The Non-Uniqueness of Weak Solutions of the Boussinesq System in the Periodic Domain 3
Abstract
1. Introduction
- (1).
- u is weakly divergence free, i.e., for any test function ,
- (2).
- For any divergence-free test function ,
- (3).
- For any test function ,
2. Elementary Tools
2.1. Geometric Lemma
2.2. The Anti-Divergence Operator
- for any divergence-free vector v;
- If we suppose , then we have
- If we suppose , then, for any ,
3. The Glued Step
4. The Perturbation of the Glued Solution
The New Reynolds Terms
5. The Proof of Theorem 1
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, L. The nontrivial weak solution of Boussinesq system in high dimensions. Z. Angew. Math. Phys. 2022, 73, 207–234. [Google Scholar] [CrossRef]
- Beekie, R.; Buckmaster, T.; Vicol, V. Weak Solutions of Ideal MHD Which Do Not Conserve Magnetic Helicity. Ann. PDE 2020, 6, 1. [Google Scholar] [CrossRef]
- Brue, E.; Colombo, M.; De Lellis, C. Positive solutions of transport equations and classical non-uniqueness of characteristic curves. Arch. Ration. Mech. Anal. 2021, 240, 1055–1090. [Google Scholar] [CrossRef]
- Buckmaster, T.; Lellis, C.D.; Székelyhidi, P.I.L. Anomalous Dissipation for 1/5-Hölder Euler Flows. Ann. Math. 2015, 182, 127–172. [Google Scholar] [CrossRef]
- Buckmaster, T.; Colombo, M.; Vicol, V. Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1. J. Eur. Math. Soc. 2021, 24, 3333–3378. [Google Scholar] [CrossRef]
- Buckmaster, T.; Vicol, V. Convex integration and phenomenologies in turbulence. EMS Surv. Math. Sci. 2019, 6, 173–263. [Google Scholar] [CrossRef]
- Buckmaster, T.; Vicol, V. Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. Math. 2019, 189, 101–144. [Google Scholar] [CrossRef]
- Cheskidov, A.; Luo, X. Nonuniqueness of weak solutions for the transport equation at critical space regularity. Ann. PDE 2021, 7, 1–45. [Google Scholar] [CrossRef]
- Cheskidov, A.; Luo, X. Sharp nonuniqueness for the Navier-Stokes equations. Invent. Math. 2022, 229, 987–1054. [Google Scholar] [CrossRef]
- Lellis, C.D.; Székelyhidi, L. Dissipative Continuous Euler flows. Invent. Math. 2013, 193, 377–407. [Google Scholar] [CrossRef]
- Daneri, S.; Székelyhidi, L. Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 2017, 224, 471–514. [Google Scholar] [CrossRef]
- Luo, X. Stationary solutions and nonuniqueness of weak solutions for the Navier-Stokes equations in high dimensions. Arch. Ration. Mech. Anal. 2019, 233, 701–747. [Google Scholar] [CrossRef]
- Li, Y.; Qu, P.; Zeng, Z.; Zhang, D. Non-uniqueness for the hypo-viscous compressible Navier-Stokes equations. arXiv 2022, arXiv:2212.05844. [Google Scholar] [CrossRef]
- Modena, S.; Székelyhidi, L. Non-uniqueness for the Transport Equation with Sobolev Vector Fields. Ann. PDE 2018, 4, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Modena, S.; Székelyhidi, L. Non-renormalized solutions to the continuity equation. Calc. Var. Partial Differ. Equ. 2019, 58, 1–30. [Google Scholar] [CrossRef]
- Modena, S.; Sattig, G. Convex integration solutions to the transport equation with full dimensional concentration. Annales de l’Institut Henri Poincaré C. Anal. Non Linearire 2020, 37, 1075–1108. [Google Scholar] [CrossRef]
- Tao, T.; Zhang, L. Hölder continuous periodic solution of Boussinesq equation with partial viscosity. Calc. Var. 2018, 57, 51. [Google Scholar] [CrossRef]
- Larios, A.; Yuan, P. On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion. J. Differ. Equ. 2017, 263, 1419–1450. [Google Scholar] [CrossRef]
- Majda, A.J.; Bertozzi, A.L.; Ogawa, A. Vorticity and incompressible flow, Cambridge texts in applied mathematics. Appl. Mech. Rev. 2022, 55, B77–B78. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Feng, L.
The Non-Uniqueness of Weak Solutions of the Boussinesq System in the Periodic Domain
Feng L.
The Non-Uniqueness of Weak Solutions of the Boussinesq System in the Periodic Domain
Feng, Lei.
2026. "The Non-Uniqueness of Weak Solutions of the Boussinesq System in the Periodic Domain
Feng, L.
(2026). The Non-Uniqueness of Weak Solutions of the Boussinesq System in the Periodic Domain

