Next Article in Journal
Enhanced Recommender System with Sentiment Analysis of Review Text and SBERT Embeddings of Item Descriptions
Previous Article in Journal
Quantum-Enhanced Residual Convolutional Attention Architecture for Renewable Forecasting in Off-Grid Cloud Microgrids
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Analytic Study on Φ-Hilfer Fractional Neutral-Type Functional Integro-Differential Equations with Terminal Conditions

by
Ravichandran Vivek
1,
Abdulah A. Alghamdi
2,*,
Mohamed M. El-Dessoky
2,3,
Dhandapani Maheswari
1 and
Natarajan Bharath
1
1
Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore 641008, India
2
Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
3
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
*
Author to whom correspondence should be addressed.
Mathematics 2026, 14(1), 182; https://doi.org/10.3390/math14010182
Submission received: 4 October 2025 / Revised: 13 December 2025 / Accepted: 30 December 2025 / Published: 3 January 2026

Abstract

The current manuscript is concerned with the uniqueness and existence of a solution for a new class of Φ -Hilfer fractional neutral functional integro-differential equations ( Φ -HFNFIDEs) with terminal conditions. Firstly, employing Babenko’s approach, we convert the aforesaid equation under consideration into an analogous integral equation. More precisely, using the multivariate Mittag-Leffler function, Banach contraction principle, and Krasnoselskii’s fixed-point theorem, we derive some conditions that guarantee the uniqueness and the existence of the solutions. For an illustration of our results in this manuscript, two examples are provided as well.

1. Introduction

The theory of fractional differential equations (FDEs) is undoubtedly a powerful and versatile tool for modeling and analyzing a wide range of real-world physical processes. In biophysical applications, the fractional relaxation equation can be used to describe the relaxation behavior of ion channels in cell membranes, the mechanical response of biological tissues, and the dynamic behavior of complex biological networks. In physics and engineering, FDEs are widely used to describe anomalous diffusion processes, including particle transport in porous, inhomogeneous, and disordered media. Moreover, FDEs offer a more accurate representation of neutron flux distribution by capturing long-range interactions and memory effects observed during the neutron deceleration process (we refer the interested reader to see [1,2,3,4,5,6,7]). However, Hilfer FDEs, named after mathematician Rainer Hilfer [8], are a specific class of FDEs that incorporate the Hilfer fractional derivative (HFD) operator. These equations provide a powerful tool for modeling and analyzing phenomena that exhibit complex dynamics, viscoelasticity, fractional optics, and control systems. This often leads to the study of the initial and boundary value problems (BVPs) together with integral equations. Such problems form the basis of the mathematical modeling of several dynamic phenomena. We suggest the following papers to see how the HFD has been recently used: [9,10,11,12,13,14,15,16]. Currently, the generalized fractional derivative (FD) introduced by Katugampola [17,18] has been unified with the HFD by Oliveira and Capelas de Oliveira and is now referred to as the Hilfer–Katugampola FD [19]. In fact, the ψ -Hilfer FDE is a generalization of the classical FDE, in which the FD is defined using the ψ -Hilfer fractional operator. This operator introduces a more flexible kernel compared to the standard Riemann–Liouville FD. The exploration of new physical phenomena and the investigation of chaotic systems have led to the proposal of ψ -Hilfer FDEs [20]. Furthermore, the existence and uniqueness of solutions to ψ -Hilfer-type fractional BVPs have received considerable attention due to their important qualitative properties. The results based on these settings can be found in [21,22,23,24,25,26,27,28].
Fractional-order delay models are gaining prominence across diverse fields due to their capability to capture complex dynamic behaviors that traditional integer-order models may fail to attain. First and foremost, they can incorporate delays and fractional orders, thus enabling them to capture more meticulous behaviors. In modeling real-world phenomena where the future state of a system depends not only on its current state but also on past states, fractional delay differential equations (FDDEs) play a crucial role. The motivation for solving FDDEs arises from their widespread application in various fields, including science, engineering (for example, control systems, mechanical systems, robotics, aerospace, traffic dynamics, and signal processing), and abundant diverse areas [29,30]. Because fractional derivatives are non-local, solving FDDE is indeed computationally imperative and challenging. Therefore, establishing an efficacious numerical algorithm for solving FDDE is essential. There has been a growing interest in solving FDDE numerically. Moreover, delay terms could show up in the FDs, also known as neutral FDDEs, used in the mathematical modeling of a number of phenomena, such as electric networks with lossless transmission lines (those found in high-speed computers [1], the force of sliding friction in connected pairs [31], and oscillating theory [32]). Neutral-type FDDEs involving different FDs have been studied by many researchers [33,34,35,36,37,38,39,40].
In [24], Almalahi et al. studied the existence and uniqueness of the solutions for the terminal value problem for fractional implicit differential equations characterized by the ψ -Hilfer FD:
D a + α , β , ψ y ( t ) = f ( t , y ( t ) , D a + α , β , ψ y ( t ) ) , t ( a , T ] , a > 0 , y ( T ) = w R ,
where D a + α , β , ψ ( · ) symbolizes the ψ -HFD of order α ( 0 , 1 ) , type β [ 0 , 1 ] , and f : ( a , T ] × R × R R is a given function. In [41], the authors considered the terminal value problem (TVP) with neutral functional Hilfer–Katugampola FDEs:
D 0 + α , β ρ [ y ( t ) H ( t , y t ) ] = f ( t , y t ) , t ( 0 , b ] , 0 < b < , y ( b ) = c R , y ( t ) = φ ( t ) , t [ r , 0 ] , r > 0 ,
where D 0 + α , β ρ and I 0 + 1 γ ρ are the Hilfer–Katugampola FD of order α ( 0 , 1 ) and type β [ 0 , 1 ] , and Katugampola fractional integral of order 1 γ , ( γ = α + β α β ) , and f , H : ( 0 , b ] × C ( [ r , 0 ] , R ) R , respectively, are two given functions, in addition to φ C ( [ r , 0 ] , R ) with φ ( 0 ) = H ( 0 , y 0 ) . In [35], Bettayeb et al. studied the implicit neutral Caputo tempered FDEs with delay
D t ζ , ω 0 C ( y ( t ) h ( t , y t ) ) = Ψ t , y t , D t ζ , ω 0 C ( y ( t ) h ( t , y t ) ) , t [ 0 , ϰ ] , y ( t ) = ϕ ( t ) , t [ ζ , 0 ] ,
where ζ ( 0 , 1 ) , ω 0 , ϰ , ζ > 0 , and D t ζ , ω 0 C ( · ) represent the Caputo tempered FD; h : [ 0 , ϰ ] × C ( [ ζ , 0 ] , R ) R and Ψ : [ 0 , ϰ ] × C ( [ ζ , 0 ] , R ) × R R are given continuous functions, ϕ C ( [ ζ , 0 ] , R ) . Some existence and Ulam stability results were obtained by employing Krasnoselskii’s fixed-point theorem and Gronwall’s lemma. Recently, Li [42] studied the uniqueness of the initial value problem for integro-differential equations involving an HFD of the following form:
D a + α , β u ( x ) + i = 1 m λ i I a + β i u ( x ) = I a + β g ( x , u ( x ) ) , 0 < α < 1 , 0 β < 1 , β i β , I a + 1 γ u ( a ) = u a , γ = α + β α β ,
where λ i R , x ( a , b ] ; D a + α , β ( · ) is the HFD of order α ( 0 , 1 ) , type β [ 0 , 1 ] ; I a + β i ( · ) is the Riemann–Liouville fractional integral of order β i ; the nonlinear term g : ( a , b ] × R R is a given function. Vivek et al. [43] studied a new class of Φ -Hilfer fractional-order integro-differential delay system with initial conditions for the existence and Hyers–Ulam–Mittag-Leffler stability results using the multivariate Mittag-Leffler function, fixed-point theory, and generalized Gronwall inequality. The said problem is described by
D 0 + σ , ξ , Φ H v ( t ) + i = 1 m μ i I 0 + ξ i , Φ v ( t ) = I 0 + ξ , Φ f ( t , v ( t ) , v ( g ( t ) ) ) , t ( 0 , b ] I 0 + 1 ϑ , Φ v ( 0 + ) = v 0 R , v ( t ) = η ( t ) , t [ ρ , 0 ] ,
where μ i R for i = 1 , 2 , , m , D 0 + σ , ξ , Φ H ( · ) is the Φ -HFD of order σ ( 0 , 1 ) and type ξ [ 0 , 1 ] , ξ i ξ ; I 0 + 1 ϑ , Φ ( · ) , I 0 + ξ i , Φ ( · ) are Φ -Riemann–Liouville fractional integrals of orders 1 ϑ ( ϑ = σ + ξ σ ξ ) ; and ξ i , f : ( 0 , b ] × R × R R is a given function.
In this work, we generalize the problem considered in [41] to integro-differential systems [42], and we discuss the existence and uniqueness of solutions to the following TVP of Φ -HFNFIDEs:
D 0 + ξ , ν , Φ H [ v ( t ) F ( t , v t ) ] + i = 1 m η i I 0 + ν i , Φ [ v ( t ) F ( t , v t ) ] = I 0 + ν , Φ g ( t , v t ) , t J : = ( 0 , d ] ,
v ( d ) = ρ R ,
v ( t ) = ω ( t ) , t [ μ , 0 ] , μ > 0 .
In the considered equations, D 0 + ξ , ν , Φ H ( · ) is the FD in the Φ -Hilfer sense of order ξ ( 0 , 1 ) ; type ν [ 0 , 1 ] , I 0 + ν i , Φ ( · ) , and I 0 + 1 ϑ , Φ ( · ) are Φ -Riemann–Liouville fractional integrals of orders ν i ( ν i ν ) and 1 ϑ ( ϑ = ξ + ν ξ ν ) . Moreover, g , F : J × C ( [ μ , 0 ] , R ) are two given functions, and ω C ( [ μ , 0 ] , R ) such that ω ( 0 ) = F ( 0 , v 0 ) .
For any function v defined on [ μ , d ] and any t J : = [ 0 , d ] , we represent the elements of C ( [ μ , 0 ] , R ) by v t and define it as
v t ( τ ) = v ( t + τ ) , τ [ μ , 0 ] .
Initiated by the above, certain novel results on the Φ -HFNFIDEs with terminal conditions have been examined. In this work, we use the concept of Φ -HFD, fixed-point techniques, and multivariate Mittag-Leffler function to derive existence results. The concept is novel, yet there is no literature available for dealing with Φ -HFNFIDEs involving terminal conditions. Thus, researchers are unable to undertake comparative studies.
The novelties and difficulties of this manuscript are described as follows:
(i)
A neutral-type fractional functional integro-differential system with terminal conditions is new in Φ -HFD settings.
(ii)
Under the multivariate Mittag-Leffler function, the uniqueness and existence results are derived through the Banach contraction principle and Krasnoselskii’s fixed-point technique.
This article is arranged as follows. In Section 2, we give some definitions and auxiliary results necessary in this study. In Section 3, we give existence results for Equations (1) and (3) that are based on the fixed-point theorem. In Section 4, as a final point, examples are given to illustrate our results.

2. Auxiliary Facts and Notations

By C ( [ μ , 0 ] , R ) , C ( J , R ) , we denote the Banach spaces of all continuous functions from [ μ , 0 ] into R (from J into R ) with the following norms:
v C = sup t [ μ , 0 ] | v ( t ) | ,
and
v = sup t J | v ( t ) | ,
respectively.
We consider the weighted spaces of continuous functions
C ϑ , Φ ( J ) = { v : J R : ( Φ ( t ) Φ ( 0 ) ) ϑ v ( t ) C ( J , R ) } , 0 ϑ < 1 ,
and
C ϑ , Φ n ( J ) = { v C n 1 ( J ) : v ( n ) C ϑ , Φ ( J ) } , n N , C ϑ , Φ 0 ( J ) = C ϑ , Φ ( J ) ,
with the norms
v C ϑ , Φ = sup t J | ( Φ ( t ) Φ ( 0 ) ) ϑ v ( t ) | ,
and
v C ϑ , Φ n = k = 0 n 1 v ( k ) + v ( n ) C ϑ , Φ .
Consider the space X b p ( c , d ) , ( b R , 1 p ) of those complex-valued Lebesgue measurable functions, g, on [ c , d ] , for which g X b p < , where the norm is defined by
g X b p = c d | t b g ( t ) | p d t t 1 p , ( 1 p < , b R ) .
In the case of b = 1 p , the space is X b p ( c , d ) = L p ( c , d ) .
Definition 1
([20]). A generalized multivariate Mittag-Leffler function E ( ξ 1 , , ξ m ) , ν ( u 1 , , u m ) is defined by the following series:
E ( ξ 1 , , ξ m ) , ν ( u 1 , , u m ) = r = 0 r 1 + + r m = r r r 1 , , r m u 1 r 1 u m r m Γ ( ξ 1 r 1 + + ξ m r m + ν ) ,
where ξ i , ν > 0 and u i C for i = 1 , 2 , , m and
r r 1 , , r m = r ! r 1 ! r m ! .
Definition 2
([20]). Let Φ ( t ) > 0 and ξ > 0 . The Φ-Riemann–Liouville fractional integral of order ξ of a function g ^ X b p ( c , d ) with respect to another function Φ is defined by the following:
I c + ξ , Φ g ^ ( t ) = 1 Γ ( ξ ) c t Φ ( s ) ( Φ ( t ) Φ ( s ) ) ξ 1 g ^ ( s ) d s , t > c ,
where Γ ( · ) indicates the Gamma function.
Definition 3
([20]). Let Φ ( t ) > 0 and ξ > 0 , n N . The Φ-Riemann–Liouville fractional derivative of order ξ of a function g ^ with respect to another function Φ is defined by
D c + ξ , Φ g ^ ( t ) = 1 Φ ( t ) d d t n I c + n ξ , Φ g ^ ( t ) = 1 ( n ξ ) 1 Φ ( s ) d d t n c t Φ ( s ) ( Φ ( t ) Φ ( s ) ) n ξ 1 g ^ ( s ) d s ,
where n 1 < ξ < n , n = [ ξ ] + 1 , and [ ξ ] represents the integer part of the real number ξ.
Definition 4
([20]). Let order ξ and type ν satisfy n 1 < ξ < n and 0 ν 1 , with n N . The Φ-Hilfer fractional derivative of a function g ^ C 1 ϑ , Φ ( J ) is defined by
D c + ξ , ν , Φ H g ^ ( t ) = I c + ν ( n ξ ) , Φ 1 Φ ( s ) d d t n I c + ( 1 ν ) ( n ξ ) , Φ g ^ ( t ) = I c + ϑ ξ , Φ D c + ϑ , Φ g ^ ( t ) .
In this article, due to 0 < ξ < 1 , we take n = 1 .
Take the following parameters ξ , ν , and ϑ satisfying
ϑ = ξ + ν ξ ν , 0 < ξ , ν , ϑ < 1 .
We recall the following weighted spaces:
C 1 ϑ , Φ ξ , ν ( J ) = { v C 1 ϑ , Φ ( J ) , D c + ξ , ν , Φ H v C 1 ϑ , Φ ( J ) }
and
C 1 ϑ , Φ ϑ ( J ) = { v C 1 ϑ , Φ ( J ) , D c + ϑ , Φ v C 1 ϑ , Φ ( J ) } .
Since D c + ξ , ν , Φ H v = I c + ν ( 1 ξ ) , Φ D c + ϑ Φ v , clearly, by Lemma 5 in [20], we have
C 1 ϑ , Φ ϑ ( J ) C 1 ϑ , Φ ξ , ν ( J ) C 1 ϑ , Φ ( J ) .
Theorem 1
(Arzela–Ascoli Theorem [44]). Let X be a compact space. If H is an equicontinuous and bounded subset of C ( B ) , then the operator H is relatively compact.
Theorem 2
(Banach Contraction Principle [44]). Let S be a non-empty closed subset of a Banach space Y , then any contraction mapping M of S into itself has a unique fixed point.
Theorem 3
(Krasnoselskii’s Fixed-Point Theorem [44]). Let S be a closed, convex, and non-empty closed subset of a Banach space Y . Suppose that A and B map S into Y and that the following is the case:
( i )
A y + B z S , for all y , z S ;
( i i )
A is compact and continuous;
( i i i )
B is a contraction mapping.
Then, there exists w in S such that w = A w + B w .

3. Main Results

In this section, we prove the existence of a solution for Equations (1)–(3). To this aim, let us introduce the following set:
Θ = { v : [ μ , d ] R : v | [ μ , 0 ] C ( [ μ , 0 ] , R )   and   v | J C 1 ϑ , Φ ϑ ( J ) } ,
Θ is a Banach space with the following norm:
v Θ = v C + v C 1 ϑ , Φ .
Babenko’s approach [45] is a powerful technique for solving differential and integral equations with initial conditions. While it is generally similar to the Laplace transform when dealing with equations with constant coefficients, it can also be applied to differential and integral equations with continuous variable coefficients and even to boundary value problems [46,47]. To illustrate the applications of this approach, we will derive an equivalent integral equation in that space Θ for Equations (1)–(3).
Lemma 1.
Consider the mapping g , F : J × C ( [ μ , 0 ] , R ) R . Then, Equations (1)–(3) are equivalent to the following implicit integral equation:
v ( t ) = ω ( t ) , t [ μ , 0 ] [ ρ F ( d , v d ) r = 0 ( 1 ) r r 1 + r 2 + + r m = r r r 1 , r 2 , , r m η 1 r 1 η m r m × I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ g ( d , v d ) ] Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 + F ( t , v t ) + r = 0 ( 1 ) r r 1 + + r m = r r r 1 , , r m η 1 r 1 η m r m × I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ g ( t , v t ) , t J .
Proof. 
The proof follows from Theorems 3 in [42] and Theorem 3.1 in [41]. □
Suppose that the function g : J × C ( [ μ , 0 ] , R ) R is continuous and fulfills the following conditions:
( M 1 )
The functions g , F : J × C ( [ μ , 0 ] , R ) R such that
g ( · , x ( · ) ) C 1 ϑ , Φ ν ( 1 ξ ) ( J ) and F ( · , x ( · ) ) C 1 ϑ , Φ ϑ ( J ) , for any x C 1 ϑ , Φ ( J ) .
( M 2 )
There exist P , Q > 0 such that
| g ( t , x ) g ( t , x ¯ ) | P x x ¯ C
and
| F ( t , y ) F ( t , y ¯ ) | Q y y ¯ C ,
for any x , y , x ¯ , y ¯ C ( [ μ , 0 ] , R ) and t J .
Now, in view of Lemma 1, we consider an operator Λ : Θ Θ as follows:
( Λ v ) ( t ) = ω ( t ) , t [ μ , 0 ] [ ρ F ( d , v d ) r = 0 ( 1 ) r r 1 + r 2 + + r m = r r r 1 , r 2 , , r m η 1 r 1 η m r m × I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ f ( d ) ] Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 + F ( t , v t ) + r = 0 ( 1 ) r r 1 + r 2 + + r m = r r r 1 , , r m η 1 r 1 η m r m × I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ f ( t ) , t J ,
where f : J R is a function satisfying functional equation f ( t ) = g ( t , v t ) .
Obviously, the fixed points of Λ are the solutions of Equations (1)–(3). For computational convenience, we set
Ω = r = 0 ( 1 ) r r 1 + r 2 + + r m = r r r 1 , , r m η 1 r 1 η m r m ,
and
Ω = r = 0 r 1 + r 2 + + r m = r r r 1 , , r m | η 1 | r 1 | η m | r m .

Uniqueness and Existence of Solutions

In this subsection, we study the uniqueness and existence of solutions for Equations (1)–(3).
Theorem 4.
Assume that the conditions ( M 1 ) ( M 2 ) hold. Then, if
max { Q + P Γ ( ϑ ) ( Φ ( d ) Φ ( 0 ) ) ξ + ν Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) ;   P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ξ + ν Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m + 1 )   + Q ( Φ ( d ) Φ ( 0 ) ) 1 ϑ } < 1 2 ,
then the solutions of Equations (1)–(3) are unique.
Proof. 
To transform Equations (1)–(3) into a fixed-point problem, we consider an operator Λ defined in Equation (5). Let v , x Θ ; then, for t [ μ , 0 ] , we have
| ( Λ v ) ( t ) ( Λ x ) ( t ) | = 0 .
For t J , we have
| ( Λ v ) ( t ) ( Λ x ) ( t ) | Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ | f ( d ) h ( d ) | + | F ( t , v t ) F ( t , x t ) | + Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ | f ( t ) h ( t ) | + Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 | F ( d , v d ) F ( d , x d ) | ,
where f , h C 1 ϑ , Φ ( J ) such that
f ( t ) = g ( t , v t ) , h ( t ) = g ( t , x t ) .
By ( M 2 ) , we have the following:
| f ( t ) h ( t ) | = | g ( t , v t ) g ( t , x t ) | P v t x t C .
On the other hand, we have v t x t C = sup τ [ μ , 0 ] | v t ( τ ) x t ( τ ) | . Then, there exists at least one τ [ τ , 0 ] such that
v t x t C = | v t ( τ ) x t ( τ ) | = | v ( t + τ ) x ( t + τ ) | .
If t + τ [ μ , 0 ] , then
v t x t C v x C = v x Θ .
This gives the following for any t J :
| ( Λ v ) ( t ) ( Λ x ) ( t ) |   P Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ v d x d C + Q v t x t C + P Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ v t x t C + Q Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 v d x d C   P Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ v t x t Θ + Q v t x t C + P Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ v t x t Θ + Q Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 v d x d Θ .
Thus,
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ [ ( Λ v ) ( t ) ( Λ x ) ( t ) ] |   [ P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ( ξ + ν ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m + 1 ) + Q ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + P ( Φ ( t ) Φ ( 0 ) ) 1 ϑ + ( ξ + ν ) Ω × ( Φ ( t ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m + 1 ) + Q ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ] v x Θ   2 [ P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ( ξ + ν ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m + 1 ) + Q ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ] v x Θ .
Hence,
Λ v Λ x C 1 ϑ , Φ = Λ v Λ x Θ 2 [ P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ( ξ + ν ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m + 1 ) + Q ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ] v x Θ .
If t + τ J , then we have
v t x t C = ( Φ ( t ) Φ ( 0 ) ) ϑ 1 ( Φ ( t ) Φ ( 0 ) ) 1 ϑ v t x t C ( Φ ( t ) Φ ( 0 ) ) ϑ 1 v x C 1 ϑ , Φ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 v x Θ .
Hence, for any t J , we have the following
| ( Λ v ) ( t ) ( Λ x ) ( t ) |   P Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ v d x d C + Q v t x t C + P Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ v t x t C + Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 Q v d x d C   P Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 Ω v t x t C 1 ϑ , Φ I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ ( Φ ( s ) Φ ( 0 ) ) ϑ 1 ( d ) + 2 Q ( Φ ( t ) Φ ( 0 ) ) ϑ 1 v x C 1 ϑ , Φ + P Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ ( Φ ( s ) Φ ( 0 ) ) ϑ 1 ( t ) × v x C 1 ϑ , Φ   [ P ( Φ ( d ) Φ ( 0 ) ) ξ + ν Γ ( ϑ ) ( Φ ( t ) Φ ( 0 ) ) ϑ 1 Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) + 2 Q ( Φ ( t ) Φ ( 0 ) ) ϑ 1 + P ( Φ ( d ) Φ ( 0 ) ) ξ + ν + ϑ 1 Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) ] × v x C 1 ϑ , Φ
Therefore, we obtain the following:
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ ( Λ v ) ( t ) ( Λ x ) ( t ) |   [ P ( Φ ( d ) Φ ( 0 ) ) ξ + ν Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) + 2 Q + P ( Φ ( d ) Φ ( 0 ) ) ξ + ν Γ ( ϑ ) Ω ( Φ ( t ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) ] v x C 1 ϑ , Φ   2 P ( Φ ( d ) Φ ( 0 ) ) ξ + ν Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) + Q × v x Θ .
Then, we obtain
Λ v Λ x C 1 ϑ , Φ = Λ v Λ x Θ 2 P ( Φ ( d ) Φ ( 0 ) ) ξ + ν Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) + Q × v x Θ .
By Equation (6), we infer that Λ is a contraction. Now, by Theorem 2, the operator Λ has a unique fixed point v Θ , which is the unique solution of Equations (1)–(3), and this completes the proof. □
Theorem 5.
Suppose that g : J × C ( [ μ , 0 ] , R ) R is continuous and satisfies conditions ( M 1 ) ( M 2 ) . If
Q 1 + ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + 2 Γ ( ϑ ) q ^ Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m )     × ( Φ ( d ) Φ ( 0 ) ) ξ + ν + ( Φ ( d ) Φ ( 0 ) ) ξ + ν + 1 ϑ < 1 ,
and
max { P Γ ( ϑ ) ( Φ ( d ) Φ ( 0 ) ) ξ + ν Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) + 2 Q ; P Γ ( ϑ ) ξ + ν + 1 ϑ Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) + 2 Q ( Φ ( d ) Φ ( 0 ) ) 1 ϑ } : = max ( Ξ 2 ; Ξ 1 ) < 1 ,
then there exists at least one solution to Equations (1)–(3).
Proof. 
Fixing g = sup t J ( Φ ( t ) Φ ( 0 ) ) 1 ϑ | g ( t , 0 ) | , F = sup t J ( Φ ( t ) Φ ( 0 ) ) 1 ϑ | F ( t , 0 ) | , and κ = ( Φ ( d ) Φ ( 0 ) ) ξ + ν + ( Φ ( d ) Φ ( 0 ) ) ξ + ν + 1 ϑ , we define B q ^ = { v Θ : v Θ q ^ } , where
q ^ max { ( Φ ( d ) Φ ( 0 ) ) 1 ϑ | ρ | + 2 F + 2 Γ ( ϑ ) ( Φ ( d ) Φ ( 0 ) ) ξ + ν Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) g 1 Q ( 1 + ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ) + 2 P Γ ( ϑ ) q ^ Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m κ Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) ; sup t [ μ , 0 ] | ω ( t ) | } .
We split operator Λ into operators Λ 1 and Λ 2 defined on B q ^ as follows:
Λ 1 v ( t ) = 1 2 ω ( t ) , t [ μ , 0 ] , ρ F ( d , v d ) Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ f ( d ) Φ ( t ) Φ ( 0 ) Φ ( d ) Φ ( 0 ) ϑ 1 + F ( t , v t ) , t J ,
and
Λ 2 v ( t ) = 1 2 ω ( t ) , t [ μ , 0 ] , Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ f ( t ) , t J .
The rest of the proof consists of several claims.
  • Claim 1:  Λ 1 v + Λ 2 x B q ^ , whenever v , x B q ^ .
Let v , x B q ^ . Thus, for each t [ μ , 0 ] , we have
| Λ 1 v ( t ) | 1 2 sup t [ μ , 0 ] | ω ( t ) | ,
and
| Λ 2 x ( t ) | 1 2 sup t [ μ , 0 ] | ω ( t ) | ,
which yields
| Λ 1 v + Λ 2 x | Θ 1 2 sup t [ μ , 0 ] | ω ( t ) | + 1 2 sup t [ μ , 0 ] | ω ( t ) | = sup t [ μ , 0 ] | ω ( t ) | q ^ .
If t J , then by applying ( Φ ( t ) Φ ( 0 ) ) 1 ϑ to both sides of Equation (8), we arrive at
( Φ ( t ) Φ ( 0 ) ) 1 ϑ Λ 1 v ( t ) = ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ρ F ( d , v d ) Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ f ( d ) + F ( t , v t ) ( Φ ( t ) Φ ( 0 ) ) 1 ϑ .
Then,
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ Λ 1 v ( t ) |   ( Φ ( b ) Φ ( 0 ) ) 1 ϑ Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ | f ( d ) | + | ρ | + | F ( d , v d ) | + | F ( t , v t ) F ( t , 0 ) | + | F ( t , 0 ) | ( Φ ( t ) Φ ( 0 ) ) 1 ϑ   ( Φ ( b ) Φ ( 0 ) ) 1 ϑ Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ | f ( d ) | + | ρ | + F + Q v t C + F ( Φ ( t ) Φ ( 0 ) ) ϑ 1 ( Φ ( t ) Φ ( 0 ) ) 1 ϑ .
Thus
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ Λ 1 v ( t ) |   ( Φ ( b ) Φ ( 0 ) ) 1 ϑ Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ | f ( d ) | + | ρ | + 2 F + Q v t C ( Φ ( t ) Φ ( 0 ) ) 1 ϑ .
By ( M 2 ) , for each t J , we obtain
| f ( t ) | = | g ( t , v t ) g ( t , 0 ) + g ( t , 0 ) | | g ( t , v t ) g ( t , 0 ) | + | g ( t , 0 ) | P v t C + ( Φ ( t ) Φ ( 0 ) ) ϑ 1 g ,
which can be expressed as
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ f ( t ) | g + P ( Φ ( t ) Φ ( 0 ) ) 1 ϑ v t C .
If t + τ [ μ , 0 ] , then v t C = v C = v Θ , which means that for each t J , we obtain the following:
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ f ( t ) | g + P ( Φ ( t ) Φ ( 0 ) ) 1 ϑ v t Θ g + P ( Φ ( t ) Φ ( 0 ) ) 1 ϑ q ^ : = L .
Using inequalities (10) and (11), we obtain
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ Λ 1 v ( t ) |   ( Φ ( d ) Φ ( 0 ) ) 1 ϑ [ | ρ | + L ( Φ ( d ) Φ ( 0 ) ) ξ + ν + ϑ 1 Γ ( ϑ ) Ω × ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) + Q q ^ ] + 2 F .
which gives
Λ 1 v C 1 ϑ , Φ   ( Φ ( d ) Φ ( 0 ) ) 1 ϑ [ | ρ | + L ( Φ ( d ) Φ ( 0 ) ) ξ + ν + ϑ 1 Γ ( ϑ ) Ω × ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) + Q q ^ ] + 2 F : = L 1 .
If t + τ J , then
v t C = ( Φ ( t ) Φ ( 0 ) ) ϑ 1 ( Φ ( t ) Φ ( 0 ) ) 1 ϑ v t C ( Φ ( t ) Φ ( 0 ) ) ϑ 1 v Θ .
Then, for each t J , we have
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ f ( t ) | g + P q ^ = L 1 .
Using inequalities (10) and (12), we obtain
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ Λ 1 v ( t ) |   ( Φ ( d ) Φ ( 0 ) ) 1 ϑ [ | ρ | + L 1 ( Φ ( d ) Φ ( 0 ) ) ξ + ν + ϑ 1 Γ ( ϑ ) Ω × ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) ] + Q q ^ + 2 F .
This gives
Λ 1 v C 1 ϑ , Φ ( Φ ( d ) Φ ( 0 ) ) 1 ϑ [ | ρ | + L 1 ( Φ ( d ) Φ ( 0 ) ) ξ + ν + ϑ 1 Γ ( ϑ ) Ω × ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) ] + Q q ^ + 2 F = L 2 .
For operator Λ 2 , if t + τ [ μ , 0 ] with t J , then using Equation (11), we have
| Λ 2 x ( t ) | [ Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) g + P Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) q ^ ] ( Φ ( t ) Φ ( 0 ) ) ξ + ν + ϑ 1 .
This results in
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ Λ 2 x ( t ) |   [ Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) g + P Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) q ^ ] ( Φ ( t ) Φ ( 0 ) ) ξ + ν   [ Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) g + P Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) q ^ ] ( Φ ( d ) Φ ( 0 ) ) ξ + ν .
Hence,
Λ 2 x C 1 ϑ , Φ   [ Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) g + P Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) q ^ ] ( Φ ( d ) Φ ( 0 ) ) ξ + ν : = L 3 .
If t + τ J , then for each t J and by using Equation (12), we have
| Λ 2 x ( t ) | [ Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) g + P Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) q ^ ] ( Φ ( d ) Φ ( 0 ) ) ξ + ν + ϑ 1 .
Therefore gives
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ Λ 2 x ( t ) |   [ Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) g + P Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) q ^ ] ( Φ ( t ) Φ ( 0 ) ) ξ + ν   [ Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) g + P Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) q ^ ] ( Φ ( d ) Φ ( 0 ) ) ξ + ν .
Hence,
Λ 2 x C 1 ϑ , Φ   [ Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) g + P Γ ( ϑ ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) q ^ ] ( Φ ( d ) Φ ( 0 ) ) ξ + ν : = L 4 .
Which implies that for each v , x B q ^ , we obtain
Λ 1 v + Λ 2 x C 1 ϑ , Φ   Λ 1 v C 1 ϑ , Φ + Λ 2 x C 1 ϑ , Φ   max { L 1 ; L 2 } + max { L 3 ; L 4 }   2 Γ ( ϑ ) ( Φ ( d ) ) Φ ( 0 ) ξ + ϑ Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) g + 2 P Γ ( ϑ ) q ^ Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) × [ ( Φ ( d ) Φ ( 0 ) ) ξ + ν + ( Φ ( d ) Φ ( 0 ) ) ξ + ν + 1 ϑ ] + ( Φ ( d ) Φ ( 0 ) ) 1 ϑ | ρ | + 2 F + P q ^ [ 1 + ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ] .
Since
q ^ ( Φ ( d ) Φ ( 0 ) ) 1 ϑ | ρ | + 2 F + 2 Γ ( ϑ ) ( Φ ( d ) Φ ( 0 ) ) ξ + ν Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) g 1 Q ( 1 + ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ) + 2 P Γ ( ϑ ) q ^ Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m κ Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) ,
where κ = ( Φ ( d ) Φ ( 0 ) ) ξ + ν + ( Φ ( d ) Φ ( 0 ) ) ξ + ν + 1 ϑ , then
Λ 1 v + Λ 2 x C 1 ϑ , Φ = Λ 1 v + Λ 2 x Θ q ^ ,
which implies that, for each t [ μ , d ] , we have
Λ 1 v + Λ 2 x Θ q ^ ,
which infers that, Λ 1 v + Λ 2 x Θ q ^ .
  • Claim 2:  Λ 1 is a contradiction.
Let v , x Θ . If t [ μ , 0 ] , then
| Λ 1 v ( t ) Λ 1 x ( t ) | = 0 .
For t J , we have
| Λ 1 v ( t ) Λ 1 x ( t ) |   ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ | f ( d ) h ( d ) | + | F ( t , v t ) F ( t , x t ) | + ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 | F ( d , v d ) F ( d , x d ) |   ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ | f ( d ) h ( d ) | + Q v t x t C + ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 Q v d x d C ,
where f , h C 1 ϑ , Φ such that
f ( t ) = g ( t , v t ) , h ( t ) = g ( t , x t ) .
By using ( M 2 ) , we have
| f ( t ) h ( t ) | = | g ( t , v t ) g ( t , x t ) | P v t x t C .
If t + τ [ μ , 0 ] , then
v t x t C v x C = v x Θ ,
which implies that for each t J ,
| Λ 1 v ( t ) Λ 2 x ( t ) |   P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ v d x d C + Q v t x t C + ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 Q v d x d C   P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ( ξ + ν ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m + 1 ) × ( Φ ( t ) Φ ( 0 ) ) ϑ 1 v x Θ + Q v x Θ + ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 Q v x Θ .
Thus,
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ ( Λ 1 v ( t ) Λ 2 x ( t ) ) |   [ P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ( ξ + ν ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m + 1 ) + Q ( Φ ( t ) Φ ( 0 ) ) 1 ϑ + ( Φ ( d ) Φ ( 0 ) ) 1 ϑ Q ] v x Θ .
Consequently,
Λ 1 v Λ 2 x C 1 ϑ , Φ   [ P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ( ξ + ν ) Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m + 1 ) + 2 Q ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ] v x Θ : = Ξ 1 v x Θ .
If t + τ J , then
v t x t C ( Φ ( t ) Φ ( 0 ) ) ϑ 1 v x C 1 ϑ , Φ = ( Φ ( t ) Φ ( 0 ) ) ϑ 1 v x Θ .
Which implies that, for each t J ,
| Λ 1 v ( t ) Λ 1 x ( t ) |   P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 Ω I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ v d x d C + Q v t x t C + ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 Q v d x d C   P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ ( Φ ( t ) Φ ( 0 ) ) ϑ 1 v x Θ Ω × I 0 + ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m , Φ ( Φ ( s ) Φ ( 0 ) ϑ 1 ) ( d ) + 2 Q ( Φ ( t ) Φ ( 0 ) ) ϑ 1 v x Θ   P Γ ( ϑ ) ( Φ ( d ) Φ ( 0 ) ) ξ + ν ( Φ ( t ) Φ ( 0 ) ) ϑ 1 Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m )   × v x Θ + 2 Q ( Φ ( t ) Φ ( 0 ) ) ϑ 1 v x Θ .
Hence,
| ( Φ ( t ) Φ ( 0 ) ) 1 ϑ ( Λ 1 v ( t ) Λ 1 x ( t ) ) |   [ P Γ ( ϑ ) ( Φ ( d ) Φ ( 0 ) ) ξ + ν Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) + 2 Q ] v x Θ ,
which implies that
Λ 1 v Λ 1 x C 1 ϑ , Φ   [ P Γ ( ϑ ) ( Φ ( d ) Φ ( 0 ) ) ξ + ν Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) + 2 Q ] v x Θ : = Ξ 2 v x Θ .
Consequently,
Λ 1 v Λ 1 x C 1 ϑ , Φ = Λ 1 v Λ 1 x Θ max ( Ξ 1 , Ξ 2 ) v x Θ .
By Equation (7), we infer that Λ is a contraction.
  • Claim 3:  Λ 2 is compact and continuous.
The continuity of g implies that the operator Λ 2 is continuous. Also, Λ 2 is uniformly bounded on B q ^ . Let t [ μ , 0 ] and x B q ^ . Then, we have
| Λ 2 x ( t ) | = 1 2 | ω ( t ) | | ω ( t ) | sup t [ μ , 0 ] | ω ( t ) | q ^ ,
which leads to
Λ 2 x Θ q ^ .
If t J , then we have
Λ 2 x Θ = Λ 2 x C 1 ϑ , Φ max { L 3 , L 4 } .
Which means that Λ 2 is uniformly bounded on B q ^ . Next, it remains to show that Λ 2 B q ^ is equicontinuous. For t 1 , t 2 J and x B q ^ , we have
| ( Φ ( t 2 ) Φ ( 0 ) ) 1 ϑ Λ 2 x ( t 2 ) ( Φ ( t 1 ) Φ ( 0 ) ) 1 ϑ Λ 2 x ( t 1 ) |   Ω ( Φ ( t 2 ) Φ ( 0 ) ) 1 ϑ Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) t 1 t 2 Φ ( s ) ( Φ ( t 2 ) Φ ( s ) ) ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m 1 × | f ( s ) | d s + Ω Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) 0 t 1 Φ ( s ) | [ ( Φ ( t 2 ) Φ ( s ) ) 1 ϑ × ( Φ ( t 2 ) Φ ( 0 ) ) ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m 1 ( Φ ( t 1 ) Φ ( 0 ) ) 1 ϑ × ( Φ ( t 1 ) Φ ( s ) ) ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m 1 ] | | f ( s ) | d s 0   as   t 2 t 1 0 .
This proves the equicontinuity of the set Λ 2 B q ^ , and by Theorem 1, it is relatively compact. Thus, as a consequence of Theorem 3, we conclude that Λ has at least a fixed point v Θ . □

4. Examples

Example 1.
Consider the Φ-HFNFIDE with terminal condition as follows:
D 0 + 0.6 , 0.4 , t H v ( t ) F ( t , v t ) + 0.1 I 0 + 0.5 , t v ( t ) F ( t , v t ) 0.7 I 0 + 0.7 , t v ( t ) F ( t , v t ) = I 0 + 0.5 , t g ( t , v t ) , t ( 0 , 1 ] ,
v ( 1 ) = ρ R ,
v ( t ) = ω ( t ) , t [ μ , 0 ] , μ > 0 ,
where ω C ( [ μ , 0 ] , R ) . Set
g ( t , x ) = ln ( t + 1 ) 2 t + 2 + | x | 36 ( 1 + | x | ) , t ( 0 , 1 ] , x C ( [ μ , 0 ] , R ) ,
and
F ( t , y ) = | y | 54 ( 1 + | y | ) + 1 2 t , t ( 0 , 1 ] , y C ( [ μ , 0 ] , R ) .
Then,
C 1 ϑ , Φ ν ( 1 ξ ) ( [ 0 , 1 ] ) = C 0.24 , t 0.16 ( [ 0 , 1 ] ) ,
with ξ = 0.6 , ν = 0.4 , ϑ = 0.76 , and Φ ( t ) = t . Clearly, we have the functions g C 0.24 , t 0.16 [ 0 , 1 ] and F C 0.24 , t 0.76 [ 0 , 1 ] . Thus, ( M 1 ) is fulfilled.
Let x , x ¯ C ( [ μ , 0 ] , R ) and t ( 0 , 4 ] . Then, we have
| g ( t , x ) g ( t , x ¯ ) | 1 36 x x ¯ C ,
and
| F ( t , x ) F ( t , x ¯ ) | 1 54 x x ¯ C .
Therefore, Condition ( M 2 ) holds with P = 1 36 and Q = 1 54 . We shall check that Condition (6) is fulfilled with d = 1 , and
Ω = r = 0 r 1 + r 2 = r r r 1 , r 2 | η 1 | r 1 | η 2 | r 2 = r = 0 r 1 + r 2 = r r r 1 , r 2 | 0.1 | r 1 | 0.7 | r 2 = r = 0 ( 0.8 ) r = 1 1 0.8 = 5 .
Indeed, we have
max { Q + P Γ ( ϑ ) ( Φ ( d ) Φ ( 0 ) ) ξ + ν Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) ;     P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ξ + ν Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m + 1 )     + Q ( Φ ( d ) Φ ( 0 ) ) 1 ϑ } 0.20120 < 1 2 .
Hence, by Theorem 4, we conclude that Equations (13)–(15) with g and F mentioned in Equations (16) and (17), respectively, have a unique solution.
Example 2.
Consider the following problem
D 0 + 0.6 , 0 , t H v ( t ) F ( t , v t ) + 0.1 I 0 + 0.4 , t v ( t ) F ( t , v t ) 0.7 I 0 + 0.5 , t v ( t ) F ( t , v t ) = I 0 + 0.4 , t g ( t , v t ) , t ( 1 , 2 ] ,
v ( 2 ) = ρ R ,
v ( t ) = ω ( t ) , t [ μ , 0 ] , μ > 0 ,
where ω C ( [ μ , 0 ] , R ) . Set
g ( t , x ) = | x | 2 ( 1 + | x | ) , t ( 1 , 2 ] , x C ( [ μ , 0 ] , R )
and
F ( t , y ) = t 1 + | y | e 2 + 1 e t 2 + 1 , t ( 1 , 2 ] , y C ( [ μ , 0 ] , R ) ,
Thus, we have
C 1 ϑ , Φ ν ( 1 ξ ) [ 1 , 2 ] = C 0.5 , t 0 [ 1 , 2 ] = C 0.5 , t [ 1 , 2 ] ,
with ξ = 0.5 , ν = 0 , ϑ = 0.5 , and Φ ( t ) = t . Clearly, the functions are g C 0.5 , t [ 1 , 2 ] and F C 0.5 , t 0.5 [ 1 , 2 ] . Thus, Condition ( M 1 ) is satisfied. For x , x ¯ C ( [ μ , 0 ] , R ) and t ( 1 , 2 ] , we have
| g ( t , x ) g ( t , x ¯ ) | 1 2 x x ¯ C ,
and
| F ( t , x ) F ( t , x ¯ ) | 2 e 1 x x ¯ C .
Hence, Condition ( M 2 ) is satisfied with P = 1 2 and Q = 2 e 1 . We shall check that Condition (6) is fulfilled with d = 2 and Ω = 5 . Indeed,
max { Q + P Γ ( ϑ ) ( Φ ( d ) Φ ( 0 ) ) ξ + ν Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( 2 ( ξ + ν ) ξ ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m ) ;     P ( Φ ( d ) Φ ( 0 ) ) 1 ϑ + ξ + ν Ω ( Φ ( d ) Φ ( 0 ) ) ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m Γ ( ξ + ν + ( ξ + ν 1 ) r 1 + + ( ξ + ν m ) r m + 1 )     + Q ( Φ ( d ) Φ ( 0 ) ) 1 ϑ } 0.48 < 1 2 ,
which implies that all the assumptions of Theorem 4 are satisfied. Thus, Equations (18)–(20) have a unique solution.

5. Conclusions

In this article, the uniqueness and existence of the solution for Φ -HFNFIDEs with terminal conditions are discussed. The multivariate Mittag-Leffler function, Banach contraction principle, and Krasnoselskii’s fixed-point theorem are utilized to obtain the results. The respective results are novel and interesting to the best of our knowledge. As a conclusion, the Φ -Hilfer fractional derivative can be used as a powerful tool for studying the dynamical behavior of many real-world problems in Banach spaces.

Author Contributions

Methodology, R.V., A.A.A., M.M.E.-D., D.M. and N.B.; Validation, R.V., A.A.A., M.M.E.-D., D.M. and N.B.; Investigation, R.V., A.A.A., M.M.E.-D., D.M. and N.B.; Writing—original draft, R.V., A.A.A., M.M.E.-D., D.M. and N.B.; Writing—review and editing, R.V., A.A.A., M.M.E.-D., D.M. and N.B. The authors participated equally in this work. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflicts of interest in this work.

References

  1. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  2. Samko, A.A.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
  3. Rosa, E.C.F.A.; de Oliveira, E.C. Relaxation equations: Fractional models. J. Phys. Math. 2015, 6, 2. [Google Scholar]
  4. Costa, F.; Grigoletto, E.C.; Vaz, J.; de Oliveira, E.C. Slowing-down of neutrons: A fractional model. Commun. Appl. Ind. Math. 2015, 6, 538. [Google Scholar]
  5. Sousa, J.V.D.C.; de Oliveira, E.C.; Magna, L.A. Fractional calculus and the ESR test. AIMS Math. 2017, 2, 692–705. [Google Scholar] [CrossRef]
  6. Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Amsterdam, The Netherlands, 2011. [Google Scholar]
  7. Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley-ISTE: London, UK, 2014. [Google Scholar]
  8. Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 1999. [Google Scholar]
  9. Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
  10. Furati, K.M.; Tatar Kassim, M.D.; Tatar, N.E. Non-existence of global solutions for a differential equation involving Hilfer fractional derivative. Elecctron. J. Differ. Equ. 2013, 235, 1–10. [Google Scholar]
  11. Khandagale, A.D.; Bagwan, A.S.; Thabet, T.M.; Kedim, I. Investigate the solution of an initial Hilfer fractional value problem. Int. J. Optim. Control Theory. Appl. 2025, 15, 493–502. [Google Scholar] [CrossRef]
  12. Harikrishnan, S.; Baghani, O.; Kanagarajan, K. Qualitative analysis of fractional differential equations with ψ-Hilfer fractional derivative. Comput. Methods Differ. 2022, 10, 1–11. [Google Scholar]
  13. Basua, D.; Bora, S.N. Nonlinear analysis for Hilfer fractional differential equations. Frankl. Open 2025, 13, 100383. [Google Scholar] [CrossRef]
  14. Benchohra, M.; Bouriah, S.; Nieto, J.J. Terminal value problem for differential equations with Hilfer-Katugampola fractional derivative. Symmetry 2019, 11, 672. [Google Scholar] [CrossRef]
  15. Salamooni, A.Y.A.; Pawar, D.D. Existence and uniqueness of nonlocal boundary conditions for Hilfer-Hadamard-type fractional differential equations. Adv. Differ. Equ. 2021, 1, 198. [Google Scholar] [CrossRef]
  16. Ri, Y.D.; Chol, H.C.; Chang, K.J. Constructive existence of solutions of multi-point boundary value problem for Hilfer fractional differential equation at resonance. Mediterr. J. Math. 2020, 17, 95. [Google Scholar] [CrossRef]
  17. Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
  18. Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
  19. Oliveira, D.S.; de Oliveira, E.C. Hilfer-Katugampola fractional derivatives. Comput. Appl. Math. 2018, 37, 3672–3690. [Google Scholar] [CrossRef]
  20. Sousa, J.V.D.C.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. 2018, 60, 72–91. [Google Scholar] [CrossRef]
  21. Mali, A.D.; Kucche, K.D. On the boundary value problems of ψ-Hilfer fractional differential equations. Kyungpook Math. J. 2024, 64, 669–702. [Google Scholar]
  22. Haddouchi, F.; Samei, M.E.; Rezapour, S. Study of a sequential ψ-Hilfer fractional integro-differential equations with nonlocal BCs. J. Pseudo. Differ. Oper Appl. 2023, 14, 61. [Google Scholar] [CrossRef]
  23. Poovarasan, R.; Samei, M.E.; Govindaraj, V. Analysis of existence, uniqueness, and stability for nonlinear fractional boundary value problems with novel integral boundary conditions. J. Appl. Math. Comput. 2025, 71, 3771–3802. [Google Scholar] [CrossRef]
  24. Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. On the theory of fractional terminal value problem with ψ-Hilfer fractional derivative. AIMS Math. 2020, 5, 4889–4908. [Google Scholar] [CrossRef]
  25. Salim, A.; Benchohra, M. Existence and Ulam stability results of tempered (k, ψ)-Hilfer fractional terminal differential problem. Eur. J. Math. Appl. 2024, 4, 19. [Google Scholar]
  26. Sitho, S.; Ntouyas, S.K.; Sudprasert, C.; Tariboon, J. Integro-differential boundary conditions to the sequential ψ1-Hilfer and ψ2-Caputo fractional differential equations. Mathematics 2023, 11, 867. [Google Scholar] [CrossRef]
  27. Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Coupled systems of nonlinear proportional fractional Differential Equations of the Hilfer-type with multi-point and integro-multi-Strip boundary conditions. Foundations 2023, 3, 241–259. [Google Scholar] [CrossRef]
  28. Sudprasert, C.; Ntouyas, S.K.; Ahmad, B.; Samadi, A.; Tariboon, J. On the generalized Hilfer fractional coupled integro-differential systems with multi-point ordinary and fractional integral boundary conditions. Axioms 2024, 13, 51. [Google Scholar] [CrossRef]
  29. Smith, H. An Introduction to Delay Differential Equations with Applications to the Life Sciences; Springer: New York, NY, USA, 2011. [Google Scholar]
  30. Driver, R.D. Ordinary and Delay Differential Equations; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
  31. Kyrychko, Y.; Hogan, S. On the use of delay equations in engineering applications. J. Vib. 2010, 16, 943–960. [Google Scholar] [CrossRef]
  32. Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef]
  33. Boutiara, A.; Abdo, M.S.; Benbachir, M. Existence results for ψ-Caputo fractional neutral functional integro-differential equations with finite delay. Turk. J. Math. 2020, 44, 2380–2401. [Google Scholar] [CrossRef]
  34. Abdeljawad, T.; Thabet, S.T.M.; Kedim, I.; Vivas-Cortez, M. On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integro-differential system with variable time delay. AIMS Math. 2024, 9, 7372–7395. [Google Scholar] [CrossRef]
  35. Bettayeb, N.; Salim, A.; Lazreg, J.E. Implicit neutral tempered ψ-Caputo fractional differential coupled systems with delay in generalized Banach spaces. Ann. Acad. Rom. Sci. 2025, 17, 55–79. [Google Scholar]
  36. Annapoorani, N.; Prabu, N. Existence and stability analysis of neutral implicit fractional pantograph differential equations with non-local conditions using fixed-point theorems. Int. J. Dyn. Syst. Differ. Equ. 2024, 13, 565–581. [Google Scholar] [CrossRef]
  37. Benchaib, A.; Salim, A.; Abbas, S. Qualitative analysis of neutral implicit fractional q-difference equations with delay. Differ. Equ. Appl. 2024, 16, 19–38. [Google Scholar] [CrossRef]
  38. Sene, N.; Ndiaye, A. Existence and uniqueness study for partial neutral functional fractional differential equation under Caputo derivative. Int. J. Optim. Control Theor. Appl. 2024, 14, 208–219. [Google Scholar] [CrossRef]
  39. Makhlouf, A.B.; El-Hady, E.S. Hyers-Ulam-Rassias stability of some sequential neutral functional differential equations with Caputo-Hadamard fractional derivative. Miskolc Math. Notes 2025, 26, 69–79. [Google Scholar] [CrossRef]
  40. Yuan, Z.; Wang, L.; He, W.; Cai, N.; Mu, J. Fractional Neutral Integro-Differential Equations with Nonlocal Initial Conditions. Mathematics 2024, 12, 1877. [Google Scholar] [CrossRef]
  41. Bouriah, S.; Benchohra, M.; Ozyurt, S.G. Terminal value problem for neutral fractional functional differential equations with Hilfer-Katugampola fractional derivative. Filomat. 2023, 37, 7131–7141. [Google Scholar] [CrossRef]
  42. Li, C. Existence for a nonlinear integro-differential equation with Hilfer fractional derivative. J. Integral Equ. Appl. 2025, 37, 91–99. [Google Scholar] [CrossRef]
  43. Vivek, R.; Abdelfattah, W.M.; Elsayed, E.M. Analysis of delay-type integro-differential systems described by the Φ-Hilfer fractional derivative. Axioms 2025, 14, 629. [Google Scholar] [CrossRef]
  44. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
  45. Babenko, Y.I. Heat and Mass Transfer; Khimiya: Leningrad, Russia, 1986. [Google Scholar]
  46. Li, C. Uniqueness of the partial integro-differential equations. J. Integral Equations Appl. 2021, 33, 463–475. [Google Scholar] [CrossRef]
  47. Li, C.; Saadati, R.; Srivastava, R.; Beaudin, J. On the boundary value problem of nonlinear fractional integro-differential equations. Mathematics 2022, 10, 1971. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Vivek, R.; Alghamdi, A.A.; El-Dessoky, M.M.; Maheswari, D.; Bharath, N. Analytic Study on Φ-Hilfer Fractional Neutral-Type Functional Integro-Differential Equations with Terminal Conditions. Mathematics 2026, 14, 182. https://doi.org/10.3390/math14010182

AMA Style

Vivek R, Alghamdi AA, El-Dessoky MM, Maheswari D, Bharath N. Analytic Study on Φ-Hilfer Fractional Neutral-Type Functional Integro-Differential Equations with Terminal Conditions. Mathematics. 2026; 14(1):182. https://doi.org/10.3390/math14010182

Chicago/Turabian Style

Vivek, Ravichandran, Abdulah A. Alghamdi, Mohamed M. El-Dessoky, Dhandapani Maheswari, and Natarajan Bharath. 2026. "Analytic Study on Φ-Hilfer Fractional Neutral-Type Functional Integro-Differential Equations with Terminal Conditions" Mathematics 14, no. 1: 182. https://doi.org/10.3390/math14010182

APA Style

Vivek, R., Alghamdi, A. A., El-Dessoky, M. M., Maheswari, D., & Bharath, N. (2026). Analytic Study on Φ-Hilfer Fractional Neutral-Type Functional Integro-Differential Equations with Terminal Conditions. Mathematics, 14(1), 182. https://doi.org/10.3390/math14010182

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop