A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers
Abstract
1. Introduction and Preliminaries
2. Main Result and Its Consequences
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Unive. Babeş Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Rational Mech. Anal. 1969, 32, 100–112. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S. Estimate for initial MacLaurin of general subclasses of bi-univalent functions of complex order involving subordination. Honam Math. J. 2018, 40, 391–400. [Google Scholar]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Panam. Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Sokół, J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapientiae Math. 2018, 10, 70–84. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sakar, F.M.; Güney, H.Ö. Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination. Filomat 2018, 32, 1313–1322. [Google Scholar] [CrossRef]
- Faber, G. Über polynomische entwickelungen. Math. Ann. 1903, 57, 1569–1573. [Google Scholar] [CrossRef]
- Grunsky, H. Koeffizientenbedingungen für schlicht abbildende meromorphe funktionen. Math. Zeit. 1939, 45, 29–61. [Google Scholar] [CrossRef]
- Airault, H.; Bouali, H. Differential calculus on the Faber polynomial. Bull. Sci. Math. 2006, 179–222. [Google Scholar] [CrossRef]
- Airault, H.; Ren, J. An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sci. Math. 2002, 126, 343–367. [Google Scholar] [CrossRef]
- Airault, H. Symmetric Sums Associated to the Factorization of Grunsky Coefficients. In Proceedings of the Conference, Groups and Symmetries, Montreal, QC, Canada, 19 April 2007. [Google Scholar]
- Altınkaya, Ş.; Yalçın, S. Faber polynomial coefficient estimates for bi-univalent functions of complex order based on subordinate conditions involving of the Jackson (p,q)-derivate operator. Miskolc Math. Notes 2017, 18, 555–572. [Google Scholar] [CrossRef]
- Deniz, E.; Jahangiri, J.M.; Hamidi, S.G.; Kına, S.S. Faber polynomial coefficients for generalized bi–subordinate functions of complex order. J. Math. Inequal. 2018, 12, 645–653. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. C. R. Math. 2016, 354, 365–370. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 2018, 44, 149–157. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA, 1983. [Google Scholar]
- Komatu, Y. On analytic prolongation of a family of operators. Mathematica 1990, 32, 141–145. [Google Scholar]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Salagean, G.S. Subclasses of univalent functions. In Proceedings of the “Complex Analysis—Fifth Romanian-Finnish Seminar”, Bucharest, Romania, 28 June–2 July 1983; pp. 362–372. [Google Scholar]
- Uralegaddi, B.A.; Somanatha, C. Certain classes of univalent functions. In Current Topics in Analytic Function Theory; World Scientific Publishing Company: Singapore, 1922; pp. 371–374. [Google Scholar]
- Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 996–1002. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altınkaya, Ş.; Yalçın, S.; Çakmak, S. A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers. Mathematics 2019, 7, 160. https://doi.org/10.3390/math7020160
Altınkaya Ş, Yalçın S, Çakmak S. A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers. Mathematics. 2019; 7(2):160. https://doi.org/10.3390/math7020160
Chicago/Turabian StyleAltınkaya, Şahsene, Sibel Yalçın, and Serkan Çakmak. 2019. "A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers" Mathematics 7, no. 2: 160. https://doi.org/10.3390/math7020160
APA StyleAltınkaya, Ş., Yalçın, S., & Çakmak, S. (2019). A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers. Mathematics, 7(2), 160. https://doi.org/10.3390/math7020160