Next Article in Journal
Learning Gaussian Bayesian Network from Censored Data Subject to Limit of Detection by the Structural EM Algorithm
Previous Article in Journal
Accelerated Numerical Simulations of a Reaction-Diffusion- Advection Model Using Julia-CUDA
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Arcs, Caps and Generalisations in a Finite Projective Space

by
James W. P. Hirschfeld
1 and
Joseph A. Thas
2,*
1
Department of Mathematics, University of Sussex, Brighton BN1 9QH, UK
2
Department of Mathematics, Ghent University, 9000 Gent, Belgium
*
Author to whom correspondence should be addressed.
Mathematics 2025, 13(9), 1489; https://doi.org/10.3390/math13091489
Submission received: 18 March 2025 / Revised: 23 April 2025 / Accepted: 25 April 2025 / Published: 30 April 2025
(This article belongs to the Section B: Geometry and Topology)

Abstract

:
Arcs and caps are fundamental structures in finite projective spaces. They can be generalised. Here, a survey is given of some important results on these objects, in particular on generalised ovals and generalised ovoids. This paper also contains recent results and several open problems.
MSC:
05B25; 51E12; 51E20; 51E21; 51E22

1. Introduction

A non-singular conic of the projective plane PG (2, q) over the Galois field Fq consists of q + 1 points, no three of which are collinear. It is natural to ask if this non-collinearity condition for q + 1 points is sufficient for them to be a conic. In other words, does this combinatorial property characterise non-singular conics? For q odd, this question was affirmatively answered in 1954 by Segre [1,2].
Generalising, Segre considered sets of k points in the n-dimensional projective space PG (n, q), k ≥ 3 and n ≥ 2, no three of which are collinear. For n = 2, such sets are k-arcs of PG (2, q); for n ≥ 3, these sets are k-caps of PG (n, q). Further, Segre considers sets of k points in PG (n, q), kn + 1, no n + 1 of which lie in a hyperplane; these sets are k-arcs of PG (n, q). There is a strong relation between arcs and algebraic curves, algebraic hypersurfaces and linear maximum-distance separable (MDS) codes.
Arcs and caps can be generalised by replacing their points with r-dimensional subspaces to obtain generalised k-arcs and generalised k-caps of PG (m, q) [3]. These have strong connections to generalised quadrangles, projective planes, circle geometries, strongly regular graphs, finite groups and linear projective two-weight codes. In this survey, results and problems concerning these objects are discussed. The focus is on generalised ovals and generalised ovoids.
There is an enormous amount of material and results on arcs and caps in finite projective spaces. On these, just a few important definitions and results are mentioned. The emphasis is on some bounds, in particular on general bounds that hold for all values of the size q of the field, up to parity of q and a few exceptional small values. Some of these bounds, for example, Theorems 21 and 22, cannot be found in earlier surveys or books. Many interesting and strong results on arcs are contained in [4,5,6].
The main part of this paper is on generalised ovals and generalised ovoids. Many characterisations and classifications are given. The last part is focussed on the relations between certain generalised ovoids and finite translation generalised quadrangles of order (s, s2). Also, the relationship beween Moufang generalised quadrangles, generalised ovoids and the theorem of Fong and Seitz on groups with a BN-pair of rank 2 is explained; see the recent paper [7].
Finally, several open problems are stated.

2. Arcs, Ovals and Hyperovals in PG (2, q)

Definition 1.
 (1) 
A k-arc in  PG ( 2 , q ) ,  is a set of k points, with k ≥ 3, such that no three of its points lie on a line.
 (2) 
An arc K is complete if it is not properly contained in a larger arc.
 (3) 
If  K { P }  is an arc for a point P that is not in  K , then P extends K .
Theorem 1
([8] (Chapter 8)). Let  K be a k-arc of  PG ( 2 , q ) . Then,
 (i) 
k q + 2 ;
 (ii) 
For q odd  ,   k q + 1 ;
 (iii) 
Any non-singular conic is a  ( q + 1 ) -arc;
 (iv) 
For q even, a  ( q + 1 ) -arc extends to a  ( q + 2 ) -arc.
Definition 2.
In  PG ( 2 , q ) ,
 (1) 
a  ( q + 1 ) -arc is an oval;
 (2) 
a  ( q + 2 ) -arc, q even, is a complete oval or hyperoval.
Remark 1.
In [8] (Chapter 8), the definition of an oval differs slightly from the one given here. In [8], an oval of  PG ( 2 , q )  is a k-arc with  k = q + 1  for q odd and  k = q + 2  for q even.
Theorem 2
([8,9,10]). In  PG ( 2 , q ) ,   q  odd, every oval is a non-singular conic.
Remark 2.
For q even, a non-singular conic extends to a hyperoval  K . For  q 8 , let  K = C { P } , with C being a non-singular conic. If  P C , then  K { P }  is an oval that is not a conic; this follows from the fact that two distinct non-singular conics have at most four points in common. Hence, for q even and  q 8 , not every oval is a conic. Also, for q even and  q > 8 , there are many hyperovals that do not contain a conic; see [8].
Theorem 3
([8,9,10]).
 (i) 
For q even, a k-arc with
k > q q + 1
extends to a hyperoval.
 (ii) 
For q odd, a k-arc with
k > q 1 4 q + 25 16
extends to an oval.
Open problem 1.
Classify all ovals and hyperovals for q even.

3. Arcs in PG ( n , q ) ,   n 3

Definition 3.
 (1) 
A k-arc in  PG ( n , q )  is a set  K  of k points, with  k n + 1 3 ,  such that no  n + 1  of its points lie in a hyperplane.
 (2) 
An arc  K  is complete if it is not properly contained in a larger arc.
 (3) 
Let  m ( n , q )  be the maximum size of a k-arc in  PG ( n , q ) .
 (4) 
A normal rational curve of  PG ( n , q ) ,   n 2 ,  is any set of points in  PG ( n , q )  that is projectively equivalent to
{ P ( t n , t n 1 , , t , 1 ) t F q } { P ( 1 , 0 , , 0 ) } .
Definition 4.
 (1) 
With  V ( m , q ) the vector space of m dimensions over  F q , a linear code C is a subspace of  V ( m , q ) .
 (2) 
C is an  [ m , k , d ]  or an  [ m , k , d ] q  code if it has dimension k and minimum distance d, where the distance between distinct vectors  ( x 1 , x 2 , , x m )  and  ( y 1 , y 2 , , y m )  of C is the number of indices i for which  x i y i  and with d the minimum of these distances; here,  d m k + 1 .
 (3) 
C is maximum distance separable (MDS) if  d = m k + 1 .
Theorem 4.
For  m 3 ,  a MDS  [ m , k , d ]  code C is equivalent to a k-arc of  PG ( m 1 , q ) .
Proof. 
Let C be an m-dimensional subspace of V ( k , q ) and let G be an m × k generator matrix for C, that is, the rows of G form a basis for C. Then, C is a MDS if and only if any m columns of G are linearly independent; this property is preserved under multiplication of the columns by non-zero scalars. So, consider the columns of G as points P 1 , P 2 , , P k of PG ( m 1 , q ) . It follows that C is a MDS if and only if { P 1 , P 2 , , P k } is a k-arc of PG ( m 1 , q ) . □
Theorem 5
([9]; Kaneta and Maruta [11]). For  PG ( n , q ) ,  take q odd and n 3 .
 (i) 
If  K  is a k-arc with  k > q 1 4 q + n 1 4 ,  then  K  lies on a unique normal rational curve.
 (ii) 
If  q > ( 4 n 5 ) 2 ,  every  ( q + 1 ) -arc is a normal rational curve.
 (iii) 
If  q > ( 4 n 9 ) 2 ,  then  m ( n , q ) = q + 1 .
Theorem 6
([10,12,13,14]).
 (i) 
For q even,   q 2 ,   n 3 ,  if  K  is a k-arc in  PG ( n , q )  with
k > q 1 2 q + n 3 4 ,
then  K  lies on a unique  ( q + 1 ) -arc of  PG ( n , q ) .
 (ii) 
A  ( q + 1 ) -arc in  PG ( n , q ) ,   q  even and  n 4 ,  with
q > ( 2 n 7 2 ) 2 ,
is a normal rational curve.
 (iii) 
If  K  is a k-arc in  PG ( n , q ) ,   q  even and  n 4 ,  with
q > ( 2 n 11 2 ) 2 ,
then  k q + 1 .
Remark 3.
There are close relationships between k-arcs, algebraic curves and algebraic hypersurfaces.

4. Caps and Ovoids

Definition 5.
 (1) 
In  PG ( n , q ) ,   n 3 a set  K  of k points, no three of which are collinear, is a k-cap.
 (2) 
A k-cap is complete if it is not contained in a  ( k + 1 ) -cap.
 (3) 
A line of  PG ( n , q )  is a secant, tangent or external line as it meets  K  in  2 , 1  or 0 points.

4.1. Caps and Ovoids in PG ( 3 , q )

Theorem 7
([15] (Chapter 16); Bose [16]; Qvist [17]).
 (i) 
For a k-cap in  PG ( 3 , q )  with  q 2 ,
k q 2 + 1 .
 (ii) 
A k-cap in  PG ( 3 , 2 )  has the bound  k 8 ;  an 8-cap is the complement of a plane.
 (iii) 
Each elliptic quadric of  PG ( 3 , q )  is a  ( q 2 + 1 ) -cap.
Definition 6.
A  ( q 2 + 1 ) -cap of  PG ( 3 , q ) ,   q 2 ,  is an ovoid; for  q = 2 ,  an ovoid is a set of 5 points, no 4 of which are coplanar.
Theorem 8.
In  PG ( 3 , 2 ) ,  a complete cap is either an ovoid, which is an elliptic quadric, or an 8-cap, which is the complement of a plane.
Theorem 9
([15] (Chapter 16); Barlotti [18]; Panella [19]). In  PG ( 3 , q ) ,   q  odd, an ovoid is an elliptic quadric.
Theorem 10
(Brown [20]). In  PG ( 3 , q ) ,   q even, an ovoid containing at least one conic section is an elliptic quadric.
Theorem 11
(Tits [21]).
 (i) 
For  q = 2 2 e + 1 ,   e 1 ,  the space  PG ( 3 , q )  has ovoids that are not elliptic quadrics. These are the Tits ovoids.
 (ii) 
With  q = 2 2 e + 1 ,  the canonical form of a Tits ovoid 𝒪 is the following:
𝒪 = { P ( 1 , z , y , x ) z = x y + x σ + 2 + y σ } { P ( 0 , 1 , 0 , 0 ) } ,
where σ is the automorphism  t t 2 e + 1  of  F q .
Remark 4.
 (1) 
For q even, the only ovoids known are the elliptic quadrics and the Tits ovoids.
 (2) 
For  q = 4 an ovoid of  PG ( 3 , 4 )  is an elliptic quadric; see Barlotti [18] or [15].
 (3) 
For  q = 8 an ovoid is an elliptic quadric or a Tits ovoid; see Segre [22] and Fellegara [23].
 (4) 
For  q = 16 , 32 all ovoids were determined by O’Keefe, Penttila and Royle; see [9,24,25,26].
 (5) 
For  q = 64 an ovoid of  PG ( 3 , 64 )  is an elliptic quadric; see Penttila [27].
Remark 5.
For the influence and many applications of the paper of Tits [21], see the recent paper [28] by Thas and Van Maldeghem.
Open problem 2.
Determine all ovoids in PG ( 3 , q ) for q even.

4.2. Caps in PG ( n , q ) ,   n 3

Definition 7.
m 2 ( n , q )  is the maximum size of a k-cap in  PG ( n , q ) .
Theorem 12
(Hill [29]).
 (i) 
m 2 ( n , q ) q m 2 ( n 1 , q ) ( q + 1 ) , f o r   n 4 , q > 2 .
 (ii) 
m 2 ( n , q ) q n 4 m 2 ( 4 , q ) q n 4 2 q n 4 1 q 1 + 1 ,   f o r   n 5 , q > 2 .
Remark 6.
These results were obtained using the theory of cap-codes.
Exact values of m 2 ( n , q ) are known in just a few cases.
Theorem 13.
 (i) 
(Bose [16]) m 2 ( n , 2 ) = 2 n ;  a  2 n -cap of  PG ( n , 2 )  is the complement of a hyperplane.
 (ii) 
(Pellegrino [30]) m 2 ( 4 , 3 ) = 20 ;  there are nine projectively distinct 20-caps in  PG ( 4 , 3 ) .
 (iii) 
(Hill [31]) m 2 ( 5 , 3 ) = 56 ;  the 56-cap in  PG ( 5 , 3 )  is projectively unique.
 (iv) 
(Edel and Bierbrauer [32]) m 2 ( 4 , 4 ) = 41 ;  there exist two projectively distinct 41-caps in  PG ( 4 , 4 ) .
Remark 7.
No other values of  m 2 ( n , q ) , n > 3 , are known.
Several bounds were obtained for the number k, for which there exist complete k-caps in PG ( 3 , q ) that are not ovoids; these bounds are then used to determine bounds for m 2 ( n , q ) , with n > 3 . Here are a few good bounds, without restrictions on q except for a few small cases.
Theorem 14
(Meshulam [33]). For  n 4 , q = p h  and p is an odd prime,
m 2 ( n , q ) n h + 1 ( n h ) 2 q n + m 2 ( n 1 , q ) .
Theorem 15
([15] (Chapter 18)). In  PG ( 3 , q ) q odd and  q 67 ,  if  K  is a complete k-cap that is not an elliptic quadric, then
k < q 2 1 4 q 3 2 + 2 q .
More precisely,
k q 2 1 4 q 3 2 + R ( q ) ,
where
R ( q ) = ( 31 q + 14 q 53 ) 16 .
Definition 8.
Let  m 2 ( 2 , q )  be the size of the second largest complete arc of  PG ( 2 , q )  and let  m 2 ( 3 , q )  be the size of the second largest cap of  PG ( 3 , q ) .
Nagy and Szonyi [34] follow more or less the line of the proof of Theorem 15, and derive a bound for m 2 ( 3 , q ) in terms of m 2 ( 2 , q ) . Their bound involves a more careful enumeration of certain plane sections of a large cap; so it yields an improvement on the bounds in Theorem 15.
Theorem 16
(Nagy and Szonyi [34]). If, for q odd, m 2 ( 2 , q ) ( 5 q + 19 ) / 6 ,  then
m 2 ( 3 , q ) < q m 2 ( 2 , q ) + 3 4 ( q + 10 3 m 2 ( 2 , q ) ) 2 q 1 .
Theorem 17
([35]). In  PG ( 3 , q ) ,  q even and  q 8 ,  if  K  is a complete k-cap that is not an ovoid, then
k < q 2 ( 5 1 ) q + 5 .
Remark 8.
Combining the previous theorem with the main theorem of Storme and Szonyi [36], there is an improvement in the previous result. This important remark is due to Szonyi.
Theorem 18
([35]). In  PG ( 3 , q ) ,   q  even and  q 2048 ,  if  K  is a complete k-cap that is not an ovoid, then,
k < q 2 2 q + 3 q + 2 .
Relying on Theorems 12 and 15, the following result is obtained.
Theorem 19
([9,37]).In  PG ( n , q ) ,   n 4 , q 197  and odd,
m 2 ( n , q ) < q n 1 1 4 q n 3 2 + 2 q n 2 .
For  n 4 , q 67  and odd,
m 2 ( n , q ) < q n 1 q n 3 2 + 1 16 ( 31 q n 2 + 22 q n 5 2 112 q n 3 14 q n 7 2 + 69 q n 4 ) 2 ( q n 5 + q n 6 + + q + 1 ) ,
where there is no term  2 ( q n 5 + q n 6 + + q + 1 )  for  n = 4 .
Relying on Nagy and Szonyi [34], the following improvement of Theorem 19 is obtained.
Theorem 20
(Storme, Thas and Vereecke [38]). If, for q odd,
m 2 ( 2 , q ) 5 q + 25 6   a n d   m 2 ( 4 , q ) > 41 q 3 + 202 q 2 47 q 48 ,
then
m 2 ( 4 , q ) < ( q + 1 ) ( q m 2 ( 2 , q ) + 3 4 ( q + 10 3 m 2 ( 2 , q ) ) 2 q 1 m 2 ( 2 , q ) ) + m 2 ( 2 , q ) .
Bounds for m 2 ( n , q ) , n > 4 and q odd, can now be calculated using Hill’s Theorem 12.
Remark 9.
In [38], small improvements of Theorem 12 are obtained.
Relying on Theorems 12 and 18, the following results are obtained.
Theorem 21
([39]).
 (i) 
m 2 ( 4 , 8 ) 479 .
 (ii) 
m 2 ( 4 , q ) < q 3 q 2 + 2 5 q 8 q even,  q > 8 .
 (iii) 
m 2 ( 4 , q ) < q 3 2 q 2 + 3 q q + 8 q 9 q 2 q even,  q 2048 .
Theorem 22
([39]). For q even  ,   q > 2 ,   n 5 ,
 (i) 
m 2 ( n , 4 ) 118 3 4 n 4 + 5 3 ;
 (ii) 
m 2 ( n , 8 ) 478 . 8 n 4 2 ( 8 n 5 + 8 n 6 + + 8 + 1 ) + 1 ;
 (iii) 
m 2 ( n , q ) < q n 1 q n 2 + 2 5 q n 3 9 q n 4 2 ( q n 5 + q n 6 + + 1 ) + 1 ,  for  q > 8 ;
 (iv) 
m 2 ( n , q ) < q n 1 2 q n 2 + 3 q n 3 q + 8 q n 3 9 q n 4 q 7 q n 4
2 ( q n 5 + q n 6 + + q + 1 ) + 1 ,
for  q 2048 .
Remark 10.
For a survey on caps, see Hirschfeld and Storme [40].

5. Generalised Ovals

5.1. Introduction

Arcs, ovals and hyperovals can be generalised by replacing their points with ( n 1 ) -dimensional subspaces, n 1 , to get generalised k-arcs, pseudo-ovals and pseudo-hyperovals.
These objects were defined in 1971 by Thas [3]. In 1973 [41,42], the relation between pseudo-ovals and generalised quadrangles was discovered. In 1974, Thas [41,42] showed that these pseudo-ovals play a key role in the theory of translation generalised quadrangles with the same number of points and lines.

5.2. Generalised k-Arcs

Definition 9.
 (1) 
A generalised k-arc in  PG ( 3 n 1 , q )  is a set  K  of  ( n 1 ) -dimensional subspaces, with  | K | = k 3 such that no three of its elements lie in a hyperplane.
 (2) 
K  is complete if it is not properly contained in a larger generalised arc.
Example 1.
 (1) 
For  n = 1 then the k-arcs of  PG ( 2 , q )  arise.
 (2) 
For  n = 2 then  K  is a set of k lines in  PG ( 5 , q )  such that every three generate the space.
Theorem 23
([3]).
 (i) 
For every generalised k-arc in  PG ( 3 n 1 , q ) ,
 (a) 
k q n + 2 ;
 (b) 
k q n + 1  when q is odd.
 (ii) 
In  PG ( 3 n 1 , q ) ,  there exist  ( q n + 1 ) -arcs for every  q ;  for q even, there exist  ( q n + 2 ) -arcs.
 (iii) 
If O is a generalised  ( q n + 1 ) -arc in  PG ( 3 n 1 , q ) ,  then each element  π i  of O is contained in exactly one  ( 2 n 1 ) -dimensional subspace  τ i  that is disjoint from all elements of  O { π i } ;  here,  τ i  is the tangent space of O at  π i .
 (iv) 
For q even, all tangent spaces of a generalised  ( q n + 1 ) -arc O of  PG ( 3 n 1 , q )  contain a common  ( n 1 ) -dimensional space  π ,  the nucleus of O. Hence, O is not complete and extends to a generalised  ( q n + 2 ) -arc by adding its nucleus.

5.3. Pseudo-Ovals and Pseudo-Hyperovals

Definition 10.
 (1) 
A generalised  ( q n + 1 ) -arc of  PG ( 3 n 1 , q )  is a generalised oval or pseudo-oval or  [ n 1 ] -oval of  PG ( 3 n 1 , q ) For  n = 1 a pseudo-oval is just an oval of  PG ( 2 , q ) .
 (2) 
With q even, a generalised  ( q n + 2 ) -arc of  PG ( 3 n 1 , q )  is a generalised hyperoval or pseudo-hyperoval or  [ n 1 ] -hyperoval of  PG ( 3 n 1 , q ) For  n = 1 ,  a pseudo-hyperoval is just a hyperoval of  PG ( 2 , q ) .
Theorem 24
(Payne and Thas [42]).
 (i) 
In  PG ( 3 n 1 , q ) ,  each hyperplane not containing a tangent space of the pseudo-oval O contains either 0 or 2 elements of O. When q is even, each hyperplane contains either 0 or 2 elements of a pseudo-hyperoval.
 (ii) 
For q odd, each point of  PG ( 3 n 1 , q )  not contained in an element of the pseudo-oval O belongs to either 0 or 2 tangent spaces of O.

5.4. Regular Pseudo-Ovals and Regular Pseudo-Hyperovals

In the extension PG ( 3 n 1 , q n ) of the space PG ( 3 n 1 , q ) , take n planes ξ i ,   i = 1 , 2 , , n , which are conjugate for the extension F q n of F q and which span PG ( 3 n 1 , q n ) . Thus, they form an orbit of the Galois group corresponding to the extension and span PG ( 3 n 1 , q n ) .
In ξ 1 , consider an oval
O 1 = { P 0 ( 1 ) , P 1 ( 1 ) , , P q n ( 1 ) }
or a hyperoval
O 1 = { P 0 ( 1 ) , P 1 ( 1 ) , , P q n + 1 ( 1 ) } .
Next, for i = 0 , 1 , , q n or i = 0 , 1 , , q n + 1 , let P i ( 1 ) , P i ( 2 ) , , P i ( n ) be conjugate in F q n over F q . These points define an ( n 1 ) -dimensional subspace π i over F q . Consequently, O = { π 0 , π 1 , , π q n } is a pseudo-oval and O = { π 0 , π 1 , , π q n + 1 } is a pseudo-hyperoval of PG ( 3 n 1 , q n ) .
These are the regular or elementary pseudo-ovals and the regular or elementary pseudo-hyperovals of PG ( 3 n 1 , q ) . If O 1 is a conic in PG ( 2 , q n ) , then the corresponding pseudo-oval is a classical pseudo-oval or pseudo-conic.
Alternatively, let V be the vector space over F q n underlying the projective plane PG ( 2 , q n ) . If V is considered as an F q -vector space, each point of PG ( 2 , q n ) becomes an ( n 1 ) -dimensional subspace of PG ( 3 n 1 , q ) . If O 1 is an oval or hyperoval of PG ( 2 , q n ) , then here it becomes a regular pseudo-oval or regular pseudo-hyperoval of PG ( 3 n 1 , q ) .
Remark 11.
Every known pseudo-oval and pseudo-hyperoval is regular. By Segre’s theorem, for q odd every regular pseudo-oval is a pseudo-conic.
Open problem 3.
Is every pseudo-oval regular? Is every pseudo-hyperoval regular?
Theorem 25
(Payne and Thas [42]). For q odd, the tangent spaces of a pseudo-oval O in  PG ( 3 n 1 , q )  form a pseudo-oval  O  in the dual space of  PG ( 3 n 1 , q ) .
Definition 11.
The pseudo-oval  O  is the translation dual of the pseudo-oval O.
Open problem 4.
For q odd, is every pseudo-oval O isomorphic to its translation dual?

6. Characterisations

6.1. Pseudo-Ovals, Pseudo-Hyperovals and Spreads

Let O = { π 0 , π 1 , , π q n } be a pseudo-oval in PG ( 3 n 1 , q ) . The tangent space of O at π i is τ i . Choose i { 0 , 1 , , q n } and let Π 2 n 1 be skew to π i . Further, let τ i Π 2 n 1 = η i and π i , π j Π 2 n 1 = η j for j i ; here, π i , π j is the subspace generated by π i and π j . Then, { η 0 , η 1 , , η q n } = Δ i is an ( n 1 ) -spread of Π 2 n 1 , that is, the elements of Δ i partition Π 2 n 1 .
Now, let q be even and let π be the nucleus of O. Let Π 2 n 1 PG ( 3 n 1 , q ) be skew to π . If ξ i = Π 2 n 1 π , π i , then { ξ 0 , ξ 1 , , ξ q n } = Δ is an ( n 1 ) -spread of Π 2 n 1 .
Next, let q be odd. Choose τ i for i { 0 , 1 , , q n } . If τ i τ j = δ j with j i , then
{ δ 0 , δ 1 , , δ i 1 , π i , δ i + 1 , , δ q n } = Δ i
is an ( n 1 ) -spread of τ i .
Definition 12.
Let V be the 2-dimensional vector space that defines the projective line  PG ( 1 , q n ) Considering V as an  F q -vector space, each point of  PG ( 1 , q n )  becomes an  ( n 1 ) -dimensional subspace of  PG ( 2 n 1 , q ) .The  ( n 1 ) -spread of  PG ( 2 n 1 , q )  consisting of these  q n + 1  subspaces is a regular spread of  PG ( 2 n 1 , q ) .
Theorem 26
(Casse, Thas and Wild [41,42]). Let O be a pseudo-oval of  PG ( 3 n 1 , q ) ,  with q odd. Then, at least one of the  ( n 1 ) -spreads
Δ 0 , Δ 1 , , Δ q n , Δ 0 , Δ 1 , , Δ q n
is regular if and only if O is regular, that is, if and only if O is a pseudo-conic.
Theorem 27
(Rottey, Van de Voorde [43,44]). Let O be a pseudo-oval in  PG ( 3 n 1 , q ) ,  with  q = 2 h , h > 1 , n  prime. Then, all the  ( n 1 ) -spreads  Δ 0 , Δ 1 , , Δ q n  are regular if and only if O is regular.
Open problem 5.
From this theorem, the following questions arise.
I.
What happens when q = 2 ?
II.
What happens when n is not prime?
III.
What happens when not all spreads Δ i are regular?
IV.
What happens when at least one of the spreads Δ i is regular?
Remark 12.
In [45], a shorter proof of Theorem 27 is given and a slightly stronger result is obtained. Metsch and Van de Voorde [46] used the considerations in [45] to prove that it is sufficient to assume that at least  q n q + 3  spreads are regular.
Definition 13.
In  PG ( 3 n 1 , q ) ,  let  π 1 , π 2 , π 3  be mutually skew  ( n 1 ) -dimensional subspaces. Also, let  τ i  be a  ( 2 n 1 ) -dimensional subspace containing  π i  but skew to  π j  and  π k and let  τ i τ j = η k  with  { i , j , k } = { 1 , 2 , 3 } The subspace generated by  η i  and  π i  is  ζ i If the  ( 2 n 1 ) -dimensional spaces  ζ 1 , ζ 2 , ζ 3  have an  ( n 1 ) -dimensional subspace in common, then  { π 1 , π 2 , π 3 }  and  { τ 1 , τ 2 , τ 3 }  are in perspective.
Theorem 28
([47]). Consider a pseudo-oval  O = { π 0 , π 1 , , π q n }  of  PG ( 3 n 1 , q ) ,   q  odd, and let  τ i  be the tangent space of O at  π i  for each i. If, for any three distinct  i , j , k ,  the triples  { π i , π j , π k }  and  { τ i , τ j , τ k }  are in perspective, then O is a pseudo-conic. The converse also holds.
Remark 13.
By Segre [1,2], for  n = 1  and q odd, the triples  { π i , π j , π k }  and  { τ i , τ j , τ k }  are always in perspective, and so O is a conic. Hence, for q odd, every oval is a conic. To prove that the two triples are in perspective, Segre uses his famous Lemma of Tangents; see Lemma 8.11 of [8]. What happens for  n > 1 ?

6.2. The Case n = 2

For n = 2 , a pseudo-oval O consists of q 2 + 1 lines of PG ( 5 , q ) , every three of which generate the space.
Theorem 29
(Shult and Thas [48]). If the pseudo-oval O is contained in a non-singular hyperbolic quadric  H ( 5 , q ) ,  with q odd, then O is a pseudo-conic.
Let O be a pseudo-oval contained in a non-singular elliptic quadric ε ( 5 , q ) of PG ( 5 , q ) with q odd. It can be shown that O is equivalent to a set of q 2 + 1 points on the non-singular Hermitian variety U ( 3 , q 2 ) of PG ( 3 , q 2 ) , with the property that no three of them are in a common tangent plane of the variety; see, for example, Payne and Thas [42] or Shult [49].
Any pseudo-conic O of PG ( 5 , q ) ,   q odd, is the intersection of a non-singular hyperbolic quadric H ( 5 , q ) and a non-singular elliptic quadric ε ( 5 , q ) .
Bamberg, Monzillo and Siciliano [50] showed that a pseudo-oval on ε ( 5 , q ) ,   q odd, is a subset of a five-class association scheme, defined on certain line sets of ε ( 5 , q ) . Pseudo-ovals and pseudo-conics are analysed in terms of these association schemes.
Remark 14.
For q even, a pseudo-oval O of  PG ( 5 , q )  is never contained in a non-singular quadric, since all tangent spaces of O contain a common line; see Shult and Thas [48] and Thas [47].
Open problem 6.
Is each pseudo-oval on ε ( 5 , q ) ,   q odd, a pseudo-conic?

7. Generalised Ovoids

7.1. Introduction

Ovoids can be generalised by replacing their points with ( n 1 ) -dimensional spaces, n 1 , to obtain generalised ovoids. This generalisation was first considered in 1971 by Thas [3]. However, this generalisation was too restricted and, in 1974 [41], it was shown that these generalised ovoids are always of a very particular kind. The appropriate definition of a generalised ovoid appeared in Finite Generalized Quadrangles by Payne and Thas [42].

7.2. Pseudo-Ovoids

In Ω = PG ( 4 n 1 , q ) , let O be a set of ( n 1 ) -dimensional subspaces π i ,   i = 0 , 1 , , q 2 n , such that
(a)
every three generate a Π 3 n 1 ;
(b)
for every i { 0 , 1 , , q 2 n } , there is a ( 3 n 1 ) -dimensional subspace τ i that contains π i and is disjoint from π j for j i .
The space τ i is the tangent space of O at π i ; it is uniquely defined by O and π i .
Definition 14.
The set O is a generalised ovoid or a pseudo-ovoid or an egg or an  [ n 1 ] -ovoid of  PG ( 4 n 1 , q ) .
Example 2.
 (1) 
When  n = 1 the ovoids of  PG ( 3 , q )  arise; the tangent spaces are planes.
 (2) 
When  n = 2 a pseudo-ovoid of  PG ( 7 , q )  contains  q 4 + 1  lines; the tangent spaces are 5-dimensional.
Theorem 30
(Payne and Thas [42]).
 (i) 
Each hyperplane of  PG ( 4 n 1 , q )  not containing a tangent space of the pseudo-ovoid O contains exactly  q n + 1  elements of O.
 (ii) 
Each point which is not contained in an element of O is contained in exactly  q n + 1  tangent spaces.
Corollary 1.
 (i) 
Let  O ˜  be the union of all elements of a pseudo-ovoid O in the space  PG ( 4 n 1 , q )  and let Π be any hyperplane. Then  | O ˜ Π | { γ 1 , γ 2 } ,  with
γ 1 = ( q n 1 ) ( q 2 n 1 + 1 ) q 1 , γ 1 γ 2 = q 2 n 1 .
 (ii) 
(Delsarte [51])Hence  O ˜  defines a projective 2-weight linear code and a strongly regular graph.

7.3. Regular Pseudo-Ovoids

In the extension PG ( 4 n 1 , q n ) of PG ( 4 n 1 , q ) , consider n solids ξ i ,   i = 1 , 2 , , n , that are conjugate in the extension F q n of F q and which span PG ( 4 n 1 , q ) . This means that they form an orbit of the Galois group corresponding to this extension and span PG ( 4 n 1 , q n ) .
In the space ξ 1 , take an ovoid O 1 = { P 0 ( 1 ) , P 1 ( 1 ) , , P q 2 n ( 1 ) } . Next, let P i ( 1 ) , P i ( 2 ) , , P i ( n ) , i = 0 , 1 , , q 2 n , be conjugate in F q n over F q . The points P i ( 1 ) , P i ( 2 ) , , P i ( n ) now define an ( n 1 ) dimensional subspace π i over F q for each i = 0 , 1 , , q 2 n . It follows that the ovoid O = { π 0 , π 1 , , π q 2 n } is a pseudo-ovoid of PG ( 4 n 1 , q ) .
These are the regular or elementary pseudo-ovoids. If O 1 is an elliptic quadric over F q n , the corresponding pseudo-ovoid is classical or a pseudo-quadric.
Alternatively, let V be the 4-dimensional vector space underlying the projective space PG ( 3 , q n ) . Considering V as an F q -vector space, each point of PG ( 3 , q n ) becomes an ( n 1 ) -dimensional subspace of PG ( 4 n 1 , q ) . If O 1 is an ovoid of PG ( 3 , q n ) , then O 1 becomes a regular pseudo-ovoid of PG ( 4 n 1 , q ) .
Remark 15.
For q even, every known pseudo-ovoid is regular. For q odd, there are pseudo-ovoids that are not regular. By the theorem of Barlotti and Panella, for q odd, every regular pseudo-ovoid is a pseudo-quadric.
Open problem 7.
Is every pseudo-ovoid of PG ( 4 n 1 , q ) ,   q even, regular?

7.4. Translation Duals

Theorem 31
(Payne and Thas [42]). The tangent spaces of a pseudo-ovoid O of the space  PG ( 4 n 1 , q )  form a pseudo-ovoid  O  in the dual space of  PG ( 4 n 1 , q ) .
Definition 15.
The pseudo-ovoid  O  is the translation dual of the pseudo-ovoid O.
Open problem 8.
For q even, is every pseudo-ovoid O of PG ( 4 n 1 , q ) isomorphic to its translation dual?
Remark 16.
For q odd, there are pseudo-ovoids that are not isomorphic to their translation dual.

7.5. Characterisations

Theorem 32
(Payne and Thas [42]). The pseudo-ovoid O of  PG ( 4 n 1 , q )  is regular if and only if one of the following holds:
 (i) 
For any point P not contained in an element of  O ,  the  q n + 1  tangent spaces containing P have exactly  ( q n 1 ) / ( q 1 )  points in common;
 (ii) 
Each  Π 3 n 1  that contains at least three elements of O contains exactly  q n + 1  elements of O.
Theorem 33
(Brown and Lavrauw [52]). A pseudo-ovoid O in  PG ( 4 n 1 , q ) ,   q  even, contains a pseudo-conic if and only if it is a pseudo-quadric.
Open problem 9.
Is a pseudo-ovoid of PG ( 4 n 1 , q ) ,   q even, containing a regular pseudo-oval always regular?

7.6. Good Pseudo-Ovoids

Definition 16.
 (i) 
The pseudo-ovoid O in  PG ( 4 n 1 , q )  is good at its element π if any  Π 3 n 1  containing π and at least two other elements of O contains exactly  q n + 1  elements of O.
 (ii) 
In this case, π is a good element of  O ,  and O is also said to be good.
A regular pseudo-ovoid is good at each of its elements.
Remark 17.
Every known pseudo-ovoid or its translation dual is good.
Open problem 10.
Is every pseudo-ovoid or its translation dual good?
Theorem 34
([41]). For q even, if the pseudo-ovoid O is good at the element  π ,  then the translation dual  O  is good at the tangent space of O at π.
Remark 18.
For q odd, this theorem is not true.
Open problem 11.
For q even, is every good pseudo-ovoid O of PG ( 4 n 1 , q ) regular?
Theorem 35
([41]). Let O be a pseudo-ovoid of  PG ( 4 n 1 , q ) ,   q  even, that is good at  π O If the  q 2 n + q n  pseudo-ovals on O containing π are regular, then O is regular.
Now, the case that q is odd is considered.
Theorem 36
([41]). Let the pseudo-ovoid O of  PG ( 4 n 1 , q ) ,   q  odd, be good at π. Then, π is contained in exactly  q 2 n + q n  pseudo-conics lying on O.
Veronese surfaces play a key role in the theory of pseudo-ovoids.
Definition 17.
In  PG ( 5 , K ) with K any field, in a suitable reference system, a Veronese surface V 2 4  consists of the points
P ( x 0 2 , x 1 2 , x 2 2 , x 1 x 2 , x 2 x 0 , x 0 x 1 )
with  x 0 , x 1 , x 2 K  and not all zero.
Theorem 37.
 (i) 
When  K = F q the surface  V 2 4  contains  q 2 + q + 1  points and conics.
 (ii) 
Any two of the points are contained in just one of these conics.
The planes containing the conics are the conic planes of V 2 4 . For more on Veronese surfaces, see Hirschfeld and Thas [37] (Chapter 4).
The classification of good pseudo-ovoids in PG ( 4 n 1 , q ) ,   q odd, is now given.
Theorem 38
([41]). Let  O = { π , π 1 , π 2 , , π q 2 n }  be a pseudo-ovoid in the space  PG ( 4 n 1 , q ) ,   q  odd, that is good at π. Then, there are three separate cases.
 (a) 
There exists  Π 3  in  PG ( 4 n 1 , q n )  which has exactly one point in common with the extension  π ¯  of π to  F q n  and with the extensions  π i ¯  of  π i  to  F q n  for  i = 1 , 2 , , q 2 n These  q 2 n + 1  points form an elliptic quadric in  Π 3  and O is a pseudo-quadric.
 (b) 
There exists  Π 4  in  PG ( 4 n 1 , q n )  that intersects the extension  π ¯  of π to  F q n  in a line ℓ and which has exactly one point  R i  in common with each  π i ¯ ,   i = 1 , 2 , , q 2 n Further, let  W = { R i i = 1 , 2 , , q 2 n }  and let  M  be the set of all common points of ℓ and the conics that contain exactly  q n  points of  W Then, the set  M W  is the projection of a Veronese surface  V 2 4  from a point P in a conic plane θ of  V 2 4  onto a hyperplane  Π 4  of the  PG ( 5 , q n )  containing  V 2 4 ;  the point P is an exterior point of the conic  V 2 4 θ . Here, O is a non-classical Kantor-Knuth pseudo-ovoid.
 (c) 
There exists  Π 5  in  PG ( 4 n 1 , q n )  that intersects the extension  π ¯  of π in a plane μ and which has exactly one point  R i  in common with each  π i ¯ ,   i = 1 , 2 , , q 2 n Let  W = { R i i = 1 , 2 , , q 2 n }  and let  C  be the set of all common points of μ and the conics that contain exactly  q n  points of  W In this case,  W C  is a Veronese surface in  Π 5 .
Remark 19.
 (1) 
For more on Kantor-Knuth pseudo-ovoids, see [41,53].
 (2) 
A Kantor-Knuth pseudo-ovoid is isomorphic to its translation dual. Conversely, when q is odd and the good pseudo-ovoid O is isomorphic to its translation dual, then O is classical or of Kantor-Knuth type; see Section 4.12.4 and 5.1.4 of [41].
 (3) 
Each known example of Class (c) has  q = 3 h .
 (4) 
Good pseudo-ovoids play a key role in the theory of translation generalised quadrangles. They also give rise to new results for particular point-sets in classical polar spaces, as well as to the construction of new projective planes, new flocks of quadratic cones in  PG ( 3 , q n )  and new semifields. For a detailed study of the relation between these objects, see Lunardon [54,55].
Open problem 12.
If the pseudo-ovoid O of PG ( 4 n 1 , q ) ,   q odd, is good, but neither classical nor of Kantor-Knuth type, is q necessarily a power of 3? It is more difficult to classify all pseudo-ovoids in PG ( 4 n 1 , q ) ,   q odd, in Case (c).
Theorem 39
(Blokhuis, Lavrauw and Ball [56]). Suppose that the good pseudo-ovoid O of  PG ( 4 n 1 , q ) ,   q  odd, satisfies the inequality
q 4 n 2 8 n + 2 .
Then, O is classical or of Kantor-Knuth type.
Open problem 13.
Improve the inequality in this theorem.
The known examples of pseudo-ovoids for q odd are the following [41].
(i)
Kantor-Knuth pseudo-ovoids, including the classical ones.
(ii)
Ganley and Roman pseudo-ovoids, for q = 3 h ,   h 1 . They are translation dual to each other; the Roman ones are due to Payne [57].
(iii)
The Penttila-Williams-Bader-Lunardon-Pinneri pseudo-ovoid and its translation dual, for q = 3 5 .

8. Pseudo-Ovoids in PG ( 2 n + m 1 , q ) ,   m n and n 1

Definition 18.
In  Ω = PG ( 2 n + m 1 , q ) ,   m n  and  n 1 define a set  O = O ( n , m , q )  of subspaces as follows. O is a set of  ( n 1 ) -dimensional subspaces  π i ,   i = 0 , 1 , , q m such that the following applies:
 (i) 
Every three generate a  Π 3 n 1 ;
 (ii) 
For every  i { 0 , 1 , , q m } there is an  ( m + n 1 ) -dimensional subspace  τ i  that contains  π i  and is disjoint from  π j  for  j i .
The space τ i is the tangent space of O at π i , and is uniquely defined by O and π i .
Definition 19.
The set O is a generalised ovoid or a pseudo-ovoid or an egg or an  [ n 1 ] -ovoid of  PG ( 2 n + m 1 , q ) .
Remark 20.
For  m = 2 n the pseudo-ovoids of Section 7.2 are obtained.
Theorem 40
(Payne and Thas [42]).
 (i) 
n < m 2 n  for any  O ( n , m , q ) .
 (ii) 
n ( c + 1 ) = m c ,  with  c 1  odd.
 (iii) 
m = 2 n  for q even.
Definition 20.
O ( n , n , q )  is a pseudo-oval in  PG ( 3 n 1 , q ) .
Open problem 14.
Does there exist an egg O ( n , m , q ) for q odd and m 2 n ?

9. Generalised Quadrangles and the Sets O ( n , m , q )

In this section, the equivalence between translation generalised quadrangles and the sets O ( n , m , q ) is explained.
Definition 21.
A finite generalised quadrangle (GQ) is an incidence structure  S = ( P , B , I )  in which  P  and  B  are disjoint non-empty sets of points and lines for which  I  is a symmetric point-line incidence relation satisfying the following axioms:
 (i) 
Each point is incident with  t + 1  lines,  t 1 and two distinct points are incident with at most one line;
 (ii) 
Each line is incident with  s + 1  points,  s 1 and two distinct lines are incident with at most one point;
 (iii) 
If P is a point and ℓ is a line not incident with P, then there is always a unique pair  ( Q , m ) P × B  for which  P I m I Q I .
The integers s and t are the parameters of S , which has order  ( s , t ) ; if s = t , then S has orders.
There is a point-line duality for generalised quadrangles. This means that, in any definition or theorem, interchanging `point’ and `line’ as well as the parameters s and t gives a valid result.
Given two, not necessarily distinct, points P and Q of the generalised quadrangle S , write P Q and say that P and Q are collinear, provided that there is some line for which P I I Q ; also, P ¬ Q means that P and Q are not collinear. Dually, for , m B , write m or ¬ m as and m are concurrent or not.
For P P , put P = { Q P Q P } ; note that P P .
For terminology, notation and results on GQs, see the monograph [42] of Payne and Thas.
Theorem 41.
 (i) 
Let  S = ( P , B , I )  be a  GQ  of order  ( s , t ) If  | P | = v  and  | B | = b ,  then  v = ( s + 1 ) ( s t + 1 )  and  b = ( t + 1 ) ( s t + 1 ) see 1.2.1 of Chapter 1 in [42]. Also s + t  divides  s t ( s + 1 ) ( t + 1 ) see 1.2.2 of Chapter 1 in [42].
 (ii) 
If  s > 1  and  t > 1 ,  then  t s 2  and dually  s t 2 see 1.2.3  of Chapter 1 in [42].
Definition 22.
Let  S = ( P , B , I )  be a  GQ  of order  ( s , t ) If  P Q , P Q ,  or if  P ¬ Q  and  | { P , Q } | = t + 1 ,  then the pair  { P , Q }  is regular. The point P is regular if  { P , Q }  is regular for all  Q P , Q P .
Theorem 42.
If  S  contains a regular pair  { P , Q } ,  then either  s = 1  or  s t see 1.3.6 of Chapter 1 in [42].
Definition 23.
 (i) 
Let  S = ( P , B , I )  be a  GQ  of order  ( s , t ) ,  with  s 1 , t 1 A collineation θ in  S  is an elation about the point P if  θ = I  or if θ fixes all lines incident with P and fixes no point of  P P If there is a group  H  of elations about P acting regularly on  P P then  S  is an elation generalised quadrangle (EGQ) with elation group H  and base point P.
 (ii) 
If the elation group  H  is abelian, then the EGQ is a translation generalised quadrangle (TGQ) with base point or translation point P and translation group H In this case H  is the set of all elations about P; see 8.6.4 of Chapter 8 in [42]. For any TGQ, each line incident with the base point is regular; so t s .
For a detailed study of TGQs, see the monograph [41] by Thas, Thas and Van Maldeghem.
Definition 24.
The kernel K  of the TGQ S  is the field with multiplicative group isomorphic to the group of all collineations of  S  fixing line-wise the translation point P and any given point  Q ¬ P . From [42], | K | s .
Theorem 43.
Let  S  be a TGQ of order  ( s , t ) , s 1 , t 1 with kernel  K If  F q  is a subfield of  K ,  then  S  corresponds to a set  O ( n , m , q )  with  s = q n , t = q m Conversely, to each set  O ( n , m , q )  corresponds a TGQ S  of order  ( s , t ) ,  with  s = q n , t = q m where  F q  is a subfield of the kernel.
Corollary 2.
 (i) 
The theory of finite TGQs is equivalent to the theory of the sets  O ( n , m , q ) .
 (ii) 
If  S  is a TGQ of order  ( s , t ) ,  with  s 1 , t 1 , s = q n , t = q m  and  n m then, by Theorem 40, n < m 2 n ,   n ( c + 1 ) = m c  with  c 1  odd, and  2 n = m  for q even.

10. Pseudo-Ovoids, Moufang Quadrangles and Fong-Seitz

This section contains recent developments on the relation between TGQs, sets O ( n , m , q ) , and finite groups.
Let S = ( P , B , I ) be a GQ of order ( s , t ) . Let P P be fixed and define the following condition ( M ) P .
Definition 25.
 (i) 
( M ) P For any two distinct lines  ,  of  S  incident with  P ,  the group of collineations of  S  fixing ℓ and   point-wise and P line-wise is transitive on the set of lines distinct from ℓ and incident with a given point Q on ℓ, with  Q P .
 (ii) 
( M ) :  S  satisfies  ( M )  if it satisfies  ( M ) P  for all  P P .
 (iii) 
S  is a Moufang GQ  if and only if it satisfies  ( M )  and its dual  ( M ) .
Theorem 44
(Tits [58]). Every finite Moufang GQ is classical or dual classical, and conversely.
The classical and dual classical GQs are those arising from a quadric, a Hermitian variety or a symplectic polarity.
Remark 21.
Tits observes that this result follows from the classification in [59,60] of all finite groups with a BN-pair of rank 2 having a Weyl group  D 8 .
Remark 22.
In their monograph [42], Payne and Thas made an almost successful attempt to prove the Moufang theorem of Tits, in the finite case, in a geometric way. To complete a geometric proof of this result, it would suffice to show geometrically that each  GQ  of order  ( s , s 2 ) , s 1 ,  for which each point is a translation point, is necessarily the  GQ  arising from an elliptic quadric in  PG ( 5 , s ) As a corollary, a purely geometric proof of a large part of the theorem of Fong and Seitz would follow, namely in the case where the Weyl group is  D 8 .
In [7], the following stronger result on GQs of order ( s , s 2 ) is obtained.
Theorem 45
([7]). Let  S  be a TGQ of order  ( s , s 2 ) , s > 1 ,  having a regular line not incident with the translation point and having  O = O ( n , 2 n , q )  as corresponding pseudo-ovoid in  PG ( 4 n 1 , q ) , q 2 Then,  O  is good.
Then, relying on results of Brown, Lavrauw, Lunardon, Payne and Thas, the next theorem is obtained.
Theorem 46
([7]). Let  S  be a TGQ of order  ( s , s 2 ) , s > 1 ,  with translation point P and kernel  K F 2 If  S  has a regular line not incident with  P ,  then the following hold:
 (i) 
If q is odd, then  S  is the point-line dual of the translation dual of a semifield flock TGQ;
 (ii) 
If q is even, then  S  is classical.
Remark 23
([7]). Theorems 45 and 46 have many implications. For example, for  K F 2 ,  the ‘missing part’ in [42], a purely geometric proof of the theorem of Tits and a large part of the theorem of Fong and Seitz.
Open problem 16.
What happens in the case K = F 2 ?

11. Weak Generalised Ovoids

Definition 26.
A weak generalised ovoid of  PG ( 4 n 1 , q )  s a set of  ( n 1 ) -dimensional subspaces,  q 2 n + 1  in number, such that any three generate a  Π 3 n 1 .
Open problem 17.
Is every weak generalised ovoid a generalised ovoid?
For results on weak generalised ovoids, see Rottey and Van de Voorde [43,44].

Author Contributions

Conceptualization, J.W.P.H. and J.A.T.; methodology, J.W.P.H. and J.A.T.; validation, J.W.P.H. and J.A.T.; formal analysis, J.W.P.H.; investigation, J.W.P.H. and J.A.T.; resources, J.W.P.H. and J.A.T.; writing—original draft preparation, J.A.T.; writing—review and editing, J.W.P.H.; supervision, J.A.T.; project administration, J.W.P.H. and J.A.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

The research was funded by Ghent University and the University of Sussex.

Conflicts of Interest

There are no conflicts of interest in this paper. All data are available.

Notations

F q the finite field of order q
PG ( n , q ) the projective space of n dimensions over F q
P ( x 0 , x 1 , , x n ) the point of PG ( n , q ) with coordinate vector ( x 0 , x 1 , , x n )
Π r a subspace of dimension r in PG ( n , q )
V ( k , q ) the vector space of k dimensions over F q

References

  1. Segre, B. Sulle ovali nei piani lineari finiti. Atti Accad. Naz. Lincei Rend. 1954, 17, 1–2. [Google Scholar]
  2. Segre, B. Ovals in a finite projective plane. Canad. J. Math. 1955, 7, 414–416. [Google Scholar] [CrossRef]
  3. Thas, J.A. The m-dimensional projective space Sm(Mn(GF(q))) over the total matrix algebra Mn(GF(q)) of the (n×n)-matrices with elements in the Galois field GF(q). Rend. Mat. 1971, 4, 459–532. [Google Scholar]
  4. Ball, S. On sets of vectors of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc. 2012, 14, 733–748. [Google Scholar] [CrossRef]
  5. Ball, S.; De Beule, J. On sets of vectors of a finite vector space in which every subset of basis size is a basis II. Des. Codes Cryptogr. 2012, 65, 5–14. [Google Scholar] [CrossRef]
  6. Ball, S.; Lavrauw, M. Planar arcs. J. Combin. Theory Ser. A 2018, 160, 261–287. [Google Scholar] [CrossRef]
  7. Thas, J.A. Generalized quadrangles of order (s,s2). IV, Translations, Moufang and Fong-Seitz. Discrete Math. 2023, 346, 113641. [Google Scholar] [CrossRef]
  8. Hirschfeld, J.W.P. Projective Geometries over Finite Fields, 2nd ed.; Oxford University Press: Oxford, UK, 1998; p. xiv+555. [Google Scholar]
  9. Hirschfeld, J.W.P.; Thas, J.A. Open problems in finite projective spaces. Finite Fields Appl. 2015, 32, 44–81. [Google Scholar] [CrossRef]
  10. Segre, B. Introduction to Galois Geometries; Hirschfeld, J.W.P., Ed.; Atti della Accademia nazionale dei Lincei: Rome, Italy, 1967; Volume 8, pp. 133–236. [Google Scholar]
  11. Kaneta, H.; Maruta, T. An elementary proof and extension of Thas’ theorem on k-arcs. Math. Proc. Camb. Philos Soc. 1989, 105, 459–462. [Google Scholar] [CrossRef]
  12. Bruen, A.A.; Thas, J.A.; Blokhuis, A. On M.D.S. codes, arcs in PG(n,q) with q even, and a solution of three fundamental problems of B. Segre. Invent. Math. 1988, 92, 441–459. [Google Scholar] [CrossRef]
  13. Blokhuis, A.; Bruen, A.A.; Thas, J.A. Arcs in PG(n,q), MDS-codes and three fundamental problems of B. Segre—Some extensions. Geom. Dedicata 1990, 35, 1–11. [Google Scholar] [CrossRef]
  14. Storme, L.; Thas, J.A.M.D.S. codes and arcs in PG(n,q) with q even: An improvement of the bounds of Bruen, Thas, and Blokhuis. J. Combin. Theory Ser. A 1993, 62, 139–154. [Google Scholar] [CrossRef]
  15. Hirschfeld, J.W.P. Finite Projective Spaces of Three Dimensions; Oxford University Press: Oxford, UK, 1985; p. x+316. [Google Scholar]
  16. Bose, R.C. Mathematical theory of the symmetrical factorial design. Sankhyā 1947, 8, 107–166. [Google Scholar]
  17. Qvist, B. Some remarks concerning curves of the second degree in a finite plane. Ann. Acad. Sci. Fenn. Ser. A 1952, 134, 27. [Google Scholar]
  18. Barlotti, A. Un’ estensione del teorema di Segre–Kustaanheimo. Boll. Un. Mat. Ital. 1955, 10, 96–98. [Google Scholar]
  19. Panella, G. Caratterizzazione delle quadriche di uno spazio (tri-dimensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital. 1955, 10, 507–513. [Google Scholar]
  20. Brown, M.R. Ovoids of PG(3,q), q even, with a conic section. J. Lond. Math. Soc. 2000, 62, 569–582. [Google Scholar] [CrossRef]
  21. Tits, J. Ovoides et groupes de Suzuki. Arch. Math. 1962, 13, 187–198. [Google Scholar] [CrossRef]
  22. Segre, B. On complete caps and ovaloids in three-dimensional Galois spaces of characteristic two. Acta Arith. 1959, 5, 315–332. [Google Scholar] [CrossRef]
  23. Fellegara, G. Gli ovaloidi di uno spazio tridimensionale di Galois di ordine 8. Atti Accad. Naz. Lincei Rend. 1962, 32, 170–176. [Google Scholar]
  24. O’Keefe, C.M.; Penttila, T. Ovoids of PG(3,16) are elliptic quadrics. J. Geom. 1990, 38, 95–106. [Google Scholar] [CrossRef]
  25. O’Keefe, C.M.; Penttila, T. Ovoids of PG(3,16) are elliptic quadrics. II. J. Geom. 1992, 44, 140–159. [Google Scholar] [CrossRef]
  26. O’Keefe, C.M.; Penttila, T.; Royle, G.F. Classification of ovoids in PG(3,32). J. Geom. 1994, 50, 143–150. [Google Scholar] [CrossRef]
  27. Penttila, T. Uniqueness of the inversive plane of order sixty-four. Des. Codes Cryptogr. 2022, 90, 827–834. [Google Scholar] [CrossRef]
  28. Thas, J.A.; Van Maldeghem, H. Suzuki-Tits ovoids through the years. Arch. Math. 2023, 121, 511–521. [Google Scholar] [CrossRef]
  29. Hill, R. Caps and codes. Discret. Math. 1978, 22, 111–137. [Google Scholar] [CrossRef]
  30. Pellegrino, G. Sul massimo ordine delle calotte in S4,3. Matematiche 1970, 25, 1–9. [Google Scholar]
  31. Hill, R. On the largest size of cap in S5,3. Atti Accad. Naz. Lincei Rend. 1973, 54, 378–384. [Google Scholar]
  32. Edel, Y.; Bierbrauer, J. 41 is the largest size of a cap in PG(4,4). Des. Codes Cryptogr. 1999, 16, 151–160. [Google Scholar] [CrossRef]
  33. Meshulam, R. On subsets of finite abelian groups with no 3-term arithmetic progression. J. Combin. Theory Ser. A 1995, 71, 168–172. [Google Scholar] [CrossRef]
  34. Nagy, G.P.; Szonyi, T. Caps in finite projective spaces of odd order. J. Geom. 1997, 59, 103–113. [Google Scholar] [CrossRef]
  35. Thas, J.A. On k-caps in PG(n,q), with q even and n≥3. Discrete Math. 2018, 341, 1459–1471. [Google Scholar] [CrossRef]
  36. Storme, L.; Szonyi, T. Caps in PG(n,q), q even, n≥3. Geom. Dedicata 1993, 45, 163–169. [Google Scholar] [CrossRef]
  37. Hirschfeld, J.W.P.; Thas, J.A. General Galois Geometries; Springer Monographs in Mathematics; Springer: London, UK, 2016. [Google Scholar]
  38. Storme, L.; Thas, J.A.; Vereecke, S.K.J. New upper bounds for the sizes of caps in finite projective spaces. J. Geom. 2002, 73, 176–193. [Google Scholar] [CrossRef]
  39. Thas, J.A. On k-caps in PG(n,q), with q even and n≥4. Discrete Math. 2018, 341, 1072–1077. [Google Scholar] [CrossRef]
  40. Hirschfeld, J.W.P.; Storme, L. The packing problem in statistics, coding theory and finite projective spaces: Update 2001. In Finite Geometries; Kluwer: Dordrecht, The Netherlands, 2001; pp. 201–246. [Google Scholar]
  41. Thas, J.A.; Thas, K.; Van Maldeghem, H. Translation Generalized Quadrangles; Series in Pure Mathematics, 26; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2006; p. xxx+345. [Google Scholar]
  42. Payne, S.E.; Thas, J.A. Finite Generalized Quadrangles, 2nd ed.; European Mathematical Society: Zurich, Switzerland, 2009; p. xii+287. [Google Scholar]
  43. Rottey, S.; Van de Voorde, G. Pseudo-ovals in even characteristic and ovoidal Laguerre planes. J. Combin. Theory Ser. A 2015, 129, 105–121. [Google Scholar] [CrossRef]
  44. Rottey, S.; Van de Voorde, G. Characterisations of elementary pseudo-caps and good eggs. Electron. J. Combin. 2015, 22, 13. [Google Scholar] [CrossRef]
  45. Thas, J.A. Regular pseudo-hyperovals and regular pseudo-ovals in even characteristic. Innov. Incid. Geom. 2019, 17, 77–84. [Google Scholar] [CrossRef]
  46. Metsch, K.; Van de Voorde, G. On a question of Thas on partial 3-(qn+1,q+1,1) designs. J. Combin. Des. 2020, 28, 25–32. [Google Scholar] [CrossRef]
  47. Thas, J.A. Generalized ovals in PG(3n-1,q), with q odd. Pure Appl. Math. Q. 2011, 7, 1007–1035. [Google Scholar] [CrossRef]
  48. Shult, E.E.; Thas, J.A. m-systems of polar spaces. J. Combin. Theory Ser. A 1994, 68, 184–204. [Google Scholar] [CrossRef]
  49. Shult, E.E. Problems by the wayside. Discrete Math. 2005, 294, 175–201. [Google Scholar] [CrossRef]
  50. Bamberg, J.; Monzillo, G.; Siciliano, A. Pseudo-ovals of elliptic quadrics as Delsarte designs of association schemes. Linear Algebra Appl. 2021, 624, 281–317. [Google Scholar] [CrossRef]
  51. Delsarte, P. Weights of linear codes and strongly regular normed spaces. Discret. Math. 1972, 3, 47–64. [Google Scholar] [CrossRef]
  52. Brown, M.R.; Lavrauw, M. Eggs in PG(4n-1,q),q even, containing a pseudo-conic. Bull. Lond. Math. Soc. 2004, 36, 633–639. [Google Scholar] [CrossRef]
  53. Thas, J.A.; Thas, K. Covers of generalized quadrangles, 2. Kantor-Knuth covers and embedded ovoids. Finite Fields Appl. 2021, 70, 101780. [Google Scholar] [CrossRef]
  54. Lunardon, G. Flocks, ovoids of Q(4,q) and designs. Geom. Dedicata 1997, 66, 163–173. [Google Scholar] [CrossRef]
  55. Lunardon, G. 50 years of translation structures. J. Geom. 2022, 113, 41. [Google Scholar] [CrossRef]
  56. Blokhuis, A.; Lavrauw, M.; Ball, S. On the classification of semifield flocks. Adv. Math. 2003, 180, 104–111. [Google Scholar] [CrossRef]
  57. Payne, S.E. An essay on skew translation generalized quadrangles. Geom. Dedicata 1989, 32, 93–118. [Google Scholar] [CrossRef]
  58. Tits, J. Classification of buildings of spherical type and Moufang polygons: A survey. In Teorie Combinatorie, Volume I; Atti Dei Convegni Lincei 17; Accademia Nazionale Dei Lincei: Rome, Italy, 1976; pp. 229–246. [Google Scholar]
  59. Fong, P.; Seitz, G.M. Groups with a (B,N)-pair of rank 2, I. Invent. Math. 1973, 21, 1–57. [Google Scholar] [CrossRef]
  60. Fong, P.; Seitz, G.M. Groups with a (B,N)-pair of rank 2, II. Invent. Math. 1974, 24, 191–239. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hirschfeld, J.W.P.; Thas, J.A. Arcs, Caps and Generalisations in a Finite Projective Space. Mathematics 2025, 13, 1489. https://doi.org/10.3390/math13091489

AMA Style

Hirschfeld JWP, Thas JA. Arcs, Caps and Generalisations in a Finite Projective Space. Mathematics. 2025; 13(9):1489. https://doi.org/10.3390/math13091489

Chicago/Turabian Style

Hirschfeld, James W. P., and Joseph A. Thas. 2025. "Arcs, Caps and Generalisations in a Finite Projective Space" Mathematics 13, no. 9: 1489. https://doi.org/10.3390/math13091489

APA Style

Hirschfeld, J. W. P., & Thas, J. A. (2025). Arcs, Caps and Generalisations in a Finite Projective Space. Mathematics, 13(9), 1489. https://doi.org/10.3390/math13091489

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop