A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers
Abstract
:1. Introduction and Preliminaries
2. Main Result and Its Consequences
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Unive. Babeş Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Rational Mech. Anal. 1969, 32, 100–112. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S. Estimate for initial MacLaurin of general subclasses of bi-univalent functions of complex order involving subordination. Honam Math. J. 2018, 40, 391–400. [Google Scholar]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Panam. Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Sokół, J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapientiae Math. 2018, 10, 70–84. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sakar, F.M.; Güney, H.Ö. Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination. Filomat 2018, 32, 1313–1322. [Google Scholar] [CrossRef]
- Faber, G. Über polynomische entwickelungen. Math. Ann. 1903, 57, 1569–1573. [Google Scholar] [CrossRef]
- Grunsky, H. Koeffizientenbedingungen für schlicht abbildende meromorphe funktionen. Math. Zeit. 1939, 45, 29–61. [Google Scholar] [CrossRef]
- Airault, H.; Bouali, H. Differential calculus on the Faber polynomial. Bull. Sci. Math. 2006, 179–222. [Google Scholar] [CrossRef]
- Airault, H.; Ren, J. An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sci. Math. 2002, 126, 343–367. [Google Scholar] [CrossRef] [Green Version]
- Airault, H. Symmetric Sums Associated to the Factorization of Grunsky Coefficients. In Proceedings of the Conference, Groups and Symmetries, Montreal, QC, Canada, 19 April 2007. [Google Scholar]
- Altınkaya, Ş.; Yalçın, S. Faber polynomial coefficient estimates for bi-univalent functions of complex order based on subordinate conditions involving of the Jackson (p,q)-derivate operator. Miskolc Math. Notes 2017, 18, 555–572. [Google Scholar] [CrossRef]
- Deniz, E.; Jahangiri, J.M.; Hamidi, S.G.; Kına, S.S. Faber polynomial coefficients for generalized bi–subordinate functions of complex order. J. Math. Inequal. 2018, 12, 645–653. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. C. R. Math. 2016, 354, 365–370. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 2018, 44, 149–157. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA, 1983. [Google Scholar]
- Komatu, Y. On analytic prolongation of a family of operators. Mathematica 1990, 32, 141–145. [Google Scholar]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Salagean, G.S. Subclasses of univalent functions. In Proceedings of the “Complex Analysis—Fifth Romanian-Finnish Seminar”, Bucharest, Romania, 28 June–2 July 1983; pp. 362–372. [Google Scholar]
- Uralegaddi, B.A.; Somanatha, C. Certain classes of univalent functions. In Current Topics in Analytic Function Theory; World Scientific Publishing Company: Singapore, 1922; pp. 371–374. [Google Scholar]
- Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 996–1002. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altınkaya, Ş.; Yalçın, S.; Çakmak, S. A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers. Mathematics 2019, 7, 160. https://doi.org/10.3390/math7020160
Altınkaya Ş, Yalçın S, Çakmak S. A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers. Mathematics. 2019; 7(2):160. https://doi.org/10.3390/math7020160
Chicago/Turabian StyleAltınkaya, Şahsene, Sibel Yalçın, and Serkan Çakmak. 2019. "A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers" Mathematics 7, no. 2: 160. https://doi.org/10.3390/math7020160
APA StyleAltınkaya, Ş., Yalçın, S., & Çakmak, S. (2019). A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers. Mathematics, 7(2), 160. https://doi.org/10.3390/math7020160