Stochastic Optimal Control of Averaged SDDE with Semi-Markov Switching and with Application in Economics
Abstract
:1. Introduction
2. Semi-Markov Process
3. Controlled Stochastic Differential Delay Equations (SDDEs) with Semi-Markov Switching and Averaged Controlled SDDEs
3.1. Controlled SDDEs with Semi-Markov Switching
3.2. Assumptions and Existence of Solutions
3.3. Controlled Averaged SDDE
4. Solution to the Stochastic Optimal Control Problem for the Averaged SDDEs
4.1. Dynkin Formula for the SDDE with Semi-Markov Switching
4.2. Solution to the Dirichlet–Poisson Problem for the SDDE with Semi-Markov Switching
4.3. Hamilton–Jacobi–Bellman (HJB) Equation for the SDDE with Semi-Markov Switching
5. Ramsey Diffusion Model in Economics with Semi-Markov Switching
5.1. Optimal Control for Ramsey Diffusion Model in Economics with Semi-Markov Switching
5.2. Numerical Example for Ramsey Diffusion Model in Economics with Semi-Markov Switching
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nisio, M. Stochastic Control Theory; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Fleming, W.; Rishel, R. Deterministic and Stochastic Optimal Control; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Stengel, R. Stochastic Optimal Control: Theory and Applications; Wiley: Hoboken, NJ, USA, 1986. [Google Scholar]
- Fabbri, G.; Gozzi, F.; Swiech, A. Stochastic Optimal Control in Infinite Dimensions; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Oksendal, B.; Sulem, A. Applied Stochastic Optimal Control of Jump Diffusions, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Scheutzow, M. Stochastic Delay Equations; Lecture Notes: Berlin, Germany, 2018. [Google Scholar]
- Mohammed, S.; Scheutzow, M. Lyapunov exponent and statistical solutions for affine stochastic delay equations. Stochastics 1990, 29, 259–283. [Google Scholar]
- Mohammed, S.; Scheutzow, M. Lyapunov exponents of linear stochastic functional differential equations. Part II: Examples and Case Studies. Ann. Probab. 1997, 25, 1210–1240. [Google Scholar] [CrossRef]
- von Renesse, M.; Scheutzow, M. Existence and uniqueness of solutions of stochastic functional differential equations. Random Oper. Stoch. Equ. 2010, 18, 267–284. [Google Scholar] [CrossRef]
- Mohammed, S. Nonliner flows of stochastic liner delay equations. Stochastics 1986, 17, 2007–2013. [Google Scholar] [CrossRef]
- Reis, M.; Riedle, M.; van Gaans, O. Delay differential equations driven by Lévy processes: Stationarity and Feller properties. Stoch. Proccess. Their Appl. 2006, 116, 1409–1432. [Google Scholar] [CrossRef]
- Ivanov, A.F.; Svishchuk, M.Y.; Swishchuk, A.V.; Trofimchuk, S.A. Optimal control of stochastic differential delay equations with Jumps and Markov Switching, and with an application in economics. In Proceedings of the ICIAM 2023 Congress, Tokyo, Japan, 20–25 August 2023. [Google Scholar]
- Swishchuk, A.V.; Kazmerchuk, Y.I. Stability of stochastic Ito equations with delay, Poisson jumps and Markov switchings with applications to finance. Theory Probab. Math. Stat. 2002, 64, 45, (translated by AMS, N64, 2002). [Google Scholar]
- Ivanov, A.F.; Kazmerchuk, Y.; Swishchuk, A.V. Theory, Stochastic Stability and Applications of Stochastic Delay Differential Equations: A Survey of Recent Results. Differ. Equ. Dyn. Syst. 2003, 11, 55–115. [Google Scholar]
- Hale, J.K. Theory of Functional Differential Equations. Appl. Math. Sci. 1977, 3, 365. [Google Scholar]
- Ivanov, A.F.; Swishchuk, A.V. Optimal control of stochastic differential delay equations with application in economics. Int. J. Qual. Theory Differ. Equ. Appl. 2008, 2, 201–213. [Google Scholar]
- Ito, K.; Nisio, M. On stationary solutions of a stochastic differential equation. J. Math. Kyoto Univ. 1964, 4, 1–70. [Google Scholar]
- Dynkin, E.B. Markov Process; Fizmatgiz, 1963. English translation; Academic Press: New York, NY, USA, 1965; Volumes 1 and 2. [Google Scholar]
- Ramsey, F.P. A mathematical theory of savings. Econ. J. 1928, 38, 543–549. [Google Scholar] [CrossRef]
- Cass, D. Optimum Growth in an Aggregative Model of Capital Accumulation. Rev. Econ. Stud. 1965, 32, 233–240. [Google Scholar] [CrossRef]
- Koopmans, T.C. On the Concept of Optimal Economic Growth. The Economic Approach to Development Planning; Rand McNally: Chicago, IL, USA, 1965; pp. 225–287. [Google Scholar]
- Acemoglu, D. The Neoclassical Growth Model. Introduction to Modern Economic Growth; Princeton University Press: Princeton, NJ, USA, 2009; pp. 287–326. ISBN 978-0-691-13292-1. [Google Scholar]
- Barro, R.J.; Sala-i-Martin, X. Growth Models with Consumer Optimization. Economic Growth, 2nd ed.; McGraw-Hill: New York, NY, USA, 2024; pp. 85–142. ISBN 978-0-262-02553-9. [Google Scholar]
- Bénassy, J.-P. The Ramsey Model; Macroeconomic Theory; Oxford University Press: New York, NY, USA, 2015; pp. 145–160. ISBN 978-0-19-538771-1. [Google Scholar]
- Blanchard, O.J.; Fischer, S. Consumption and Investment: Basic Infinite Horizon Models. In Lectures on Macroeconomics; MIT Press: Cambridge, MA, USA, 1989; pp. 37–89. ISBN 978-0-262-02283-5. [Google Scholar]
- Miao, J. Neoclassical Growth Models. In Economic Dynamics in Discrete Time; MIT Press: Cambridge, MA, USA, 2014; pp. 353–364. ISBN 978-0-262-02761-8. [Google Scholar]
- Novales, A.; Fernández, E.; Ruíz, J. Optimal Growth: Continuous Time Analysis. In Economic Growth: Theory and Numerical Solution Methods; Springer: Berlin/Heidelberg, Germany, 2009; pp. 101–154. ISBN 978-3-540-68665-1. [Google Scholar]
- Romer, D. Infinite-Horizon and Overlapping-Generations Models. In Advanced Macroeconomics, 4th ed.; McGraw-Hill: New York, NY, USA, 2011; pp. 49–77. ISBN 978-0-07-351137-5. [Google Scholar]
- Gandolfo, G. Economic Dynamics; Springer: Berlin/Heidelberg, Germany, 1996; p. 610. [Google Scholar]
- Chung, K.L. Markov Chains, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1967. [Google Scholar]
- Swishchuk, A.V. Random Evolutions and their Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; Volume 408, p. 215. [Google Scholar]
- Fleming, W.; Nisio, M. On the existence of optimal stochastic control. J. Math. Mech. 1966, 15, 777–794. [Google Scholar]
- Kushner, H. On the stability of processes defined by stochastic difference-differential equations. J. Differ. Equ. 1968, 4, 424–443. [Google Scholar] [CrossRef]
- Skorokhod, A.V. Studies in the Theory of Random Processes; Dover Publications, Inc.: Mineola, NY, USA, 1965. [Google Scholar]
- Skorokhod, A.V. Asymptotic Methods in the Theory of Stochastic Differential Equations; Naukova Dumka Publishers: Kyiv, Ukraine, 1989. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svishchuk, M.; Swishchuk, A.V. Stochastic Optimal Control of Averaged SDDE with Semi-Markov Switching and with Application in Economics. Mathematics 2025, 13, 1440. https://doi.org/10.3390/math13091440
Svishchuk M, Swishchuk AV. Stochastic Optimal Control of Averaged SDDE with Semi-Markov Switching and with Application in Economics. Mathematics. 2025; 13(9):1440. https://doi.org/10.3390/math13091440
Chicago/Turabian StyleSvishchuk, Mariya, and Anatoliy V. Swishchuk. 2025. "Stochastic Optimal Control of Averaged SDDE with Semi-Markov Switching and with Application in Economics" Mathematics 13, no. 9: 1440. https://doi.org/10.3390/math13091440
APA StyleSvishchuk, M., & Swishchuk, A. V. (2025). Stochastic Optimal Control of Averaged SDDE with Semi-Markov Switching and with Application in Economics. Mathematics, 13(9), 1440. https://doi.org/10.3390/math13091440