Orthogonality Properties of the Pseudo-Chebyshev Functions (Variations on a Chebyshev’s Theme)
Abstract
:1. Introduction
2. Chebyshev Polynomials
3. First- and Second-Kind Pseudo-Chebyshev Functions
Definitions
4. Third- and Fourth-Kind Chebyshev Polynomials
Definitions
5. Third- and Fourth-Kind Pseudo-Chebyshev Functions
5.1. Definitions
5.2. Recurrence Relations
6. Orthogonality Properties
6.1. Orthogonality of the and
6.2. Orthogonality of the and
7. Proofs of Equations (21) and (23)
8. Representation of the Dirichlet Kernel
Summation of Trigonometric Series
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ricci, P.E. Complex spirals and pseudo-Chebyshev polynomials of fractional degree. Symmetry 2018, 10, 671. [Google Scholar] [CrossRef]
- Brandi, P.; Ricci, P.E. Some properties of the pseudo-Chebyshev polynomials of half-integer degree. J. Class. Anal. 2019. submitted. [Google Scholar]
- Mason, J.C.; Handscomb, D.C. Chebyshev Polynomials; Chapman and Hall: New York, NY, USA; CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Rivlin, T.J. The Chebyshev Polynomials; J. Wiley and Sons: New York, NY, USA, 1974. [Google Scholar]
- Ricci, P.E. Alcune osservazioni sulle potenze delle matrici del secondo ordine e sui polinomi di Tchebycheff di seconda specie, Atti Accad. Sci. Torino 1975, 109, 405–410. [Google Scholar]
- Ricci, P.E. Sulle potenze di una matrice. Rend. Mater. 1976, 9, 179–194. [Google Scholar]
- Ricci, P.E. Una proprietà iterativa dei polinomi di Chebyshev di prima specie in più variabili. Rend. Mater. Appl. 1986, 6, 555–563. [Google Scholar]
- Boyd, J.P. Chebyshev and Fourier Spectral Methods, 2nd ed.; Dover: Mineola, NY, USA, 2001. [Google Scholar]
- Cesarano, C. Identities and generating functions on Chebyshev polynomials. Georgian Math. J. 2012, 19, 427–440. [Google Scholar] [CrossRef]
- Cesarano, C. Integral representations and new generating functions of Chebyshev polynomials. Hacet. J. Math. Stat. 2015, 44, 535–546. [Google Scholar] [CrossRef]
- Cesarano, C.; Cennamo, G.M.; Placidi, L. Operational methods for Hermite polynomials with applications. WSEAS Trans. Math. 2014, 13, 925–931. [Google Scholar]
- Cesarano, C. Generalized Chebyshev polynomials. Hacet. J. Math. Stat. 2014, 43, 731–740. [Google Scholar]
- Cesarano, C.; Fornaro, C. Operational identities on generalirized two-variable Chebyshev polynomials. Int. J. Pure Appl. Math. 2015, 100, 59–74. [Google Scholar] [CrossRef]
- Cesarano, C.; Fornaro, C. A note on two-variable Chebyshev polynomials. Georgian Math. J. 2017, 24, 339–349. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ricci, P.E.; Natalini, P. A Family of Complex Appell Polynomial Sets. Real Acad. Sci. Exact. Fis Nat. Ser. A Math. 2018. to appear. [Google Scholar] [CrossRef]
- Aghigh, K.; Masjed-Jamei, M.; Dehghan, M. A survey on third and fourth kind of Chebyshev polynomials and their applications. Appl. Math. Comput. 2008, 199, 2–12. [Google Scholar] [CrossRef]
- Doha, E.H.; Abd-Elhameed, W.M.; Alsuyuti, M.M. On using third and fourth kinds Chebyshev polynomials for solving the integrated forms of high odd-order linear boundary value problems. J. Egypt. Math. Soc. 2014. to appear. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Kwon, J. Sums of finite products of Chebyshev polynomials of the third and fourth kinds. Adv. Differ. Equ. 2018, 2018, 283. [Google Scholar] [CrossRef]
- Carleson, L. On convergence and growth of partial sums of Fourier series. Acta Math. 1966, 116, 135–157. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Lee, S.H. Some identities for Bernoulli polynomials involving Chebyshev polynomials. J. Comput. Anal. Appl. 2014, 16, 172–180. [Google Scholar]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Kwon, J. Representing sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials by Chebyshev polynomials. Mathematics 2019, 7, 26. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesarano, C.; Ricci, P.E. Orthogonality Properties of the Pseudo-Chebyshev Functions (Variations on a Chebyshev’s Theme). Mathematics 2019, 7, 180. https://doi.org/10.3390/math7020180
Cesarano C, Ricci PE. Orthogonality Properties of the Pseudo-Chebyshev Functions (Variations on a Chebyshev’s Theme). Mathematics. 2019; 7(2):180. https://doi.org/10.3390/math7020180
Chicago/Turabian StyleCesarano, Clemente, and Paolo Emilio Ricci. 2019. "Orthogonality Properties of the Pseudo-Chebyshev Functions (Variations on a Chebyshev’s Theme)" Mathematics 7, no. 2: 180. https://doi.org/10.3390/math7020180
APA StyleCesarano, C., & Ricci, P. E. (2019). Orthogonality Properties of the Pseudo-Chebyshev Functions (Variations on a Chebyshev’s Theme). Mathematics, 7(2), 180. https://doi.org/10.3390/math7020180