Equivalence Relations Between Conical 2-Designs and Mutually Unbiased Generalized Equiangular Tight Frames
Abstract
1. Introduction
2. Conical 2-Designs
- (i)
- Homogeneous conical 2-designs, for which and are constant [35];
- (ii)
- (iii)
3. Generalized Equiangular Tight Frames
4. Conical 2-Designs vs. Generalized Equiangular Tight Frames
- (i)
- are of equal trace: ;
- (ii)
- are of equal trace: ;
- (iii)
- satisfy the symmetry condition for all ;
- (iv)
- sum up to a rescaled identity operator for some ;
- (v)
- is a homogeneous conical 2-design.
5. Mutually Unbiased Generalized Equiangular Tight Frames
6. Conical 2-Designs vs. Mutually Unbiased GETFs
- (i)
- are of equal trace: ;
- (ii)
- are of equal trace: ;
- (iii)
- satisfy the symmetry condition for all ;
- (iv)
- sum up to a rescaled identity operator for some ;
- (v)
- each is a GETF;
- (vi)
- are mutually unbiased: for all .
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Notation Clarification
Appendix A.1. Section 4: Conical 2-Designs vs. Generalized Equiangular Tight Frames
| Symbol | Description |
|---|---|
| Conical 2-design | |
| Operators in | |
| M | Number of operators in |
| Trace of | |
| Trace of | |
| Trace of for |
| Symbol | Description |
|---|---|
| GETF | |
| Operators in | |
| M | Number of operators in |
| a | Trace of |
| b | Trace of |
| c | Trace of for |
Appendix A.2. Section 6: Conical 2-Designs vs. Mutually Unbiased GETFs
| Symbol | Description |
|---|---|
| Conical 2-design | |
| Subset of | |
| Operators in | |
| N | Number of subsets |
| Number of operators in | |
| Positive number such that | |
| Constant equal to | |
| Trace of | |
| Trace of | |
| Trace of for | |
| Trace of for |
| Symbol | Description |
|---|---|
| MU GETFs | |
| GETF from | |
| Operators in | |
| N | Number of subsets |
| Number of operators in | |
| Positive number such that | |
| Constant equal to | |
| Trace of | |
| Trace of | |
| Trace of for | |
| f | Trace of for |
| Frobenius distance equal to |
Appendix B. Properties of Generalized Equiangular Tight Frames
Appendix C. Linearly Independent Subset of Mutually Unbiased GETFs
Appendix D. Admissible Range of S
Appendix E. Trace Parameters for Conical 2-Designs in Proposition 6
Appendix F. Consequences of Semi-Positivity of R α,k
References
- Zhou, P. Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A Math. Theor. 2012, 45, 215305. [Google Scholar] [CrossRef]
- Song, J.F.; Wang, Z.Y. Controlled Remote Preparation of a Two-Qubit State via Positive Operator-Valued Measure and Two Three-Qubit Entanglements. Int. J. Theor. Phys. 2011, 50, 2410. [Google Scholar] [CrossRef]
- Bouchard, F.; Heshami, K.; England, D.; Fickler, R.; Boyd, R.W.; Englert, B.G.; Sánchez-Soto, L.L.; Karimi, E. Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons. Quantum 2018, 2, 111. [Google Scholar] [CrossRef]
- Zhu, H. Quantum state estimation with informationally overcomplete measurements. Phys. Rev. A 2014, 90, 012115. [Google Scholar] [CrossRef]
- Adamson, R.B.A.; Steinberg, A.M. Improving Quantum State Estimation with Mutually Unbiased Bases. Phys. Rev. Lett. 2010, 105, 030406. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H. Quantum Measurements in the Light of Quantum State Estimation. PRX Quantum 2022, 3, 030306. [Google Scholar] [CrossRef]
- Shang, J.; Asadian, A.; Zhu, H.; Gühne, O. Enhanced entanglement criterion via symmetric informationally complete measurements. Phys. Rev. A 2018, 98, 022309. [Google Scholar] [CrossRef]
- Li, T.; Lai, L.M.; Liang, D.F.; Fei, S.M.; Wang, Z.X. Entanglement Witnesses Based on Symmetric Informationally Complete Measurements. Int. J. Theor. Phys. 2020, 59, 3549–3557. [Google Scholar] [CrossRef]
- Kalev, A.; Bae, J. Optimal approximate transpose map via quantum designs and its applications to entanglement detection. Phys. Rev. A 2013, 87, 062314. [Google Scholar] [CrossRef]
- Blume-Kohout, R.; Yin, J.O.S.; van Enk, S.J. Entanglement Verification with Finite Data. Phys. Rev. Lett. 2010, 105, 170501. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yao, H.; Fei, S.M.; Fan, Z.; Ma, H. Quantum entanglement estimation via symmetric-measurement-based positive maps. Phys. Rev. A 2024, 109, 052426. [Google Scholar] [CrossRef]
- Lai, L.M.; Li, T.; Fei, S.M.; Wang, Z.X. Detecting EPR steering via two classes of local measurements. Quant. Inf. Proc. 2020, 19, 93. [Google Scholar] [CrossRef]
- Tavakoli, A.; Farkas, M.; Rosset, D.; Bancal, J.D.; Kaniewski, J. Mutually unbiased bases and symmetric informationally complete measurements in Bell experiments. Sci. Adv. 2021, 7, eabc3847. [Google Scholar] [CrossRef] [PubMed]
- Vértesi, T.; Bene, E. Two-qubit Bell inequality for which positive operator-valued measurements are relevant. Phys. Rev. A 2010, 82, 062115. [Google Scholar] [CrossRef]
- Prugovečki, E. Information-theoretical aspects of quantum measurement. Int. J. Theor. Phys. 1977, 16, 321–331. [Google Scholar] [CrossRef]
- Petz, D.; Ruppert, L. Efficient Quantum Tomography Needs Complementary and Symmetric Measurements. Rep. Math. Phys. 2012, 69, 161. [Google Scholar] [CrossRef]
- Pimenta, W.M.; Marques, B.; Maciel, T.O.; Vianna, R.O.; Delgado, A.; Saavedra, C.; Pádua, S. Minimum tomography of two entangled qutrits using local measurements of one-qutrit symmetric informationally complete positive operator-valued measure. Phys. Rev. A 2013, 88, 012112. [Google Scholar] [CrossRef]
- Bent, N.; Qassim, H.; Tahir, A.A.; Sych, D.; Leuchs, G.; Sánchez-Soto, L.L.; Karimi, E.; Boyd, R.W. Experimental Realization of Quantum Tomography of Photonic Qudits via Symmetric Informationally Complete Positive Operator-Valued Measures. Phys. Rev. X 2015, 5, 041006. [Google Scholar] [CrossRef]
- Renes, J.M.; Blume-Kohout, R.; Scott, A.J.; Caves, C.M. Symmetric Informationally Complete Quantum Measurements. J. Math. Phys. 2004, 45, 2171. [Google Scholar] [CrossRef]
- Schwinger, J. Unitary Operator Bases. Proc. Nat. Acad. Sci. USA 1960, 46, 570. [Google Scholar] [CrossRef]
- Ruskai, M.B.; Szarek, S.; Werner, E. An analysis of completely-positive trace-preserving maps on M2. Linear Algebra Appl. 2002, 347, 159–187. [Google Scholar] [CrossRef]
- Neumaier, A. Combinatorial Configurations in Terms of Distances; Eindhoven University of Technology: Dept of Mathematics: Memorandum; Technische Hogeschool Eindhoven: Eindhoven, The Netherlands, 1981; p. 8109. [Google Scholar]
- Hoggar, S. t-Designs in Projective Spaces. Eur. J. Comb. 1982, 3, 233–254. [Google Scholar] [CrossRef]
- Zauner, G. Quantum Designs Foundations of a Non-Commutative Design Theory. Ph.D. Thesis, University of Vienna, Vienna, Austria, 1999. [Google Scholar]
- Scott, A.J. Tight informationally complete quantum measurements. J. Phys. A Math. Gen. 2006, 39, 13507. [Google Scholar] [CrossRef]
- Geng, I.J.; Golubeva, K.; Gour, G. What are the minimal conditions required to define a SIC POVM? Phys. Rev. Lett. 2021, 126, 100401. [Google Scholar] [CrossRef]
- Feng, L.; Luo, S. Equioverlapping measurements. Phys. Lett. A 2022, 445, 128243. [Google Scholar] [CrossRef]
- Feng, L.; Luo, S.; Zhao, Y.; Guo, Z. Equioverlapping measurements as extensions of symmetric informationally complete positive operator valued measures. Phys. Rev. A 2024, 109, 012218. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, Z.; Feng, L.; Luo, S.; Lee, T.L. Equioverlapping measurements in qutrit systems. Phys. Lett. A 2024, 495, 129314. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, Y.; Lee, T.L.; Luo, S. Construction and classification of all equioverlapping measurements in qubit and qutrit systems. Phys. Rev. A 2025, 111, 012430. [Google Scholar] [CrossRef]
- Siudzińska, K. All classes of informationally complete symmetric measurements in finite dimensions. Phys. Rev. A 2022, 105, 042209. [Google Scholar] [CrossRef]
- Siudzińska, K. How much symmetry do symmetric measurements need for efficient operational applications? J. Phys. A Math. Theor. 2024, 57, 355301. [Google Scholar] [CrossRef]
- Siudzińska, K. Informationally overcomplete measurements from generalized equiangular tight frames. J. Phys. A Math. Theor. 2024, 57, 335302. [Google Scholar] [CrossRef]
- Huang, F.; Wu, F.; Tang, L.; Mo, Z.W.; Bai, M.Q. Characterizing the uncertainty relation via a class of measurements. Phys. Scr. 2023, 98, 105103. [Google Scholar] [CrossRef]
- Graydon, M.A.; Appleby, D.M. Quantum Conical Designs. J. Phys. A Math. Theor. 2016, 49, 085301. [Google Scholar] [CrossRef]
- Graydon, M.A.; Appleby, D.M. Entanglement and Designs. J. Phys. A Math. Theor. 2016, 49, 33LT02. [Google Scholar] [CrossRef]
- Graydon, M.A. Conical Designs and Categorical Jordan Algebraic Post-Quantum Theories. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2017. [Google Scholar]
- Siudzińska, K. Entanglement witnesses and separability criteria based on generalized equiangular tight frames. Sci. Rep. 2025, 15, 29890. [Google Scholar] [CrossRef]
- Siudzińska, K. Measures from conical 2-designs depend only on two constants. J. Phys. A Math. Theor. 2025, 58, 375302. [Google Scholar] [CrossRef]
- Klappenecker, A.; Rötteler, M. Mutually Unbiased Bases are Complex Projective 2-Designs. In Proceedings of the Proceedings 2005 IEEE International Symposium on Information Theory (ISIT 2005), Adelaide, Australia, 4–9 September 2005; pp. 1740–1744. [Google Scholar]
- Czartowski, J.; Goyeneche, D.; Grassl, M.; Życzkowski, K. Iso-entangled mutually unbiased bases, symmetric quantum measurements and mixed-state designs. Phys. Rev. Lett. 2020, 124, 090503. [Google Scholar] [CrossRef]
- Choi, M.D. Completely Positive Linear Maps on Complex Matrices. Linear Algebra Appl. 1975, 10, 285–290. [Google Scholar] [CrossRef]
- Jamiołkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 1972, 3, 275–278. [Google Scholar] [CrossRef]
- Levenshtein, V. On designs in compact metric spaces and a universal bound on their size. Discrete Math. 1998, 192, 251–271. [Google Scholar] [CrossRef]
- Roy, A.; Scott, A.J. Weighted complex projective 2-designs from bases: Optimal state determination by orthogonal measurements. J. Math. Phys. 2007, 48, 072110. [Google Scholar] [CrossRef]
- McConnell, G.; Gross, D. Efficient 2-designs from bases exist. Quantum Inf. Comput. 2008, 8, 734. [Google Scholar] [CrossRef]
- Kalev, A.; Gour, G. Construction of all general symmetric informationally complete measurements. J. Phys. A Math. Theor. 2014, 47, 335302. [Google Scholar]
- Yoshida, M.; Kimura, G. Construction of general symmetric-informationally-complete-positive-operator-valued measures by using a complete orthogonal basis. Phys. Rev. A 2022, 106, 022408. [Google Scholar] [CrossRef]
- Kalev, A.; Gour, G. Mutually unbiased measurements in finite dimensions. New J. Phys. 2014, 16, 053038. [Google Scholar] [CrossRef]
- Wang, K.; Wu, N.; Song, F. Uncertainty Relations in the Presence of Quantum Memory for Mutually Unbiased Measurements. Phys. Rev. A 2018, 98, 032329. [Google Scholar] [CrossRef]
- Strohmer, T.; Heath, R. Grassmannian Frames with Applications to Coding and Communication. Appl. Comput. Harmon. Anal. 2003, 14, 257–275. [Google Scholar] [CrossRef]
- Strohmer, T. A note on equiangular tight frames. Linear Algebra Appl. 2008, 429, 326. [Google Scholar] [CrossRef]
- Lemmens, P.W.H.; Seidel, J.J. Equiangular lines. J. Algebra 1973, 24, 494. [Google Scholar] [CrossRef]
- Fickus, M.; Mayo, B.R. Mutually Unbiased Equiangular Tight Frames. arXiv 2020, arXiv:2001.02055. [Google Scholar] [CrossRef]
- Perez, F.C.; Avella, V.G.; Goyeneche, D. Mutually unbiased frames. Quantum 2022, 6, 851. [Google Scholar] [CrossRef]
- Rastegin, A.E. Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies. Eur. Phys. J. D 2013, 67, 269. [Google Scholar] [CrossRef]
- Knöll, L.; Orłowski, A. Distance between density operators: Applications to the Jaynes-Cummings model. Phys. Rev. A 1995, 51, 1622. [Google Scholar] [CrossRef]
- Ivanović, I.D. Geometrical description of quantal state determination. J. Phys. A Math. Gen. 1992, 25, L363. [Google Scholar]
- Sánchez, J. Entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 1993, 173, 233–239. [Google Scholar] [CrossRef]
- Chen, B.; Fei, S.M. Uncertainty relations based on mutually unbiased measurements. Quant. Inf. Proc. 2015, 14, 2227–2238. [Google Scholar] [CrossRef]
- Rastegin, A.E. Notes on general SIC-POVMs. Phys. Scr. 2014, 89, 085101. [Google Scholar] [CrossRef]
- Coles, P.J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic Uncertainty Relations and their Applications. Rev. Mod. Phys. 2017, 89, 015002. [Google Scholar] [CrossRef]
- Koashi, M. Simple security proof of quantum key distribution via uncertainty principle. New J. Phys. 2009, 11, 045018. [Google Scholar] [CrossRef]
- Wehner, S.; Winter, A. Entropic uncertainty relations - A survey. New J. Phys. 2010, 12, 025009. [Google Scholar] [CrossRef]
- Chruściński, D.; Sarbicki, G.; Wudarski, F.A. Entanglement witnesses from mutually unbiased bases. Phys. Rev. A 2018, 97, 032318. [Google Scholar] [CrossRef]
- Bae, J.; Bera, A.; Chruściński, D.; Hiesmayr, B.C.; McNulty, D. How many measurements are needed to detect bound entangled states? J. Phys. A Math. Theor. 2022, 55, 505303. [Google Scholar] [CrossRef]
- Li, T.; Lai, L.M.; Fei, S.M.; Wang, Z.X. Mutually Unbiased Measurement Based Entanglement Witnesses. Int. J. Theor. Phys. 2019, 58, 3973–3985. [Google Scholar] [CrossRef]
- Salehi, M.; Akhtarshenas, S.J.; Sarbishaei, M.; Jaghouri, H. Mutually unbiased measurements with arbitrary purity. Quantum Inf. Process. 2021, 20, 401. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, Z.J. Constructing Entanglement Witnesses from Two Mutually Unbiased Bases. Int. J. Theor. Phys. 2021, 60, 274–283. [Google Scholar] [CrossRef]
- Spengler, C.; Huber, M.; Brierley, S.; Adaktylos, T.; Hiesmayr, B.C. Entanglement detection via mutually unbiased bases. Phys. Rev. A 2012, 86, 022311. [Google Scholar] [CrossRef]
- Chen, B.; Ma, T.; Fei, S.M. Entanglement detection using mutually unbiased measurements. Phys. Rev. A 2014, 89, 064302. [Google Scholar] [CrossRef]
- Chen, B.; Li, T.; Fei, S.M. General SIC-Measurement Based Entanglement Detection. Quant. Inf. Proc. 2015, 14, 2281–2290. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef]
- Masanes, L. All Bipartite Entangled States Are Useful for Information Processing. Phys. Rev. Lett. 2006, 96, 150501. [Google Scholar] [CrossRef]
- Bae, J.; Chruściński, D.; Piani, M. More Entanglement Implies Higher Performance in Channel Discrimination Tasks. Phys. Rev. Lett. 2019, 122, 140404. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Englert, B.G. Quantum state tomography with fully symmetric measurements and product measurements. Phys. Rev. A 2011, 84, 022327. [Google Scholar] [CrossRef]
- Yuan, H.; Shi, X.; Han, L.F. Qutrit state tomography via optimal unambiguous state discrimination and mutually unbiased measurements. Res. Phys. 2022, 34, 105228. [Google Scholar] [CrossRef]
- Diaz-Guevara, J.; Sainz, I.; Klimov, A.B. MUB-like structures and tomographic reconstruction for N-ququart systems. J. Phys. A Math. Theor. 2021, 54, 295305. [Google Scholar] [CrossRef]
- Sainz, I.; Garcia, A.; Klimov, A.B. MUB tomography performance under influence of systematic errors. Phys. Lett. A 2018, 382, 66–71. [Google Scholar] [CrossRef]
- Bae, J.; Hiesmayr, B.C.; McNulty, D. Linking Entanglement Detection and State Tomography via Quantum 2-Designs. New J. Phys. 2019, 21, 013012. [Google Scholar] [CrossRef]
- Fernández-Pérez, A.; Klimov, A.B.; Saavedra, C. Quantum process reconstruction based on mutually unbiased basis. Phys. Rev. A 2011, 83, 052332. [Google Scholar] [CrossRef]
- Filippov, S.N.; Man’ko, V.I. Mutually unbiased bases: Tomography of spin states and the star-product scheme. Phys. Scr. 2011, 2011, 014010. [Google Scholar] [CrossRef]
- Lima, G.; Neves, L.; Guzmán, R.; Gómez, E.S.; Nogueira, W.A.T.; Delgado, A.; Vargas, A.; Saavedra, C. Experimental quantum tomography of photonic qudits via mutually unbiased basis. Opt. Express 2011, 19, 3542–3552. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Siudzińska, K. Equivalence Relations Between Conical 2-Designs and Mutually Unbiased Generalized Equiangular Tight Frames. Mathematics 2026, 14, 128. https://doi.org/10.3390/math14010128
Siudzińska K. Equivalence Relations Between Conical 2-Designs and Mutually Unbiased Generalized Equiangular Tight Frames. Mathematics. 2026; 14(1):128. https://doi.org/10.3390/math14010128
Chicago/Turabian StyleSiudzińska, Katarzyna. 2026. "Equivalence Relations Between Conical 2-Designs and Mutually Unbiased Generalized Equiangular Tight Frames" Mathematics 14, no. 1: 128. https://doi.org/10.3390/math14010128
APA StyleSiudzińska, K. (2026). Equivalence Relations Between Conical 2-Designs and Mutually Unbiased Generalized Equiangular Tight Frames. Mathematics, 14(1), 128. https://doi.org/10.3390/math14010128

