + ck)−δ

)
(18)

we deduce the following result:

Theorem 2. Let <(ϑ) > 0, λ > 0, k = 1, 2, 3, . . ., where c is a positive number and ρ is a complex number,
then there holds the relation

(
Iϑ,ϕ,η
− f

)
(x) =

[w/u]

∑
s=0

∑
n≥1

2n (−w)us Aw,s ys zn

(p2 + n2)τ+1 s! cR xT′−ϕ

× Γ(ϕ− T′)Γ(η − T′)
Γ(−T′)Γ(ϑ + ϕ + η − T′)

× 2k+1F2k

 ρ + υs− δn, ∆(k, T′ + 1), ∆(k, T′ − ϑ− ϕ− η + 1);
− xk

ck

∆(k, T′ − η + 1), ∆(k, T′ − ϕ + 1);

 . (19)

Here, c is a positive number and ρ, µ, υ, h, δ are complex numbers, k = 1, 2, 3, . . ., and T′ = λ + µs− hn.
The result in Equation (19) is valid for <(ϑ) > 0, < (λ + µs− hn) > 0, u is an arbitrary positive integer and
the coefficients Aw,s(w, s ≥ 0) are arbitrary constants, real or complex.
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Proof. Suppose ` is the left-hand side of Equation (19), then we can write

` =
[w/u]

∑
s=0

∑
n≥1

2n (−w)us Aw,s ys zn

(p2 + n2)τ+1 s!

× 1
Γ(ϑ)

∫ ∞

x
(t− x)ϑ−1t−ϑ−ϕ

2F1(ϑ + ϕ,−η; ϑ; 1− x/t)tλ+µs−hn(tk + ck)−(ρ+υs−δn)dt. (20)

Following a similar fashion as in the proof of Theorem 1, expressing the series expansion for the

Gauss hypergeometric function and binomial series
(

tk + ck
)−ρ

, interchanging the order of integration
and summation, evaluating the inner integral by means of the formula∫ ∞

x
tλ−ϑ−ϕ−n+kq (t− x)ϑ+n−1 dt = xλ−ϕ+kq Γ (ϑ + n) Γ (ϕ− λ− kq)

Γ (ϑ + ϕ + n− λ− kq)
, (21)

using the relation (ϑ)n = (−1)n

(1−ϑ)n
, and further employing the Gauss theorem and multiplication formula,

we easily obtain the right-hand side of Equation (19).

In a different manner, on setting ρ = υ = δ = 0, y = z = 1 and λ = λ− 1 in Equations (13)
and (18), and using the Hadamard product in Equation (8), then in view of Equations (1) and (5),
we attain the following typical cases of Theorems 1 and 2, respectively.

Corollary 1. Let ϑ, ϕ, γ, λ ∈ C and λ > 0, τ > 0 p ∈ R be such that <(ϑ) > 0 and <(λ) > max[0,<(ϕ−
γ)]. Then, the following result holds true:

(
Iϑ,ϕ,γ
0+ f

)
(x) = xλ+h−ϕ−1

[w/u]

∑
s=0

(−w)us Aw,s xµs

s!
Sτ

(
p; xh

)

× 3ψ2

 (λ + µs + h, h), (λ + η − ϕ + µs + h, h), (1, 1);
xh

(λ− ϕ + µs + h, h), (λ + ϑ + η + µs + h, h);

 . (22)

Corollary 2. Let ϑ, ϕ, γ, λ ∈ C and λ > 0, τ > 0 p ∈ R be such that <(ϑ) > 0 and <(λ) < 1 +

min[<(ϕ),<(γ)]. Then, the following result holds true:

(
Iϑ,ϕ,γ
− f

)
(x) = xλ+h−ϕ−1

[w/u]

∑
s=0

(−w)us Aw,s xµs

s!
Sτ

(
p; x−h

)

× 3ψ2

 (1− λ− µs + ϕ + h, h), (1− λ− µs + η + h, h), (1, 1);
1
xh

(1− λ− µs + h, h), (1− λ + ϑ + ϕ + η − µs + h, h);

 . (23)

Remark 1. If we set w = 0, A0,0 = 1 then Su
0 [x]→ 1 in Corollaries 1 and 2, we can deduce the known result

given by Sexana and Parmar ([22], Equations (31) and (33)).

3. Interesting Special Cases

(I) When ϕ = −ϑ, the operators in Equations (9) and (11) coincide with the classical
Riemann–Liouville fractional integrals of order ϑ ∈ C with x > 0 (see, e.g., [26]) as follows(

Iϑ,−ϑ,η
0+ f

)
(x) =

(
Iϑ
0+ f

)
(x) =

1
Γ(ϑ)

∫ x

0
(x− t)ϑ−1 f (t)dt, (24)
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(
Iϑ,−ϑ,η
− f

)
(x) =

(
Iϑ
− f
)
(x) =

1
Γ(ϑ)

∫ ∞

x
(t− x)ϑ−1 f (t)dt. (25)

In view of the above, we can write

(
Iϑ
0+ f

)
(x) =

[w/u]

∑
s=0

∑
n≥1

2n (−w)us Aw,s ys zn

(p2 + n2)τ+1 s! cR xT+ϑ

× Γ(T + 1)
Γ(T + ϑ + 1) k+1Fk

 ρ + υs− δn, ∆(k, T + 1);
− xk

ck

∆(k, T + 1 + ϑ);

 (26)

and (
Iϑ
− f
)
(x) =

[w/u]

∑
s=0

∑
n≥1

2n (−w)us Aw,s ys zn

(p2 + n2)τ+1 s! cR xT′+ϑ

× Γ(−T′ − ϑ)

Γ(−T′) k+1Fk

 ρ + υs− δn, ∆(k, T′ + 1);
− xk

ck

(k, T′ + ϑ + 1);

 . (27)

(II) For ϕ = 0, the operators in Equations (9) and (11) yield the so-called Erdélyi–Kober integrals
of order ϑ ∈ C with x > 0 (see, e.g., [26]) as under:

(
Iϑ,0,η
0+ f

)
(x) =

(
I+η,ϑ f

)
(x) =

x−ϑ−η

Γ(ϑ)

∫ x

0
(x− t)ϑ−1tη f (t)dt, (28)

(
Iϑ,0,η
− f

)
(x) =

(
K−η,ϑ f

)
(x) =

xη

Γ(ϑ)

∫ ∞

x
(t− x)ϑ−1t−ϑ−η f (t)dt. (29)

Following the above relations, we have

(
I+η,ϑ f

)
(x) =

[w/u]

∑
s=0

∑
n≥1

2n (−w)us Aw,s ys zn

(p2 + n2)τ+1 s! cR xT

× Γ(T + η + 1)
Γ(T + ϑ + η + 1) k+1Fk

 ρ + υs− δn, ∆(k, T + η + 1);
− xk

ck

∆(k, T + ϑ + η + 1);

 (30)

and (
K−η,ϑ f

)
(x) =

[w/u]

∑
s=0

∑
n≥1

2n (−w)us Aw,s ys zn

(p2 + n2)τ+1 s! cR xT′

× Γ(η − T′)
Γ(ϑ + η − T′) k+1Fk

 ρ + υs− δn, ∆(k, T′ − ϑ− η + 1);
− xk

ck

∆(k, T′ − η + 1);

 . (31)

4. Conclusions

The concept of fractional calculus has been singled out as an outstanding mathematical tool for
modelling of relevant systems in various fields of science and engineering. Particularly, the image
formulas involving various special functions plays an important role for evaluating the integrals
and for providing solution of fractional differential and integral equations. Here, certain generalized
fractional integrals of Saigo’s type connected with the product of Srivastava’s polynomials and the
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Mathieu series have been investigated. Analogous results associated with Riemann–Liouville and
Erdélyi–Kober fractional integral operators, which have been depicted in corollaries, are also discussed.
The results presented in this article are easily converted in terms of a similar type of new interesting
integrals with different arguments after some suitable parametric replacements. Further, we conclude
with the remark that suitably assigning values to the bounded sequence Aw,s (w, s ≥ 0), the image
formulas given in Theorem 1 and 2 being of general nature, will lead to several integrals involving
product of variety orthogonal polynomials and generalized Mathieu series.
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