Analytic Study on Φ-Hilfer Fractional Neutral-Type Functional Integro-Differential Equations with Terminal Conditions
Abstract
1. Introduction
- (i)
- A neutral-type fractional functional integro-differential system with terminal conditions is new in -HFD settings.
- (ii)
- Under the multivariate Mittag-Leffler function, the uniqueness and existence results are derived through the Banach contraction principle and Krasnoselskii’s fixed-point technique.
2. Auxiliary Facts and Notations
- , for all ;
- is compact and continuous;
- is a contraction mapping.
3. Main Results
- The functions such that
- There exist such that
Uniqueness and Existence of Solutions
- Claim 1: , whenever .
- Claim 2: is a contradiction.
- Claim 3: is compact and continuous.
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, A.A.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
- Rosa, E.C.F.A.; de Oliveira, E.C. Relaxation equations: Fractional models. J. Phys. Math. 2015, 6, 2. [Google Scholar]
- Costa, F.; Grigoletto, E.C.; Vaz, J.; de Oliveira, E.C. Slowing-down of neutrons: A fractional model. Commun. Appl. Ind. Math. 2015, 6, 538. [Google Scholar]
- Sousa, J.V.D.C.; de Oliveira, E.C.; Magna, L.A. Fractional calculus and the ESR test. AIMS Math. 2017, 2, 692–705. [Google Scholar] [CrossRef]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley-ISTE: London, UK, 2014. [Google Scholar]
- Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 1999. [Google Scholar]
- Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
- Furati, K.M.; Tatar Kassim, M.D.; Tatar, N.E. Non-existence of global solutions for a differential equation involving Hilfer fractional derivative. Elecctron. J. Differ. Equ. 2013, 235, 1–10. [Google Scholar]
- Khandagale, A.D.; Bagwan, A.S.; Thabet, T.M.; Kedim, I. Investigate the solution of an initial Hilfer fractional value problem. Int. J. Optim. Control Theory. Appl. 2025, 15, 493–502. [Google Scholar] [CrossRef]
- Harikrishnan, S.; Baghani, O.; Kanagarajan, K. Qualitative analysis of fractional differential equations with ψ-Hilfer fractional derivative. Comput. Methods Differ. 2022, 10, 1–11. [Google Scholar]
- Basua, D.; Bora, S.N. Nonlinear analysis for Hilfer fractional differential equations. Frankl. Open 2025, 13, 100383. [Google Scholar] [CrossRef]
- Benchohra, M.; Bouriah, S.; Nieto, J.J. Terminal value problem for differential equations with Hilfer-Katugampola fractional derivative. Symmetry 2019, 11, 672. [Google Scholar] [CrossRef]
- Salamooni, A.Y.A.; Pawar, D.D. Existence and uniqueness of nonlocal boundary conditions for Hilfer-Hadamard-type fractional differential equations. Adv. Differ. Equ. 2021, 1, 198. [Google Scholar] [CrossRef]
- Ri, Y.D.; Chol, H.C.; Chang, K.J. Constructive existence of solutions of multi-point boundary value problem for Hilfer fractional differential equation at resonance. Mediterr. J. Math. 2020, 17, 95. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Oliveira, D.S.; de Oliveira, E.C. Hilfer-Katugampola fractional derivatives. Comput. Appl. Math. 2018, 37, 3672–3690. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Mali, A.D.; Kucche, K.D. On the boundary value problems of ψ-Hilfer fractional differential equations. Kyungpook Math. J. 2024, 64, 669–702. [Google Scholar]
- Haddouchi, F.; Samei, M.E.; Rezapour, S. Study of a sequential ψ-Hilfer fractional integro-differential equations with nonlocal BCs. J. Pseudo. Differ. Oper Appl. 2023, 14, 61. [Google Scholar] [CrossRef]
- Poovarasan, R.; Samei, M.E.; Govindaraj, V. Analysis of existence, uniqueness, and stability for nonlinear fractional boundary value problems with novel integral boundary conditions. J. Appl. Math. Comput. 2025, 71, 3771–3802. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. On the theory of fractional terminal value problem with ψ-Hilfer fractional derivative. AIMS Math. 2020, 5, 4889–4908. [Google Scholar] [CrossRef]
- Salim, A.; Benchohra, M. Existence and Ulam stability results of tempered (k, ψ)-Hilfer fractional terminal differential problem. Eur. J. Math. Appl. 2024, 4, 19. [Google Scholar]
- Sitho, S.; Ntouyas, S.K.; Sudprasert, C.; Tariboon, J. Integro-differential boundary conditions to the sequential ψ1-Hilfer and ψ2-Caputo fractional differential equations. Mathematics 2023, 11, 867. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Coupled systems of nonlinear proportional fractional Differential Equations of the Hilfer-type with multi-point and integro-multi-Strip boundary conditions. Foundations 2023, 3, 241–259. [Google Scholar] [CrossRef]
- Sudprasert, C.; Ntouyas, S.K.; Ahmad, B.; Samadi, A.; Tariboon, J. On the generalized Hilfer fractional coupled integro-differential systems with multi-point ordinary and fractional integral boundary conditions. Axioms 2024, 13, 51. [Google Scholar] [CrossRef]
- Smith, H. An Introduction to Delay Differential Equations with Applications to the Life Sciences; Springer: New York, NY, USA, 2011. [Google Scholar]
- Driver, R.D. Ordinary and Delay Differential Equations; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Kyrychko, Y.; Hogan, S. On the use of delay equations in engineering applications. J. Vib. 2010, 16, 943–960. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef]
- Boutiara, A.; Abdo, M.S.; Benbachir, M. Existence results for ψ-Caputo fractional neutral functional integro-differential equations with finite delay. Turk. J. Math. 2020, 44, 2380–2401. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Thabet, S.T.M.; Kedim, I.; Vivas-Cortez, M. On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integro-differential system with variable time delay. AIMS Math. 2024, 9, 7372–7395. [Google Scholar] [CrossRef]
- Bettayeb, N.; Salim, A.; Lazreg, J.E. Implicit neutral tempered ψ-Caputo fractional differential coupled systems with delay in generalized Banach spaces. Ann. Acad. Rom. Sci. 2025, 17, 55–79. [Google Scholar]
- Annapoorani, N.; Prabu, N. Existence and stability analysis of neutral implicit fractional pantograph differential equations with non-local conditions using fixed-point theorems. Int. J. Dyn. Syst. Differ. Equ. 2024, 13, 565–581. [Google Scholar] [CrossRef]
- Benchaib, A.; Salim, A.; Abbas, S. Qualitative analysis of neutral implicit fractional q-difference equations with delay. Differ. Equ. Appl. 2024, 16, 19–38. [Google Scholar] [CrossRef]
- Sene, N.; Ndiaye, A. Existence and uniqueness study for partial neutral functional fractional differential equation under Caputo derivative. Int. J. Optim. Control Theor. Appl. 2024, 14, 208–219. [Google Scholar] [CrossRef]
- Makhlouf, A.B.; El-Hady, E.S. Hyers-Ulam-Rassias stability of some sequential neutral functional differential equations with Caputo-Hadamard fractional derivative. Miskolc Math. Notes 2025, 26, 69–79. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; He, W.; Cai, N.; Mu, J. Fractional Neutral Integro-Differential Equations with Nonlocal Initial Conditions. Mathematics 2024, 12, 1877. [Google Scholar] [CrossRef]
- Bouriah, S.; Benchohra, M.; Ozyurt, S.G. Terminal value problem for neutral fractional functional differential equations with Hilfer-Katugampola fractional derivative. Filomat. 2023, 37, 7131–7141. [Google Scholar] [CrossRef]
- Li, C. Existence for a nonlinear integro-differential equation with Hilfer fractional derivative. J. Integral Equ. Appl. 2025, 37, 91–99. [Google Scholar] [CrossRef]
- Vivek, R.; Abdelfattah, W.M.; Elsayed, E.M. Analysis of delay-type integro-differential systems described by the Φ-Hilfer fractional derivative. Axioms 2025, 14, 629. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Babenko, Y.I. Heat and Mass Transfer; Khimiya: Leningrad, Russia, 1986. [Google Scholar]
- Li, C. Uniqueness of the partial integro-differential equations. J. Integral Equations Appl. 2021, 33, 463–475. [Google Scholar] [CrossRef]
- Li, C.; Saadati, R.; Srivastava, R.; Beaudin, J. On the boundary value problem of nonlinear fractional integro-differential equations. Mathematics 2022, 10, 1971. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vivek, R.; Alghamdi, A.A.; El-Dessoky, M.M.; Maheswari, D.; Bharath, N. Analytic Study on Φ-Hilfer Fractional Neutral-Type Functional Integro-Differential Equations with Terminal Conditions. Mathematics 2026, 14, 182. https://doi.org/10.3390/math14010182
Vivek R, Alghamdi AA, El-Dessoky MM, Maheswari D, Bharath N. Analytic Study on Φ-Hilfer Fractional Neutral-Type Functional Integro-Differential Equations with Terminal Conditions. Mathematics. 2026; 14(1):182. https://doi.org/10.3390/math14010182
Chicago/Turabian StyleVivek, Ravichandran, Abdulah A. Alghamdi, Mohamed M. El-Dessoky, Dhandapani Maheswari, and Natarajan Bharath. 2026. "Analytic Study on Φ-Hilfer Fractional Neutral-Type Functional Integro-Differential Equations with Terminal Conditions" Mathematics 14, no. 1: 182. https://doi.org/10.3390/math14010182
APA StyleVivek, R., Alghamdi, A. A., El-Dessoky, M. M., Maheswari, D., & Bharath, N. (2026). Analytic Study on Φ-Hilfer Fractional Neutral-Type Functional Integro-Differential Equations with Terminal Conditions. Mathematics, 14(1), 182. https://doi.org/10.3390/math14010182

