Enhanced Recommender System with Sentiment Analysis of Review Text and SBERT Embeddings of Item Descriptions
Abstract
1. Introduction
2. Related Work
2.1. Traditional and Advanced Collaborative Filtering
2.2. Recommendation Systems Based on User Reviews
2.3. Recommendation Systems Based on Attributes of Items
3. Proposed Method
3.1. Attributes of Items and Context of Review
3.2. Feature Vectors of Users and Items
3.3. Prediction Layer
3.3.1. Matrix Factorization (MF)
3.3.2. Neural Collaborative Filtering (NCF)
4. Experimental Results
4.1. Dataset Used
4.2. Evaluation Indicators
4.3. Baseline Model
- Matrix Factorization: This is a model that predicts interactions by learning latent factors from interaction data between users and items and expressing user preferences and item characteristics in a low-dimensional vector space.
- Neural Collaborative Filtering: This is a model that combines the linearity of MF and the nonlinearity of MLP by combining Generalized Matrix Factorization and Multi-layer Perceptron.
4.4. Experimental Setup
4.5. Results
4.5.1. Performance Comparison by Dataset
4.5.2. Ablation Study with Side Information
4.5.3. Recommendation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, M.; Morales, G.D.F.; Gionis, A.; Weber, I. Learning to question: Leveraging user preferences for shopping advice. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 203–211. [Google Scholar] [CrossRef]
- Burke, R.; Felfernig, A.; Goker, M.H. Recommender systems: An overview. AI Mag. 2011, 32, 13–18. [Google Scholar] [CrossRef]
- Schafer, J.B.; Konstan, J.; Riedl, J. Recommender systems in e-commerce. In Proceedings of the 1st ACM conference on Electronic Commerce, Denver, CO, USA, 3–5 November 1999; pp. 158–166. [Google Scholar] [CrossRef]
- Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web, Hong Kong, 1–5 May 2001; pp. 285–295. [Google Scholar] [CrossRef]
- Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. IEEE Comput. 2009, 42, 30–37. [Google Scholar] [CrossRef]
- Wei, J.; He, J.; Chen, K.; Zhou, Y.; Tang, Z. Collaborative filtering and deep learning based recommendation system for cold start items. Expert Syst. Appl. 2017, 69, 29–39. [Google Scholar] [CrossRef]
- Xiangnan, H.; Tao, C.; Min-Yen, K.; Xiao, C. TriRank: Review-aware Explainable Recommendation by Modeling Aspects. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, 18–23 October 2015. [Google Scholar] [CrossRef]
- Srifi, M.; Oussous, A.; Lahcen, A.A.; Mouline, S. Recommender systems based on collaborative filtering using review texts—A survey. Information 2020, 11, 317. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, D.; Lai, J. urCF: User Review Enhanced Collaborative Filtering; AMCIS: Bubendorf, Switzerland, 2014. [Google Scholar]
- Kang, W.S.; Lee, S.; Choi, S.M. A Matrix Factorization-based Recommendation Approach with SBERT Embeddings. J. Korean Inst. Inf. Technol. 2023, 21, 203–211. [Google Scholar] [CrossRef]
- Burke, R. Hybrid recommender systems: Survey and experiments. User Model. User-Adapt. Interact. 2002, 12, 331–370. [Google Scholar] [CrossRef]
- Chen, L.; Chen, G.; Wang, F. Recommender systems based on user reviews: The state of the art. User Model. User-Adapt. Interact. 2015, 25, 99–154. [Google Scholar] [CrossRef]
- Reimers, N.; Gurevych, I. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv 2019, arXiv:1908.10084. [Google Scholar] [CrossRef]
- Ni, J.; Li, J.; McAuley, J. Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, 3–7 November 2019; pp. 188–197. [Google Scholar]
- He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. LightGCN: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual, 25–30 July 2020; pp. 639–648. [Google Scholar] [CrossRef]
- Kang, W.-C.; McAuley, J. Self-attentive sequential recommendation. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 197–206. [Google Scholar]
- Rendle, S. Factorization Machines. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, Australia, 13–17 December 2010; pp. 995–1000. [Google Scholar]
- He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182. [Google Scholar] [CrossRef]
- Terzi, M.; Rowe, M.; Ferrario, M.A.; Whittle, J. Text-based user-knn: Measuring user similarity based on text reviews. In Proceedings of the User Modeling, Adaptation, and Personalization: 22nd International Conference, UMAP 2014, Aalborg, Denmark, 7–11 July 2014; pp. 195–206. [Google Scholar]
- Zoghbi, S.; Vulic, I.; Moens, M.F. Latent Dirichlet allocation for linking user-generated content and e-commerce data. Inf. Sci. 2016, 367, 573–599. [Google Scholar] [CrossRef]
- Qiu, L.; Gao, S.; Cheng, W.; Guo, J. Aspect-based latent factor model by integrating ratings and reviews for recommender system. Knowl.-Based Syst. 2016, 110, 233–243. [Google Scholar] [CrossRef]
- McAuley, J.; Leskovec, J. Hidden factors and hidden topics: Understanding rating dimensions with review text. In Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, 12–16 October 2013; pp. 165–172. [Google Scholar] [CrossRef]
- Kim, D.; Park, C.; Oh, J.; Lee, S.; Yu, H. Convolutional matrix factorization for document context-aware recommendation. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 233–240. [Google Scholar] [CrossRef]
- Shen, R.P.; Zhang, H.R.; Yu, H.; Min, F. Sentiment based matrix factorization with reliability for recommendation. Expert Syst. Appl. 2019, 135, 249–258. [Google Scholar] [CrossRef]
- Poirier, D.; Fessant, F.; Tellier, I. Reducing the cold-start problem in content recommendation through opinion classification. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Toronto, ON, Canada, 31 August–3 September 2010; Volume 1, pp. 204–207. [Google Scholar]
- Zhang, Y.; Lai, G.; Zhang, M.; Zhang, Y.; Liu, Y.; Ma, S. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, Gold Coast, Australia, 6–11 July 2014; pp. 83–92. [Google Scholar] [CrossRef]
- Diao, Q.; Qiu, M.; Wu, C.Y.; Smola, A.J.; Jiang, J.; Wang, C. Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 193–202. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, Y.; Zang, T.; Wang, C.; Liu, K.; Ma, P. Multi-aspect graph contrastive learning for review-enhanced recommendation. ACM Trans. Inf. Syst. 2023, 42, 51. [Google Scholar] [CrossRef]
- Vy, H.T.H.; Pham-Nguyen, C.; Nam, L.N.H. Integrating textual reviews into neighbor-based recommender systems. Expert Syst. Appl. 2024, 24, 123648. [Google Scholar] [CrossRef]
- Behera, G.; Nain, N. Handling data sparsity via item metadata embedding into deep collaborative recommender system. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 9953–9963. [Google Scholar] [CrossRef]
- Grivolla, J.; Campo, D.; Sonsona, M.; Pulido, J.M.; Badia, T. A hybrid recommender combining user, item and interaction data. In Proceedings of the 2014 International Conference on Computational Science and Computational Intelligence, Las Vegas, NV, USA, 10–13 March 2014; Volume 1, pp. 297–301. [Google Scholar]
- Javaji, S.R.; Sarode, K. Multi-BERT Embeddings for Recommendation System. arXiv 2023, arXiv:2308.13050. [Google Scholar]
- Jeung, H.; Jeon, J.; Lee, S. Movie Recommender System (BERT-More). J. Korean Inst. Inf. Technol. 2025, 23, 39–50. [Google Scholar] [CrossRef]
- Herlocker, J.; Konstan, J.A.; Terveen, L.G.; Riedl, J.T. Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 2004, 22, 5–53. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Li, Y.; He, D.; Liu, T.Y. A theoretical analysis of NDCG type ranking measures. In Proceedings of the Conference on Learning Theory, Princeton, NJ, USA, 12–14 June 2013; pp. 25–54. [Google Scholar]
- Wu, S.; Tang, Y.; Zhu, Y.; Wang, L.; Xie, X.; Tan, T. Session-based recommendation with graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]




| Dataset | #User | #Item | #Interaction | #Items/User | Density |
|---|---|---|---|---|---|
| Grocery and Gourmet Food | 127,496 | 41,280 | 1,167,889 | 3.08 | 0.0221% |
| Video Games | 55,223 | 17,389 | 568,986 | 3.17 | 0.0592% |
| Dataset | #User | #Item | #Interaction | #Items/User | Density |
|---|---|---|---|---|---|
| Grocery and Gourmet Food | 127,379 | 37,900 | 972,653 | 3.36 | 0.0201% |
| Video Games | 55,212 | 16,835 | 461,876 | 3.28 | 0.0496% |
| Model | Grocery and Gourmet Food | Video Games | ||||||
|---|---|---|---|---|---|---|---|---|
| RMSE | R@10 | N@10 | H@10 | RMSE | R@10 | N@10 | H@10 | |
| Matrix Factorization | 3.681 | 0.504 | 0.353 | 0.503 | 3.111 | 0.482 | 0.285 | 0.479 |
| with side information | 1.110 | 0.504 | 0.354 | 0.503 | 1.163 | 0.501 | 0.296 | 0.498 |
| Neural Collaborative Filtering | 1.081 | 0.480 | 0.295 | 0.479 | 1.151 | 0.448 | 0.254 | 0.446 |
| with side information | 1.081 | 0.495 | 0.349 | 0.494 | 1.130 | 0.479 | 0.300 | 0.477 |
| Model | Grocery and Gourmet Food | Video Games | ||||||
|---|---|---|---|---|---|---|---|---|
| RMSE | R@10 | N@10 | H@10 | RMSE | R@10 | N@10 | H@10 | |
| Matrix Factorization | 3.681 | 0.504 | 0.353 | 0.503 | 3.111 | 0.482 | 0.285 | 0.479 |
| only item description | 2.275 | 0.504 | 0.354 | 0.503 | 1.827 | 0.495 | 0.290 | 0.493 |
| only review text | 1.122 | 0.504 | 0.354 | 0.503 | 1.195 | 0.488 | 0.291 | 0.486 |
| Neural Collaborative Filtering | 1.081 | 0.480 | 0.295 | 0.479 | 1.151 | 0.448 | 0.254 | 0.446 |
| only item description | 1.077 | 0.481 | 0.303 | 0.480 | 1.133 | 0.471 | 0.302 | 0.469 |
| only review text | 1.082 | 0.470 | 0.297 | 0.470 | 1.131 | 0.466 | 0.272 | 0.464 |
| Previously Purchased Items | Recommended Items (Top 5) |
|---|---|
|
|
| Previously Purchased Items | Recommended Items (Top 5) |
|---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lim, D.; Lee, T. Enhanced Recommender System with Sentiment Analysis of Review Text and SBERT Embeddings of Item Descriptions. Mathematics 2026, 14, 184. https://doi.org/10.3390/math14010184
Lim D, Lee T. Enhanced Recommender System with Sentiment Analysis of Review Text and SBERT Embeddings of Item Descriptions. Mathematics. 2026; 14(1):184. https://doi.org/10.3390/math14010184
Chicago/Turabian StyleLim, Doyeon, and Taemin Lee. 2026. "Enhanced Recommender System with Sentiment Analysis of Review Text and SBERT Embeddings of Item Descriptions" Mathematics 14, no. 1: 184. https://doi.org/10.3390/math14010184
APA StyleLim, D., & Lee, T. (2026). Enhanced Recommender System with Sentiment Analysis of Review Text and SBERT Embeddings of Item Descriptions. Mathematics, 14(1), 184. https://doi.org/10.3390/math14010184

