# Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method

^{1}

^{2}

^{3}

^{4}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Local Convergence Analysis

- (a1)
- $F:\Omega \subseteq {B}_{1}\to {B}_{2}$ is a continuously differentiable operator and $[\xb7,\xb7\phantom{\rule{0.166667em}{0ex}};\phantom{\rule{0.166667em}{0ex}}F]:\Omega \times \Omega \to \mathcal{L}({B}_{1},{B}_{2})$ is a first divided difference operator of F.
- (a2)
- There exists ${x}^{\ast}\in \Omega $ so that $F\left({x}^{\ast}\right)=0$ and ${F}^{\prime}{\left({x}^{\ast}\right)}^{-1}\in \mathcal{L}({B}_{2},{B}_{1}).$
- (a3)
- There exists a continuous and nondecreasing function ${w}_{0}\phantom{\rule{0.166667em}{0ex}}:{\mathbb{R}}_{+}\cup \left\{0\right\}\to {\mathbb{R}}_{+}\cup \left\{0\right\}$ with ${w}_{0}\left(0\right)=0$ such that, for each $x\in \Omega $,$$\parallel {F}^{\prime}{\left({x}^{\ast}\right)}^{-1}([x,y\phantom{\rule{0.166667em}{0ex}};\phantom{\rule{0.166667em}{0ex}}F]-{F}^{\prime}\left({x}^{\ast}\right))\parallel \le {w}_{0}(\parallel x-{x}^{\ast}\parallel ,\parallel y-{x}^{\ast}\parallel ).$$
- (a4)
- Let ${\Omega}_{0}=\Omega \cap U({x}^{\ast},r)$, where r has been defined before. There exists continuous and nondecreasing function ${v}_{0}:[0,r)\to {\mathbb{R}}_{+}\cup \left\{0\right\}$ such that, for each $x,y\in {\Omega}_{0}$,$$\parallel \beta [x,{x}^{\ast}\phantom{\rule{0.166667em}{0ex}};\phantom{\rule{0.166667em}{0ex}}F]\parallel \le {v}_{0}(\parallel {x}_{0}-{x}^{\ast}\parallel ),$$$$\overline{U}({x}^{\ast},r)\subset \Omega ,$$$$\parallel I+\beta [x,{x}^{\ast}\phantom{\rule{0.166667em}{0ex}};\phantom{\rule{0.166667em}{0ex}}F]\parallel \le p.$$
- (a5)
- $\overline{U}({x}^{\ast},{r}_{3})\subseteq \Omega $ and $\parallel {F}^{\prime}{\left({x}^{\ast}\right)}^{-1}{F}^{\prime}\left(x\right)\parallel \le M$.
- (a6)
- Let $R\ge {r}_{3}$ and set ${\Omega}_{1}=\Omega \cap \overline{U}({x}^{\ast},R)$, ${\int}_{0}^{1}{w}_{0}\left(\theta R\right)d\theta <1.$

**Theorem**

**1.**

**Proof.**

## 3. Numerical Examples

**Example**

**1.**

**Example**

**2.**

**Example**

**3.**

## 4. Basins of Attraction

**Test problem 1.**Consider the polynomial ${p}_{1}\left(z\right)={z}^{4}-6{z}^{2}+8$ that has four simple zeros $\{\pm 2,\pm 1.414\dots \}$. We use a grid of $400\times 400$ points in a rectangle $R\in \mathbb{C}$ of size $[-3,3]\times [-3,3]$ and allocate the red, blue, green and yellow colors to the basins of attraction of these four zeros. Basins obtained for the method (3) are shown in Figure 1(i)–(iii) corresponding to $\beta ={10}^{-2},\phantom{\rule{0.166667em}{0ex}}{10}^{-4},\phantom{\rule{0.166667em}{0ex}}{10}^{-9}$. Observing the behavior of the method, we say that the divergent zones (black zones) are becoming smaller with the decreasing value of $\beta $.

**Problem 2**. Let us take the polynomial ${p}_{2}\left(z\right)={z}^{3}-z$ having zeros $\{0,\pm 1\}$. In this case, we also consider a rectangle $R=[-3,3]\times [-3,3]\in \mathbb{C}$ with $400\times 400$ grid points and allocate the colors red, green and blue to each point in the basin of attraction of $-1$, 0 and 1, respectively. Basins obtained for the method (3) are displayed in Figure 2(i)–(iii) for the parameter values $\beta ={10}^{-2},\phantom{\rule{0.166667em}{0ex}}{10}^{-4},\phantom{\rule{0.166667em}{0ex}}{10}^{-9}$. Notice that the divergent zones are becoming smaller in size as parameter $\beta $ assumes smaller values.

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Banach, S. Théorie des Opérations Linéare; Monografje Matematyczne: Warszawna, Poland, 1932. [Google Scholar]
- Gupta, V.; Bora, S.N.; Nieto, J.J. Dhage iterative principle for quadratic perturbation of fractional boundary value problems with finite delay. Math. Methods Appl. Sci.
**2019**, 42, 4244–4255. [Google Scholar] [CrossRef] - Jäntschi, L.; Bálint, D.; Bolboacă, S. Multiple linear regressions by maximizing the likelihood under assumption of generalized Gauss-Laplace distribution of the error. Comput. Math. Methods Med.
**2016**, 2016, 8578156. [Google Scholar] [CrossRef] [PubMed] - Kitkuan, D.; Kumam, P.; Padcharoen, A.; Kumam, W.; Thounthong, P. Algorithms for zeros of two accretive operators for solving convex minimization problems and its application to image restoration problems. J. Comput. Appl. Math.
**2019**, 354, 471–495. [Google Scholar] [CrossRef] - Sachs, M.; Leimkuhler, B.; Danos, V. Langevin dynamics with variable coefficients and nonconservative forces: From stationary states to numerical methods. Entropy
**2017**, 19, 647. [Google Scholar] [CrossRef] - Behl, R.; Cordero, A.; Torregrosa, J.R.; Alshomrani, A.S. New iterative methods for solving nonlinear problems with one and several unknowns. Mathematics
**2018**, 6, 296. [Google Scholar] [CrossRef] - Argyros, I.K.; George, S. Unified semi-local convergence for k-step iterative methods with flexible and frozen linear operator. Mathematics
**2018**, 6, 233. [Google Scholar] [CrossRef] - Argyros, I.K.; Hilout, S. Computational Methods in Nonlinear Analysis; World Scientific Publishing Company: Hackensack, NJ, USA, 2013. [Google Scholar]
- Argyros, I.K. Computational Theory of Iterative Methods, Series: Studies in Computational Mathematics 15; Chui, C.K., Wuytack, L., Eds.; Elsevier: New York, NY, USA, 2007. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Potra, F.A.; Ptak, V. Nondiscrete Induction and Iterative Process; Research Notes in Mathematics; Pitman: Boston, MA, USA, 1984. [Google Scholar]
- Kantrovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Candela, V.; Marquina, A. Recurrence relations for rational cubic methods I: The Halley method. Computing
**1990**, 44, 169–184. [Google Scholar] [CrossRef] - Candela, V.; Marquina, A. Recurrence relations for rational cubic methods II: The Chebyshev method. Computing
**1990**, 45, 355–367. [Google Scholar] [CrossRef] - Hasanov, V.I.; Ivanov, I.G.; Nebzhibov, G. A new modification of Newton’s method. Appl. Math. Eng.
**2002**, 27, 278–286. [Google Scholar] - Kou, J.S.; Li, Y.T.; Wang, X.H. A modification of Newton’s method with third-order convergence. Appl. Math. Comput.
**2006**, 181, 1106–1111. [Google Scholar] [CrossRef] - Ezquerro, J.A.; Hernández, M.A. Recurrence relation for Chebyshev-type methods. Appl. Math. Optim.
**2000**, 41, 227–236. [Google Scholar] [CrossRef] - Chun, C.; Stănică, P.; Neta, B. Third-order family of methods in Banach spaces. Comput. Math. Appl.
**2011**, 61, 1665–1675. [Google Scholar] [CrossRef] [Green Version] - Hernández, M.A.; Salanova, M.A. Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method. J. Comput. Appl. Math.
**2000**, 126, 131–143. [Google Scholar] [CrossRef] [Green Version] - Amat, S.; Hernández, M.A.; Romero, N. Semilocal convergence of a sixth order iterative method for quadratic equations. Appl. Numer. Math.
**2012**, 62, 833–841. [Google Scholar] [CrossRef] - Babajee, D.K.R.; Dauhoo, M.Z.; Darvishi, M.T.; Barati, A. A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule. Appl. Math. Comput.
**2008**, 200, 452–458. [Google Scholar] [CrossRef] - Ren, H.; Wu, Q. Convergence ball and error analysis of a family of iterative methods with cubic convergence. Appl. Math. Comput.
**2009**, 209, 369–378. [Google Scholar] [CrossRef] - Ren, H.; Argyros, I.K. Improved local analysis for certain class of iterative methods with cubic convergence. Numer. Algor
**2012**, 59, 505–521. [Google Scholar] [CrossRef] - Argyros, I.K.; Hilout, S. Weaker conditions for the convergence of Newton’s method. J. Complexity
**2012**, 28, 364–387. [Google Scholar] [CrossRef] - Gutiérrez, J.M.; Magreñán, A.A.; Romero, N. On the semilocal convergence of Newton–Kantorovich method under center-Lipschitz conditions. Appl. Math. Comput.
**2013**, 221, 79–88. [Google Scholar] [CrossRef] - Argyros, I.K.; Sharma, J.R.; Kumar, D. Local convergence of Newton–Gauss methods in Banach space. SeMA
**2016**, 74, 429–439. [Google Scholar] [CrossRef] - Behl, R.; Salimi, M.; Ferrara, M.; Sharifi, S.; Alharbi, S.K. Some real-life applications of a newly constructed derivative free iterative scheme. Symmetry
**2019**, 11, 239. [Google Scholar] [CrossRef] - Salimi, M.; Nik Long, N.M.A.; Sharifi, S.; Pansera, B.A. A multi-point iterative method for solving nonlinear equations with optimal order of convergence. Jpn. J. Ind. Appl. Math.
**2018**, 35, 497–509. [Google Scholar] [CrossRef] - Sharma, J.R.; Kumar, D. A fast and efficient composite Newton-Chebyshev method for systems of nonlinear equations. J. Complexity
**2018**, 49, 56–73. [Google Scholar] [CrossRef] - Sharma, J.R.; Arora, H. On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput.
**2013**, 222, 497–506. [Google Scholar] [CrossRef] - Lofti, T.; Sharifi, S.; Salimi, M.; Siegmund, S. A new class of three-point methods with optimal convergence order eight and its dynamics. Numer. Algor.
**2015**, 68, 261–288. [Google Scholar] [CrossRef] - Sharma, J.R.; Kumar, D.; Jäntschi, L. On a reduced cost higher order Traub–Steffensen-like method for nonlinear systems. Symmetry
**2019**, 11, 891. [Google Scholar] [CrossRef] - Grabnier, J.V. Who gave you the epsilon? Cauchy and the origins of rigorous calculus. Am. Math. Mon.
**1983**, 90, 185–194. [Google Scholar] [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kumar, D.; Sharma, J.R.; Jäntschi, L.
Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method. *Mathematics* **2019**, *7*, 919.
https://doi.org/10.3390/math7100919

**AMA Style**

Kumar D, Sharma JR, Jäntschi L.
Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method. *Mathematics*. 2019; 7(10):919.
https://doi.org/10.3390/math7100919

**Chicago/Turabian Style**

Kumar, Deepak, Janak Raj Sharma, and Lorentz Jäntschi.
2019. "Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method" *Mathematics* 7, no. 10: 919.
https://doi.org/10.3390/math7100919