Numerical Solution of the Cauchy-Type Singular Integral Equation with a Highly Oscillatory Kernel Function
Abstract
:1. Introduction
- 1: The solution for is unbounded at both end points :Equation (2) gets infinitely many solutions but is unique for the above condition.
- 2: The solution is bounded for at and unbounded at :Equation (2) gets a unique solution.
- 3: The solution is bounded at both end points for :Equation (2) has no solution unless it satisfies the following condition:
2. Description of the Method
Computation of Moments
3. Error Analysis
- (i) if is analytic with in an ellipse (Bernstein ellipse) with foci and major and minor semiaxis lengths summing to , then:
- (ii) if has an absolutely continuous derivative and a derivative of bounded variation on [−1,1] for some , then for :
4. Numerical Examples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Polyanin, A.D.; Manzhirov, A.V. Handbook of Integral Equations; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Li, J.; Wang, X.; Xiao, S.; Wang, T. A rapid solution of a kind of 1D Fredholm oscillatory integral equation. J. Comput. Appl. Math. 2012, 236, 2696–2705. [Google Scholar] [CrossRef] [Green Version]
- Ursell, F. Integral equations with a rapidly oscillating kernel. J. Lond. Math. Soc. 1969, 1, 449–459. [Google Scholar] [CrossRef]
- Yalcinbas, S.; Aynigul, M. Hermite series solutions of linear Fredholm integral equations. Math. Comput. Appl. 2011, 16, 497–506. [Google Scholar]
- Fang, C.; He, G.; Xiang, S. Hermite-Type Collocation Methods to Solve Volterra Integral Equations with Highly Oscillatory Bessel Kernels. Symmetry 2019, 11, 168. [Google Scholar] [CrossRef]
- Babolian, E.; Hajikandi, A.A. The approximate solution of a class of Fredholm integral equations with a weakly singular kernel. J. Comput. Appl. Math. 2011, 235, 1148–1159. [Google Scholar] [CrossRef]
- Aimi, A.; Diligenti, M.; Monegato, G. Numerical integration schemes for the BEM solution of hypersingular integral equations. Int. J. Numer. Method Eng. 1999, 45, 1807–1830. [Google Scholar] [CrossRef]
- Beyrami, H.; Lotfi, T.; Mahdiani, K. A new efficient method with error analysis for solving the second kind Fredholm integral equation with Cauchy kernel. J. Comput. Appl. Math. 2016, 300, 385–399. [Google Scholar] [CrossRef]
- Setia, A. Numerical solution of various cases of Cauchy type singular integral equation. Appl. Math. Comput. 2014, 230, 200–207. [Google Scholar] [CrossRef]
- Eshkuvatov, Z.K.; Long, N.N.; Abdulkawi, M. Approximate solution of singular integral equations of the first kind with Cauchy kernel. Appl. Math. Lett. 2009, 22, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Cuminato, J.A. Uniform convergence of a collocation method for the numerical solution of Cauchy-type singular integral equations: A generalization. IMA J. Numer. Anal. 1992, 12, 31–45. [Google Scholar] [CrossRef]
- Cuminato, J.A. On the uniform convergence of a perturbed collocation method for a class of Cauchy integral equations. Appl. Numer. Math. 1995, 16, 439–455. [Google Scholar] [CrossRef]
- Karczmarek, P.; Pylak, D.; Sheshko, M.A. Application of Jacobi polynomials to approximate solution of a singular integral equation with Cauchy kernel. Appl. Math. Comput. 2006, 181, 694–707. [Google Scholar] [CrossRef]
- Lifanov, I.K. Singular Integral Equations and Discrete Vortices; Walter de Gruyter GmbH: Berlin, Germany, 1996. [Google Scholar]
- Ladopoulos, E.G. Singular Integral Equations: Linear and Non-Linear Theory and Its Applications in Science and Engineering; Springer Science and Business Media: Berlin, Germany, 2013. [Google Scholar]
- Muskhelishvili, N.I. Some Basic Problems of the Mathematical Theory of Elasticity; Springer Science and Business Media: Berlin, Germany, 2013. [Google Scholar]
- Martin, P.A.; Rizzo, F.J. On boundary integral equations for crack problems. Proc. R. Soc. Lond. A Math. Phys. Sci. 1989, 421, 341–355. [Google Scholar] [CrossRef]
- Cuminato, J.A. Numerical solution of Cauchy-type integral equations of index- 1 by collocation methods. Adv. Comput. Math. 1996, 6, 47–64. [Google Scholar] [CrossRef]
- Asheim, A.; Huybrechs, D. Complex Gaussian quadrature for oscillatory integral transforms. IMA J. Num. Anal. 2013, 33, 1322–1341. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; An, C. On evaluation of Bessel transforms with oscillatory and algebraic singular integrands. J. Comput. Appl. Math. 2014, 264, 71–81. [Google Scholar] [CrossRef]
- Erdelyi, A. Asymptotic representations of Fourier integrals and the method of stationary phase. SIAM 1955, 3, 17–27. [Google Scholar] [CrossRef]
- Olver, S. Numerical Approximation of Highly Oscillatory Integrals. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2008. [Google Scholar]
- Milovanovic, G.V. Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures. Comput. Math. Appl. 1998, 36, 19–39. [Google Scholar] [CrossRef] [Green Version]
- Dzhishkariani, A.V. The solution of singular integral equations by approximate projection methods. USSR Comput. Math. Math. Phys. 1979, 19, 61–74. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Berghe, G.V. Approximate solution of singular integral equations. Appl. Math. Lett. 2004, 17, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Dezhbord, A.; Lotfi, T.; Mahdiani, K. A new efficient method for cases of the singular integral equation of the first kind. J. Comput. Appl. Math. 2016, 296, 156–169. [Google Scholar] [CrossRef]
- He, G.; Xiang, S. An improved algorithm for the evaluation of Cauchy principal value integrals of oscillatory functions and its application. J. Comput. Appl. Math. 2015, 280, 1–13. [Google Scholar] [CrossRef]
- Trefethen, L.N. C hebyshev Polynomials and Series, Approximation theorey and approximation practice. Soc. Ind. Appl. Math. 2013, 128, 17–19. [Google Scholar]
- Liu, G.; Xiang, S. Clenshaw Curtis type quadrature rule for hypersingular integrals with highly oscillatory kernels. Appl. Math. Comput. 2019, 340, 251–267. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, S. Uniform approximations to Cauchy principal value integrals of oscillatory functions. Appl. Math. Comput. 2009, 215, 1886–1894. [Google Scholar] [CrossRef]
- Piessens, R.; Branders, M. On the computation of Fourier transforms of singular functions. J. Comput. Appl. Math. 1992, 43, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J. The numerical solution of linear recurrence relations. Numer. Math. 1968, 114, 349–360. [Google Scholar] [CrossRef]
- Huybrechs, D.; Vandewalle, S. On the evaluation of highly oscillatory integrals by analytic continuation. Siam J. Numer. Anal. 2006, 44, 1026–1048. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, S. On the evaluation of Cauchy principal value integrals of oscillatory functions. J. Comput. Appl. Math. 2010, 234, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, V.; Graham, I.G.; Smyshlyaev, V.P. Stability and error estimates for Filon Clenshaw Curtis rules for highly oscillatory integrals. IMA J. Numer. Anal. 2011, 31, 1253–1280. [Google Scholar] [CrossRef]
- Xiang, S.; Chen, X.; Wang, H. Error bounds for approximation in Chebyshev points. Numer. Math. 2010, 116, 463–491. [Google Scholar] [CrossRef]
- Xiang, S. Approximation to Logarithmic-Cauchy Type Singular Integrals with Highly Oscillatory Kernels. Symmetry 2019, 11, 728. [Google Scholar] [Green Version]
k | N = 5 | N = 10 | N = 20 |
---|---|---|---|
50 | 4.6387 × 10−9 | 3.9207 × 10−14 | 1.1102 × 10−16 |
100 | 1.0881 × 10−9 | 4.9564 × 10−15 | 0 |
1000 | 3.8093 × 10−11 | 4.0030 × 10−16 | 2.4825 × 10−16 |
10,000 | 5.1593 × 10−13 | 2.2204 × 10−16 | 1.1102 × 10−16 |
k | N = 5 | N = 10 | N = 20 |
---|---|---|---|
50 | 1.1156 × 10−9 | 9.1854 × 10−15 | 1.1102 × 10−16 |
100 | 3.2791 × 10−10 | 5.6610 × 10−16 | 1.1102 × 10−16 |
1000 | 1.7225 × 10−12 | 2.2204 × 10−16 | 2.2204 × 10−16 |
10,000 | 7.3056 × 10−15 | 3.3307 × 10−16 | 3.3307 × 10−16 |
x | Error | ||
---|---|---|---|
−0.6 | 0 | 1.1102 × 10−16 | 4.4409 × 10−16 |
−0.2 | 3.3307 × 10−16 | 2.2204 × 10−16 | 4.4409 × 10−16 |
0.2 | 2.2204 × 10−16 | 4.4409 × 10−16 | 0 |
0.6 | 0 | 2.2204 × 10−16 | 4.4409 × 10−16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
SAIRA; Xiang, S.; Liu, G. Numerical Solution of the Cauchy-Type Singular Integral Equation with a Highly Oscillatory Kernel Function. Mathematics 2019, 7, 872. https://doi.org/10.3390/math7100872
SAIRA, Xiang S, Liu G. Numerical Solution of the Cauchy-Type Singular Integral Equation with a Highly Oscillatory Kernel Function. Mathematics. 2019; 7(10):872. https://doi.org/10.3390/math7100872
Chicago/Turabian StyleSAIRA, Shuhuang Xiang, and Guidong Liu. 2019. "Numerical Solution of the Cauchy-Type Singular Integral Equation with a Highly Oscillatory Kernel Function" Mathematics 7, no. 10: 872. https://doi.org/10.3390/math7100872