Matrix mKdV Integrable Hierarchies via Two Identical Group Reductions
Abstract
:1. Introduction
2. Matrix Integrable mKdV Hierarchies via Group Reductions
2.1. The AKNS Integrable Hierarchies Revisited
2.2. Reducing the AKNS Spectral Problems
2.3. Matrix Integrable mKdV Hierarchies
3. Applications
4. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Lax, P.D. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 1968, 21, 467–490. [Google Scholar] [CrossRef]
- Tu, G.Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A Math. Gen. 1989, 22, 2375–2392. [Google Scholar]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Drazin, P.G.; Johnson, R.S. Solitons: An Introduction; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Mikhailov, A.V. The reduction problem and the inverse scattering method. Phys. D 1981, 3, 73–117. [Google Scholar] [CrossRef]
- Gerdjikov, V.S.; Kostov, N.A. Reductions of multicomponent mKdV equations on symmetric spaces of DIII-type. Symmetry Integr. Geom. Methods Appl. 2008, 4, 30. [Google Scholar] [CrossRef]
- Ma, W.X. Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. Real World Appl. 2019, 47, 1–17. [Google Scholar] [CrossRef]
- Ma, W.X. Sasa-Satsuma type matrix integrable hierarchies and their Riemann-Hilbert problems and soliton solutions. Physical D 2023, 446, 133672. [Google Scholar] [CrossRef]
- Ma, W.X. Real reduced matrix mKdV integrable hierarchies under two local group reductions. East Asian J. Appl. Math. 2024, 14, 281–292. [Google Scholar]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal nonlinear equations. Stud. Appl. Math. 2017, 139, 7–59. [Google Scholar] [CrossRef]
- Ma, W.X. Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems. Partial Differ. Equ. Appl. Math. 2021, 4, 100190. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Musslimani, Z.H. Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 2016, 29, 915–946. [Google Scholar] [CrossRef]
- Ma, W.X.; Huang, Y.H.; Wang, F.D. Inverse scattering transforms for non-local reverse-space matrix non-linear Schrödinger equations. Eur. J. Appl. Math. 2022, 33, 1062. [Google Scholar] [CrossRef]
- Ji, J.L.; Zhu, Z.N. On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 699–708. [Google Scholar] [CrossRef]
- Song, C.Q.; Xiao, D.M.; Zhu, Z.N. Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 2017, 45, 13–28. [Google Scholar] [CrossRef]
- Gürses, M.; Pekcan, A. Nonlocal nonlinear Schrödinger equations and their soliton solutions. J. Math. Phys. 2018, 59, 051501. [Google Scholar] [CrossRef]
- Gürses, M.; Pekcan, A. Nonlocal modified KdV equations and their soliton solutions by Hirota method. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 427–448. [Google Scholar] [CrossRef]
- Song, C.Q.; Liu, D.Y.; Ma, L.Y. Soliton solutions of a novel nonlocal Hirota system and a nonlocal complex modified Korteweg–de Vries equation. Chaos Solitons Fractals 2024, 181, 114707. [Google Scholar] [CrossRef]
- Wang, X.; Du, D.L.; Wang, H. A nonlocal finite-dimensional integrable system related to the nonlocal mKdV equation. Theor. Math. Phys. 2024, 218, 370–387. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.P.; Cui, Y.N. Bi-integrable and tri-integrable couplings of a soliton hierarchy associated with SO(3). Adv. Math. Phys. 2017, 2017, 9743475. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Zhong, Y.D.; Li, X.Y. Explicit solutions to a hierarchy of discrete coupling Korteweg–de Vries equations. J. Appl. Anal. Comput. 2022, 12, 1353–1370. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. A kind of generalized integrable couplings and their bi-Hamiltonian structure. Int. J. Theor. Phys. 2021, 60, 1797–1812. [Google Scholar] [CrossRef]
- Liu, T.S.; Xia, T.C. Multi-component generalized Gerdjikov-Ivanov integrable hierarchy and its Riemann-Hilbert problem. Nonlinear Anal. Real World Appl. 2022, 68, 103667. [Google Scholar] [CrossRef]
- Zhu, X.M.; Zhang, J.B. The integrability of a new fractional soliton hierarchy and its application. Adv. Math. Phys. 2022, 2022, 2200092. [Google Scholar] [CrossRef]
- Ma, W.X. Matrix integrable fifth-order mKdV equations and their soliton solutions. Chin. Phys. B 2022, 32, 020201. [Google Scholar] [CrossRef]
- Ma, W.X. The algebraic structures of isospectral Lax operators and applications to integrable equations. J. Phys. A Math. Gen. 1992, 25, 5329–5343. [Google Scholar] [CrossRef]
- Athorne, C.; Fordy, A. Generalised KdV and MKdV equations associated with symmetric spaces. J. Phys. A Math. Gen. 1987, 20, 1377–1386. [Google Scholar] [CrossRef]
- Khalilov, F.A.; Khruslov, E.Y. Matrix generalisation of the modified Korteweg-de Vries equation. Inverse Probl. 1990, 6, 193–204. [Google Scholar] [CrossRef]
- Yu, F.; Li, L. Vector dark and bright soliton wave solutions and collisions for spin-1 Bose–Einstein condensate. Nonlinear Dyn. 2017, 87, 2697–2713. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Younas, U.; Yusuf, A.; Younis, M.; Bilal, M.; Shafqat-Ur-Rehman. Extraction of new optical solitons and MI analysis to three coupled Gross–Pitaevskii system in the spinor Bose–Einstein condensate. Mod. Phys. Lett. B 2021, 35, 2150109. [Google Scholar] [CrossRef]
- Ye, R.S.; Zhang, Y.; Ma, W.X. Bound states of dark solitons in N-coupled complex modified Korteweg-de Vries equations. Acta Appl. Math. 2022, 178, 7. [Google Scholar] [CrossRef]
- Younas, U.; Sulaiman, T.A.; Ren, J. Diversity of optical soliton structures in the spinor Bose–Einstein condensate modeled by three-component Gross–Pitaevskii system. Int. J. Mod. Phys. B 2023, 37, 2350004. [Google Scholar] [CrossRef]
- Ma, W.X. A combined integrable hierarchy with four potentials and its recursion operator and bi-Hamiltonian structure. Indian J. Phys. 2025, 99, 1063–1069. [Google Scholar] [CrossRef]
- Ma, W.X. A combined generalized Kaup-Newell soliton hierarchy and its hereditary recursion operator and bi-Hamiltonian structure. Theor. Math. Phys. 2024, 221, 1603–1614. [Google Scholar] [CrossRef]
- Geng, X.G.; Zeng, X. Algebro-geometric quasi-periodic solutions to the Satsuma–Hirota hierarchy. Phys. D 2023, 448, 133738. [Google Scholar] [CrossRef]
- Geng, X.G.; Jia, M.X.; Xue, B.; Zhai, Y.Y. Application of tetragonal curves to coupled Boussinesq equations. Lett. Math. Phys. 2024, 114, 30. [Google Scholar] [CrossRef]
- Ma, W.X. A soliton hierarchy derived from a fourth-order matrix spectral problem possessing four fields. Chaos Solitons Fractals 2025, 195, 116309. [Google Scholar] [CrossRef]
- Ma, W.X. Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions. J. Geom. Phys. 2022, 177, 104522. [Google Scholar] [CrossRef]
- Liu, J.G.; Zhu, W.H.; He, Y. Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients. Z. Angew. Math. Phys. 2021, 72, 154. [Google Scholar] [CrossRef]
- Ma, H.C.; Bai, Y.X.; Deng, A.P. General M-lump, high-order breather, and localized interaction solutions to (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Front. Math. China 2022, 17, 943–960. [Google Scholar] [CrossRef]
- Yang, J.J.; Tian, S.F.; Li, Z.Q. Riemann-Hilbert method and multi-soliton solutions of an extended modified Korteweg–de Vries equation with N distinct arbitrary-order poles. J. Math. Anal. Appl. 2022, 511, 126103. [Google Scholar] [CrossRef]
- Ma, H.C.; Yue, S.P.; Gao, Y.D.; Deng, A.P. Lump solution, breather soliton and more soliton solutions for a (2+1)-dimensional generalized Benjamin-Ono equation. Qual. Theory Dyn. Syst. 2023, 22, 72. [Google Scholar] [CrossRef]
- Ma, W.X. Lump waves and their dynamics of a spatial symmetric generalized KP model. Rom. Rep. Phys. 2024, 76, 108. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, Y.; Ma, W.X. An extended (2+1)-dimensional modified Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff equation: Lax pair and Darboux transformation. Commun. Theor. Phys. 2025, 77, 035002. [Google Scholar] [CrossRef]
- Chu, J.Y.; Liu, Y.Q.; Ma, W.X. Integrability and multiple-rogue and multi-soliton wave solutions of the 3+1-dimensional Hirota–Satsuma–Ito equation. Mod. Phys. Lett. B 2025, 39, 2550060. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.-X. Matrix mKdV Integrable Hierarchies via Two Identical Group Reductions. Mathematics 2025, 13, 1438. https://doi.org/10.3390/math13091438
Ma W-X. Matrix mKdV Integrable Hierarchies via Two Identical Group Reductions. Mathematics. 2025; 13(9):1438. https://doi.org/10.3390/math13091438
Chicago/Turabian StyleMa, Wen-Xiu. 2025. "Matrix mKdV Integrable Hierarchies via Two Identical Group Reductions" Mathematics 13, no. 9: 1438. https://doi.org/10.3390/math13091438
APA StyleMa, W.-X. (2025). Matrix mKdV Integrable Hierarchies via Two Identical Group Reductions. Mathematics, 13(9), 1438. https://doi.org/10.3390/math13091438